JPS63218205A - Pressure crystallization method - Google Patents
Pressure crystallization methodInfo
- Publication number
- JPS63218205A JPS63218205A JP5229887A JP5229887A JPS63218205A JP S63218205 A JPS63218205 A JP S63218205A JP 5229887 A JP5229887 A JP 5229887A JP 5229887 A JP5229887 A JP 5229887A JP S63218205 A JPS63218205 A JP S63218205A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- specific component
- solid phase
- container
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002425 crystallisation Methods 0.000 title claims abstract description 20
- 239000013078 crystal Substances 0.000 claims abstract description 27
- 239000002002 slurry Substances 0.000 claims abstract description 8
- 239000012452 mother liquor Substances 0.000 claims abstract description 7
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 abstract description 21
- 230000008025 crystallization Effects 0.000 abstract description 10
- 239000012071 phase Substances 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 14
- 239000007791 liquid phase Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 230000035900 sweating Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、圧力晶析操作により晶出させた高純度成分を
速やかに且つ装置を損耗させることなく取出す圧力晶析
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pressure crystallization method for quickly extracting high purity components crystallized by a pressure crystallization operation without damaging the apparatus.
[従来の技術]
圧力晶析法とは、第2図に示す様に高圧容器内に複数成
分からなる液相又は固・液混合物からなる原料(流動相
状混合物)を導入しく注入工程)、液相排出管路を閉鎖
した状態で該原料に高圧力を加えて特定成分の晶析を促
進させる(加圧工程)方法であり、この操作によって特
定成分の結晶と残留液が混在した状態が得られる。次に
排液管路の閉鎖を解除して固液共存状態に圧力を加えな
がら液状成分をフィルタ経由で系外に排出しく分離工程
)、残った固相を必要により表層部を融解した後圧搾し
ながら固液を分離すると(圧搾・発汗工程)、高純度の
特定成分を得ることができる。こうして得られた特定成
分固化物は、高圧容器を開放しブツシャやシュートを作
動させて取出され、高圧容器を再び閉鎖して次の操業に
入る(取出し工程)。[Prior Art] Pressure crystallization is a process in which a raw material (fluid phase mixture) consisting of a liquid phase or a solid-liquid mixture consisting of multiple components is introduced into a high-pressure container as shown in Figure 2. This is a method (pressurization process) in which high pressure is applied to the raw material with the liquid phase discharge pipe closed to promote crystallization of a specific component, and this operation creates a state in which crystals of the specific component and residual liquid are mixed. can get. Next, the drain pipe is unblocked and the liquid component is discharged out of the system via a filter while applying pressure to the solid-liquid coexistence state (separation process), and the remaining solid phase is compressed after melting the surface layer if necessary. By separating the solid and liquid (squeezing and sweating process), a highly pure specific component can be obtained. The specific component solidified product thus obtained is taken out by opening the high-pressure container and operating a button or chute, and then the high-pressure container is closed again and the next operation begins (take-out step).
[発明が解決しようとする問題点]
この様な圧力晶析方法における特定成分の取出しに当た
ってはその都度容器の開閉並びにブツシャ等の作動を行
なわなければならず、この操作の為に多大な時間を費す
(数分のサイクルの中で1分以上を要することがある)
、又長期間の操業においては容器の開閉が何万回も繰返
されることになり、開閉に伴なうパツキンの損耗や下蓋
と容器の軸心のずれが発生し、これらの装置故障の為に
安定し、た操業を行なうことができない。さらにフィル
タ背面に付着する不純物の多い液体が容器の開放に伴な
って特定成分固形物上に滴下し特定成分を汚染するとい
う問題があり、又容器を開放すると特定成分固形物は空
気と接触することになり、空気との反応や吸湿といった
問題を生じる。[Problems to be Solved by the Invention] When taking out a specific component in such a pressure crystallization method, it is necessary to open and close the container and operate the pusher each time, and this operation requires a large amount of time. (can take more than a minute in a cycle of several minutes)
In addition, during long-term operation, the container will be opened and closed tens of thousands of times, resulting in wear and tear on the gaskets and misalignment of the axis between the bottom lid and the container. It is not possible to perform stable and stable operations. Furthermore, when the container is opened, the highly impure liquid adhering to the back of the filter drips onto the specific component solids and contaminates the specific components, and when the container is opened, the specific component solids come into contact with the air. This causes problems such as reaction with air and moisture absorption.
その他特定成分固形物が揮発性を持つ場合には周囲の作
業環境を悪くすることも問題の一つとして挙げられる。Another problem is that if the specific solid component is volatile, it may worsen the surrounding working environment.
本発明はこうした事情に着目してなされたものであって
、上記諸問題を一挙に解決し得る様な圧力晶析方法を提
供しようとするものである。The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a pressure crystallization method that can solve the above-mentioned problems all at once.
[問題点を解決するための手段]
しかして上記目的を達成した本発明方法は、2成分以上
からなる流動相状混合物を加圧下に置くことによって特
定成分の結晶を生成・増加せしめる圧力晶析法において
、生成した特定成分結晶から分離・排出されてくる母液
圧力が所定圧力に到達した時点で母液の分離を停止し、
高圧容器内に残留する特定成分結晶に加えられた圧力を
低下させて、結晶の一部を融解せしめ、特定成分をスラ
リー状にして高圧容器外へ回収する点に要旨を有するも
のである。[Means for Solving the Problems] The method of the present invention that achieves the above object is a pressure crystallization method in which crystals of a specific component are generated and increased by placing a fluid phase mixture consisting of two or more components under pressure. In this method, the separation of the mother liquor is stopped when the pressure of the mother liquor separated and discharged from the generated specific component crystals reaches a predetermined pressure.
The gist of this method is to reduce the pressure applied to the specific component crystals remaining in the high-pressure container, melt some of the crystals, and collect the specific component into a slurry form outside the high-pressure container.
[作用並びに実施例]
前記諸問題の根本的原因は特定成分を固形物の形で取出
すことの必要上容器の開閉を頻繁に行なうことにあり、
容器を開放せずに取出すことができればこれらの問題は
一挙に解決する。即ち圧力晶析操作によって得られた特
定成分固形物を不純分の多い液相と分離した後、例えば
該固形物を加熱・融解してた液状にすれば容器を開放す
ることなく排出管等から液状特定成分を回収することが
できる。しかるに特定成分固形物を容器内で全量融解し
て回収する場合は、加熱・融解にかなりの時間を要する
と共に、容器内殊にフィルタ周辺に残存する不純物の多
い液相との分離が困難であり、特定成分融解物中に不純
物が混入し純度を低下させることになる。また融解の為
に装置を加熱すると次サイクル開始までに再冷却を行な
う必要があり、時間的にもエネルギー的にもロスが多い
。[Operations and Examples] The root cause of the above-mentioned problems is that the container must be opened and closed frequently due to the need to extract specific ingredients in solid form.
If it were possible to take out the container without opening it, these problems would be solved at once. That is, after separating the specific component solid obtained by pressure crystallization from the liquid phase containing many impurities, for example, if the solid is heated and melted to a liquid state, it can be discharged from the discharge pipe etc. without opening the container. Liquid specific components can be recovered. However, when recovering a specific component solid by melting it in its entirety in a container, it takes a considerable amount of time to heat and melt it, and it is difficult to separate it from the liquid phase containing many impurities that remains inside the container, especially around the filter. , impurities will be mixed into the specific component melt, reducing the purity. Furthermore, if the device is heated for melting, it must be cooled again before the start of the next cycle, resulting in a large loss in terms of time and energy.
そこで本発明者等は容器を開放することなく且つ迅速に
高純度特定成分を容器から取り出すことができる様な圧
力晶析方法について更に研究を重ね、前記構成で示され
る圧力晶析方法を完成するに至った。Therefore, the present inventors conducted further research on a pressure crystallization method that can quickly take out a high purity specific component from a container without opening the container, and completed the pressure crystallization method shown in the above configuration. reached.
即ち断熱的圧力晶析操作における圧力の経時変化並びに
温度−圧力変化をグラフ化すると第3図及び第4図に示
す通りとなる0図中Aは注入工程完了点であり、A−8
間が加圧工程、B−C間が分離工程、C−D間が圧搾・
発汗工程にほぼ対応する。又第4図中のaは特定成分(
純物質)の固液平衡線、bは原料組成の固液平衡線、M
は特定成分(純物質)の大気圧下における融点を示す。That is, when the pressure change over time and the temperature-pressure change in the adiabatic pressure crystallization operation are graphed as shown in Figs. 3 and 4, A-8 in Fig. 0 is the point at which the injection process is completed.
The space between is the pressurizing process, the space between B and C is the separation process, and the space between C and D is the compression process.
It roughly corresponds to the sweating process. Also, a in Figure 4 represents a specific component (
b is the solid-liquid equilibrium line of the pure substance), b is the solid-liquid equilibrium line of the raw material composition, M
indicates the melting point of a specific component (pure substance) under atmospheric pressure.
ここで第4図において製品の純度は純物質の固液平衡線
aに近づく程高くなり、D点をできる限りM点に近づけ
る様に操業条件が設定されている。Here, in FIG. 4, the purity of the product increases as it approaches the solid-liquid equilibrium line a of pure substances, and the operating conditions are set so as to bring point D as close as possible to point M.
しかるに第4図の温度−圧力変化カーブからも理解され
る様にD点に至らずとも0点においてカーブは既に十分
に純物質の固液平衡線aに近接しており、このときの固
形物をとり出せば十分に純度の高い特定成分を得ること
ができる。即ちC−D間の減圧では高純度の特定成分固
形物の表面を発汗させ、比較的純度の低い表面層を除去
して純度をより高める作用が発揮されるが、この間の純
度向上は0点でかなり高純度となっていることもあって
僅かである。However, as can be understood from the temperature-pressure change curve in Figure 4, the curve is already sufficiently close to the solid-liquid equilibrium line a of the pure substance at point 0 even before reaching point D, and the solid-liquid equilibrium line a of the pure substance at this time By extracting it, it is possible to obtain a specific component with a sufficiently high purity. In other words, when the pressure is reduced between C and D, the surface of the high-purity specific component solid material sweats, and the relatively low-purity surface layer is removed to further increase the purity, but the purity improvement during this period is 0 points. The amount is very small, partly because the purity is quite high.
そこで本発明では0点における特定成分結晶を回収すべ
く0点で不純物含有液相の分離・排出を停止することと
した。停止の方法としては排液ラインの圧力が0点の圧
力に達した時点で例えば第1図に示す様に排液ライン6
のバルブv6を閉鎖する方法も可能であるが、より好ま
しくは0点の圧力に相当する背圧を排液ラインに与えて
排液ラインの圧力をしばらくこの圧力に保持しておく方
法が推奨される。この結果大型高圧容器内でも容器内に
残存する母液圧力が同じ圧力になり、均一な圧力状態を
得ることができる。Therefore, in the present invention, it was decided to stop the separation and discharge of the impurity-containing liquid phase at the 0 point in order to recover the specific component crystals at the 0 point. As a method of stopping, when the pressure in the drain line reaches the zero point pressure, for example, as shown in Fig. 1, the drain line 6 is stopped.
Although it is possible to close valve v6, it is more preferable to apply a back pressure equivalent to the zero point pressure to the drain line and maintain the pressure in the drain line at this pressure for a while. Ru. As a result, the mother liquor pressure remaining in the large high-pressure container becomes the same pressure, and a uniform pressure state can be obtained.
次いで第1図に示す様に容器内の特定成分結晶(固相)
と連通ずる管路(固相流出管)7を開口して、固相部の
圧力を大気圧まで一気に放圧する。但しこのとき大気圧
下に曝されるのは固相流出管7人口部の特定成分結晶で
あり、該入口部周辺の特定成分結晶は第4図におけるC
−D間の温度降下に相当する分の融解を生じ、融解液と
固相の混じったスラリーが生成する。Next, as shown in Figure 1, the specific component crystals (solid phase) in the container
The pipe line (solid phase outflow pipe) 7 communicating with is opened, and the pressure in the solid phase part is released all at once to atmospheric pressure. However, at this time, it is the specific component crystals in the solid phase outflow tube 7 that are exposed to atmospheric pressure, and the specific component crystals around the inlet are exposed to C in FIG.
Melting occurs corresponding to the temperature drop between -D, and a slurry containing a mixture of melt and solid phase is generated.
生成したスラリーは固相流出管7に流入して高圧容器1
外部へ流出するのでこれを回収すると目的物質である高
純度特定成分を得ることができる。尚固相流出管フを開
口している間も特定成分結晶にはピストン4により十分
な面圧を加え、容器内圧力が低下しない様にしておく、
この結果特定成分結晶は固相流出管7に近い側から順次
融解し、ピストン4の降下につれて徐々に降下し、スラ
リー状となって固相流出管7から流出する。かくして特
定成分結晶を容器の開放なしに速やかに取出すことがで
きる。The generated slurry flows into the solid phase outflow pipe 7 and is transferred to the high pressure vessel 1.
Since it flows out to the outside, if this is collected, a high purity specific component, which is the target substance, can be obtained. Even while the solid phase outflow pipe is open, sufficient surface pressure is applied to the specific component crystals by the piston 4 to prevent the pressure inside the container from decreasing.
As a result, the specific component crystals are sequentially melted from the side closer to the solid phase outflow pipe 7, gradually descend as the piston 4 descends, and flow out from the solid phase outflow pipe 7 in the form of a slurry. In this way, specific component crystals can be quickly taken out without opening the container.
上記圧力晶析方法において、0点の圧力即ち液相分離を
停止する所定の圧力は、特定成分の種類、目標とする製
品純度、原料温度、B点即ち最大加圧点の圧力・温度等
を考慮して決定される。In the above pressure crystallization method, the pressure at the zero point, that is, the predetermined pressure at which liquid phase separation is stopped, depends on the type of specific component, the target product purity, the raw material temperature, the pressure and temperature at point B, or the maximum pressurizing point, etc. Determined by consideration.
しかしながら少なくとも0点からD点まで減圧したとき
の液相の分率が0,05以上であることが望ましく、該
液相分率が高い程初期排出がスムースとなり、特定成分
結晶押出しに要するピストン圧力は少なくして済む。However, it is desirable that the liquid phase fraction when the pressure is reduced from 0 point to D point is at least 0.05 or more, and the higher the liquid phase fraction, the smoother the initial discharge, and the piston pressure required to extrude the specific component crystal. can be reduced.
又特定成分結晶をスラリー化して押出す間、容器内のフ
ィルタ外周部間隙には0点までの圧力で分離された不純
物濃度の高い液相が存在するが、押出しの過程で該液相
がフィルタを逆に透過して特定スラリー中へ混入してく
ることはない。何故ならば特定成分押出し中、特定成分
結晶にはピストンによってC点圧力以上の面圧が加えら
れており、フィルタ内側の固相の方が高圧に保持されて
いるからである。Also, while the specific component crystals are slurried and extruded, a liquid phase with high impurity concentration that is separated by pressure down to zero exists in the gap around the filter periphery in the container. On the contrary, it will not pass through and mix into the specific slurry. This is because, during extrusion of the specific component, surface pressure greater than the pressure at point C is applied to the specific component crystal by the piston, and the solid phase inside the filter is held at a higher pressure.
その他特定成分結晶に加わる圧力を低下させる手段でも
ある固相流出管の管径については特に制限はないが、必
ずしもそれ程大径とする必要はなく、内径数)程度でも
処理できることもある。これは液相(融解物)の存在に
よって結晶粒界が滑り易くなる為であり、一旦滑り出す
と結晶相互の摩擦で昇温し液相が増加して益々滑り易く
なるからであり、こうした作用の結果固相流出管径が小
さくても特定成分押出しが可能となる訳である。There is no particular restriction on the diameter of the solid-phase outflow tube, which is also a means of reducing the pressure applied to the specific component crystals, but it does not necessarily have to be so large, and treatment may be possible with a diameter of about 100. This is because grain boundaries become slippery due to the presence of a liquid phase (melt material), and once they begin to slide, the temperature rises due to friction between the crystals, the liquid phase increases, and the grain boundaries become slippery. As a result, specific components can be extruded even if the diameter of the solid phase outflow tube is small.
尚固相流出口近傍を僅かに加熱し押出しのきっかけを与
えることも有効な手段である。It is also an effective means to slightly heat the vicinity of the solid phase outlet to trigger extrusion.
[発明の効果]
本発明は以上の様に構成されており、以下要約する効果
を得ることができる。[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.
(1)高圧力下で固相と分離した不純物含有液相を流入
させることなく特定成分結晶をスラリー化し、高圧容器
から回収することができる。即ち高圧容器を開閉するこ
となく高純度特定成分を取り出すことができ、開閉に伴
なう装置の損耗、故障を防止することができる。(1) Specific component crystals can be slurried and recovered from a high-pressure container without introducing an impurity-containing liquid phase separated from a solid phase under high pressure. That is, the high-purity specific component can be taken out without opening and closing the high-pressure container, and it is possible to prevent wear and tear on the device due to opening and closing.
(2)容器の開閉操作が不要であり、短時間に特定成分
の回収を完了することができる。(2) There is no need to open and close the container, and recovery of specific components can be completed in a short time.
(3)圧力晶析サイクルも圧搾・発汗工程を短縮するこ
とがで咎、装置の生産性が向上する。(3) The pressure crystallization cycle also improves the productivity of the device by shortening the squeezing and sweating steps.
(4)容器を開放しないのでフィルタ背面の液垂れも発
生することがなく、スラリー状特定成分を直接容器に導
入すれば空気との接触や揮発物の放散といった不都合も
解消することができる。(4) Since the container is not opened, there is no possibility of liquid dripping on the back of the filter, and if the slurry-like specific component is directly introduced into the container, inconveniences such as contact with air and the dissipation of volatile substances can be eliminated.
(5)容器の開閉に必要とされていた容器移動機構が不
要となり、装置全体の高さが著しく低くてすむ。(5) The container moving mechanism required to open and close the container is no longer necessary, and the height of the entire device can be significantly reduced.
第1図は本発明の実施態様を示す概略説明図、第2図は
圧力晶析工程を示すフロー説明図、第3図は圧力晶析操
作における圧力の経時変化を示すグラフ、第4図は圧力
晶析操作における温度−圧力変化を示すグラフである。
1・・・高圧容器 3・・・フィルタ4・・・ピ
ストン 5・・・下蓋6・・・排液ライン
7・・・固相流出管V、、V、・・・バルブ
第1図
第2図Fig. 1 is a schematic explanatory diagram showing an embodiment of the present invention, Fig. 2 is a flow explanatory diagram showing a pressure crystallization process, Fig. 3 is a graph showing changes in pressure over time in the pressure crystallization operation, and Fig. 4 is It is a graph showing a temperature-pressure change in a pressure crystallization operation. 1...High pressure container 3...Filter 4...Piston 5...Lower lid 6...Drain line
7...Solid phase outflow tube V,,V,...Valve Figure 1 Figure 2
Claims (1)
によって特定成分の結晶を生成・増加せしめる圧力晶析
法において、生成した特定成分結晶から分離・排出され
てくる母液圧力が所定圧力に到達した時点で母液の分離
を停止し、高圧容器内に残留する特定成分結晶に加えら
れた圧力を低下させて、結晶の一部を融解せしめ、特定
成分をスラリー状にして高圧容器外へ回収することを特
徴とする圧力晶析方法。In the pressure crystallization method in which crystals of a specific component are generated and increased by placing a fluid phase mixture consisting of two or more components under pressure, the pressure of the mother liquor separated and discharged from the generated crystals of the specific component reaches a predetermined pressure. At this point, the separation of the mother liquor is stopped, and the pressure applied to the specific component crystals remaining in the high-pressure container is reduced to melt some of the crystals, making the specific component into a slurry and recovering it outside the high-pressure container. A pressure crystallization method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5229887A JPH0659363B2 (en) | 1987-03-06 | 1987-03-06 | Pressure crystallization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5229887A JPH0659363B2 (en) | 1987-03-06 | 1987-03-06 | Pressure crystallization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63218205A true JPS63218205A (en) | 1988-09-12 |
JPH0659363B2 JPH0659363B2 (en) | 1994-08-10 |
Family
ID=12910887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5229887A Expired - Fee Related JPH0659363B2 (en) | 1987-03-06 | 1987-03-06 | Pressure crystallization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0659363B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018150289A (en) * | 2017-03-15 | 2018-09-27 | 株式会社日立製作所 | Protein purification methods and protein purification apparatus |
-
1987
- 1987-03-06 JP JP5229887A patent/JPH0659363B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018150289A (en) * | 2017-03-15 | 2018-09-27 | 株式会社日立製作所 | Protein purification methods and protein purification apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0659363B2 (en) | 1994-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5603884B2 (en) | Method and apparatus for producing natural l-menthol | |
JPS63218205A (en) | Pressure crystallization method | |
US2835598A (en) | Separation by crystallization | |
JP2766059B2 (en) | Method for separating 2,7-dimethylnaphthalene | |
US3290891A (en) | Batch crystal purification | |
JPS5810121B2 (en) | Substance separation and purification equipment | |
JPH0779925B2 (en) | Pressure crystallizer and method | |
JPH0747082B2 (en) | Pressure fractional crystallization method | |
JPH082403B2 (en) | Pressure crystallization method | |
JPS6125403B2 (en) | ||
JPH0418882B2 (en) | ||
JPS63182003A (en) | Pressure crystallization system for raw material of high concentration and pressure crystallization method | |
JPH0244561B2 (en) | ||
JPS6112724B2 (en) | ||
JPH0640923B2 (en) | Pressure cooling crystallization method and equipment | |
JPS6112726B2 (en) | ||
JP2839728B2 (en) | Pressure crystallization apparatus and pressure crystallization method | |
JPH0779922B2 (en) | Purification of substances using pressure crystallization | |
JPH0317921Y2 (en) | ||
JP2515872B2 (en) | Pressure crystallizer | |
JPH0487601A (en) | Method and device for continuously separating and refining material | |
JPH0587065B2 (en) | ||
JPH02126901A (en) | Method and device for pressure crystallization | |
JPH03258301A (en) | Pressure crystallizer | |
JPS6134844B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |