JPS6112724B2 - - Google Patents

Info

Publication number
JPS6112724B2
JPS6112724B2 JP11972877A JP11972877A JPS6112724B2 JP S6112724 B2 JPS6112724 B2 JP S6112724B2 JP 11972877 A JP11972877 A JP 11972877A JP 11972877 A JP11972877 A JP 11972877A JP S6112724 B2 JPS6112724 B2 JP S6112724B2
Authority
JP
Japan
Prior art keywords
pressure
solid
liquid
temperature
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11972877A
Other languages
Japanese (ja)
Other versions
JPS5452678A (en
Inventor
Masato Moritoki
Minoru Wakabayashi
Takao Fujikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11972877A priority Critical patent/JPS5452678A/en
Publication of JPS5452678A publication Critical patent/JPS5452678A/en
Publication of JPS6112724B2 publication Critical patent/JPS6112724B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高圧力下における物質の分離及び精製
取出しを行なう一連の工程に関し、詳細には、高
圧下に行なう特定成分の晶析、圧搾による母液の
分離及び固体の取出しに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a series of processes for separating, purifying and extracting substances under high pressure, and in particular, crystallizing specific components under high pressure, separating mother liquor by squeezing, and extracting solids. It is related to.

2成分以上の多成分系液相又は固液共存相から
1以上の特定成分を晶析分離する方法は、分別結
晶法として広く利用されている。しかし従来の分
別結晶法は温度をパラメータとし混合系の冷却に
よつて晶析分離するものであり、圧力をパラメー
タとする技術についてはその歴史も浅く、その実
体については未解明の分野が多い。
A method of crystallizing and separating one or more specific components from a multicomponent liquid phase or solid-liquid coexistence phase of two or more components is widely used as a fractional crystallization method. However, the conventional fractional crystallization method uses temperature as a parameter and performs crystallization separation by cooling a mixed system, and technology that uses pressure as a parameter has a short history, and there are many fields whose actual nature is still unknown.

第1図Aは温度をパラメータにして行なう従来
の晶析法を説明する為の変態図で、例えばA点
〔温度:To、組成:X10、X20(X10=1−X20)〕に
ある混合物を冷却すると、A′点(温度:T1)で成
分X1の高純度結晶が晶析しはじめるが、更に共
晶点E〔温度:Te、組成X1(X1=1−Xe)、X2
(X2=Xe)〕に可及的に近い温度迄冷却して十分
に固相量を増大せしめてから固液の分離を行なつ
ている。これに対し第1図Bは、パラメータとし
て圧力を導入した場合の対応する変態図で、
X2=0、X2=X20、及びX2=Xeで示される各
直線は、夫々特定成分X1そのものの、特定
成分X1が1−X20のときの、及び成分X1とX2
共晶組成であるときの各固液変態線であつて、
夫々の組成の混合物は各固液変態線の高圧側又は
低温側で固相が存在する。
FIG. 1A is a transformation diagram for explaining the conventional crystallization method using temperature as a parameter. For example, point A [temperature: To, composition: X 10 , X 20 (X 10 = 1-X 20 )] When the mixture at is cooled , high-purity crystals of component Xe), X2
(X 2 =Xe)] to a temperature as close as possible to sufficiently increase the amount of solid phase, and then separate the solid and liquid. On the other hand, Figure 1B shows the corresponding transformation diagram when pressure is introduced as a parameter.
The straight lines indicated by X 2 = 0, X 2 = X 20 , and X 2 = Each solid-liquid transformation line when 2 is a eutectic composition,
A mixture of each composition has a solid phase on the high pressure side or low temperature side of each solid-liquid transformation line.

さて第1図Bに従つて分別結晶を行なう場合に
ついて説明すると下記の通りである。まずA点の
混合物を等温的に加圧していくと、A′点におい
てX2=X20の線上(変態点)に至り、特定成分X1
が固相として晶析しはじめる。引続き等温的加圧
を行なうと、共晶点組成の変態線X2=Xeに至る
(F点)ので、可及的F点に近い位置で固液の分
離を行なえばよい。この操作は等温的圧力晶析法
と呼ぶべきもので、基準パターンとしての説明は
可能であるが、現実には、下記の如き理由により
その実施は極めて困難である。
Now, the case where fractional crystallization is carried out according to FIG. 1B will be explained as follows. First, when the mixture at point A is pressurized isothermally, it reaches the line of X 2 = X 20 (transformation point) at point A', and the specific component X 1
begins to crystallize as a solid phase. If the isothermal pressurization is continued, the transformation line of the eutectic point composition, X 2 =Xe, is reached (point F), so it is sufficient to separate the solid and liquid at a position as close to point F as possible. This operation should be called an isothermal pressure crystallization method, and although it can be explained as a reference pattern, in reality, it is extremely difficult to implement for the following reasons.

一般に物質を加圧したときの発熱量は極めて
大きい。例えば27℃の純ベンゼン(液相)を、
その温度における変態圧力(770気圧)まで加
圧してベンゼンの固化を開始させるためには、
8cal/gの放熱が必要であり、更にこの圧力下
で全量を固化させる為には約30cal/gの放熱
が必要である。
Generally, when a substance is pressurized, the amount of heat generated is extremely large. For example, pure benzene (liquid phase) at 27℃,
In order to pressurize to the transformation pressure (770 atm) at that temperature and start solidifying benzene,
Heat radiation of 8 cal/g is required, and further heat radiation of approximately 30 cal/g is required to solidify the entire amount under this pressure.

従つて等温条件を維持する為には、大型の熱
交換器を使用するか、或は長時間の熱交換(遅
い昇圧速度)によつて前記放熱を吸収しなけれ
ばならない。
Therefore, in order to maintain isothermal conditions, the heat released must be absorbed by using a large heat exchanger or by long-term heat exchange (slow pressurization rate).

しかし熱交換器を高圧装置内に組込むことは
技術的に困難であり、仮に組込み得たとしても
固液分離時の障害になる。又低昇圧速度では工
業的に不利である。尚高圧容器類は一般に厚肉
であるから、容器外への放熱(或は容器外面か
らの冷却)方法では熱効率が非常に悪い。
However, it is technically difficult to incorporate a heat exchanger into a high-pressure device, and even if it were possible to do so, it would be an obstacle during solid-liquid separation. Also, a low pressure increase rate is industrially disadvantageous. Furthermore, since high-pressure containers are generally thick-walled, the thermal efficiency of methods for dissipating heat to the outside of the container (or cooling from the outer surface of the container) is very poor.

又熱交換方法は、本質的に温度分布を生じさ
せるものであるから、圧力晶析における最大の
利点(系内の均一性)が失なわれる。
Furthermore, since the heat exchange method essentially produces a temperature distribution, the greatest advantage (uniformity within the system) of pressure crystallization is lost.

これらの難点は処理量が増大するにつれて顕著
になるが、昇圧中は温度制御を行なわず、所定圧
力に至つた後冷却する場合にも同様の問題があ
る。例えば第1図Bにおいて、A点の混合物を温
度制御なしに加圧すると、前記圧縮熱によつて温
度が上昇し、A″点においてX2=X20の線に至り特
定成分X1の晶析が始まる。そのまま加圧を続け
ると、成分X1の晶析量が順次増加すので、前記
圧縮熱の他に晶析量に対応する潜熱が加わり、温
度及び圧力はA″→G′の鎖線に沿つて上昇する。
従つてG′点において昇圧を停止すると共に冷却
を開始すると細実線G′→Fに沿つて降温され、
結局F点或はその近傍において晶析を完了するの
であるが、冷却段階の技術的困難さ、不経済性及
び温度差に基づく系内の不均一性等については前
述の通りであるから、本質的な解決策とは言えな
い。
These difficulties become more noticeable as the throughput increases, but similar problems also occur when temperature control is not performed during pressure increase and cooling is performed after reaching a predetermined pressure. For example, in Fig. 1B, if the mixture at point A is pressurized without temperature control, the temperature rises due to the heat of compression, and reaches the line X 2 = X 20 at point A'' , causing crystallization of the specific component Separation begins. If the pressure is continued, the amount of crystallization of component Rise along the chain line.
Therefore, when the pressure increase is stopped at point G' and cooling is started, the temperature decreases along the thin solid line G'→F,
Ultimately, crystallization is completed at or near point F, but the technical difficulty and uneconomical nature of the cooling step, as well as the heterogeneity within the system due to temperature differences, are as described above, so the essential point is I can't say it's a perfect solution.

この様に、高圧力を加える物質の晶析法におい
ては、単に温度のみをパラメータとする従来の晶
析法に比較して極めて複雑な問題を内包する。又
こうして晶析した結晶を母液から分離し且つ大気
圧中に取出すに当つては更に次の様な難点に遭遇
する。
As described above, crystallization methods for substances that apply high pressure involve extremely complex problems compared to conventional crystallization methods that simply use temperature as a parameter. Furthermore, the following difficulties are encountered in separating the crystals thus crystallized from the mother liquor and taking them out into atmospheric pressure.

固液の分離手段としては、圧搾分離法(フイル
タープレス法)、一般濾過法、遠心分離等が知ら
れており、高圧下においてもこれらが適宜利用で
きるものの、もつとも好ましいのは圧搾分離法と
考えられている。しかし高圧下の圧搾分離におい
ては、下記の如き複雑な様相がみられた。
As solid-liquid separation means, the compression separation method (filter press method), general filtration method, centrifugation, etc. are known, and although these can be used as appropriate even under high pressure, the compression separation method is considered to be the most preferable method. It is being However, in compression separation under high pressure, the following complicated aspects were observed.

第2図A,B,Cは高圧下における圧搾状況を
説明する為の概略断面図である。まず第2図Aは
非常に低粘度の液相L中に固相Sが一様に分散さ
れている状態を示す。勿論高圧容器1内は高圧に
保持されており、2はピストン、3はフイルタ
ー、4はパツキングである。この段階でピストン
2を下降させると、系内の液相Lはフイルター3
を通して系外に圧搾分離される。圧搾操作開始の
段階では系内の圧力P1とフイルター3背面の圧力
P2の差は、液相Lのフイルター3通過速度に由来
するごく僅かなものでしかない。
FIGS. 2A, B, and C are schematic cross-sectional views for explaining the squeezing situation under high pressure. First, FIG. 2A shows a state in which a solid phase S is uniformly dispersed in a liquid phase L having a very low viscosity. Of course, the inside of the high-pressure container 1 is maintained at high pressure, and 2 is a piston, 3 is a filter, and 4 is a packing. If the piston 2 is lowered at this stage, the liquid phase L in the system will pass through the filter 3.
It is squeezed out of the system and separated. At the beginning of the squeezing operation, the pressure inside the system P 1 and the pressure at the back of the filter 3
The difference in P 2 is very small and is due to the speed at which the liquid phase L passes through the filter 3.

ピストン2が次第に下降して第2図Bの状態に
なる頃には液相Lがかなり流出している。従つて
フイルター3上には固相Sが相当量蓄積されてく
るので、液相Lの流出に対する抵抗が増大しP1
P2の差は大きくなる。しかしこの段階は一般に言
う濾過過程と実質的に同一であり、フイルター3
上に蓄積された固相リツチの濾過ケーキ5におけ
る結晶粒間の隙間は依然としてかなり広い。
By the time the piston 2 gradually descends and reaches the state shown in FIG. 2B, a considerable amount of the liquid phase L has flowed out. Therefore, a considerable amount of the solid phase S accumulates on the filter 3, and the resistance to the outflow of the liquid phase L increases, causing P1 and
The difference in P 2 becomes larger. However, this stage is substantially the same as the commonly-called filtration process, and the filter 3
The interstices between grains in the filter cake 5 of solid phase rich accumulated on top are still quite wide.

ピストン2を更に下降して第2図Cになると系
内全域に濾過ケーキ5が形成されると共に、P1
P2の圧力差が更に大きくなりフイルター3近傍の
ケーキ5は一層密になる。従つて系内に残留する
液相Lを更に圧搾分離していく為には、単位面積
当りのピストン圧P3とフイルター背面圧P2との差
を一層大きくし、結晶粒自体を圧搾しながら結晶
粒間の空隙を潰していく必要がある。
When the piston 2 is further lowered to reach Figure 2C, a filter cake 5 is formed throughout the system, and P1 and
The pressure difference of P 2 becomes even larger, and the cake 5 near the filter 3 becomes even more dense. Therefore, in order to further compress and separate the liquid phase L remaining in the system, the difference between the piston pressure P 3 per unit area and the filter back pressure P 2 is further increased, and the crystal grains themselves are compressed and separated. It is necessary to collapse the voids between crystal grains.

この様な固液の圧搾分離法は、一般にフイルタ
ープレス法と称して工業的に広く用いられている
が、100Kg/cm2を越える圧搾圧力を加えても十分
に脱水又は脱液することができないとされてい
る。しかも分別晶析法の如く、特定物質の固相と
特定物質を含む混合物母液の共存物圧搾分離で
は、母液が残留すれば母液中の他成分の濃度が高
いほど製品固体の到達純度が悪くなり、特に微粒
固体ではその傾向が強い。従つて本発明者らが取
扱つている高圧下における晶析分離法に圧搾法を
適用するに当つて、前述の如き常圧下のフイルタ
ープレス法をそのまま適用することについては、
分離性能の低下等種々の難点が付随する。
This type of solid-liquid compression separation method is generally called the filter press method and is widely used industrially, but even if a compression pressure of more than 100 kg/cm 2 is applied, sufficient dehydration or liquid removal cannot be achieved. It is said that Moreover, in the case of coexistence compression separation of a solid phase of a specific substance and a mother liquor of a mixture containing the specific substance, such as the fractional crystallization method, if the mother liquor remains, the higher the concentration of other components in the mother liquor, the lower the purity achieved in the product solid. This tendency is particularly strong in fine-grained solids. Therefore, when applying the compression method to the crystallization separation method under high pressure that the present inventors are dealing with, it is necessary to apply the filter press method under normal pressure as described above as is.
There are various problems associated with this method, such as a decrease in separation performance.

又仮に圧搾分離が満足できる程度に実施できた
としても、この固体を大気圧中に取出すに当つて
は更に幾つかの問題があることを知つた。
It has also been found that even if compression separation can be carried out satisfactorily, there are still some problems when taking out this solid into atmospheric pressure.

例えば第3図は3成分単純共晶系混合物の固液
状態図で、線及びは第1図Bと同じ意味であ
る。そしてM,M′,M″の各点は、これらの固液
共存点を示す。
For example, FIG. 3 is a solid-liquid phase diagram of a three-component simple eutectic mixture, and the lines and have the same meanings as in FIG. 1B. The points M, M', and M'' indicate these solid-liquid coexistence points.

まずM′点において固液の圧搾分離が完了した
とする。分離された固体を減圧するとN′点に達
する。この減圧過程では固体が膨張するので、膨
張熱による若干の冷却はあるが、液体ほどの膨張
は示さずその影響も少ないので便宜上無視する。
引続き減圧していくと、変態線に沿つて降圧しな
がらE点に向うが、同時に結晶が融解しはじめ
る。この段階では結晶の融解による潜熱と、融解
液の膨張による内部エネルギーの低下が生じ、温
度も急激に降下する。E点で全量が融解すると、
後は液体の膨張に伴なう因子のみであるから降温
量は少なくなる。尚Tmは大気圧下における純成
分X1の融点である。
First, it is assumed that the compression separation of solid and liquid is completed at point M'. When the separated solid is depressurized, it reaches the N′ point. Since the solid expands during this pressure reduction process, there is some cooling due to the heat of expansion, but it does not expand as much as a liquid and its influence is small, so it will be ignored for convenience.
As the pressure continues to decrease, the pressure decreases along the transformation line toward point E, but at the same time the crystals begin to melt. At this stage, latent heat due to melting of the crystal and internal energy decrease due to expansion of the melt occur, and the temperature also drops rapidly. When the entire amount melts at point E,
Since the rest is only a factor associated with the expansion of the liquid, the amount of temperature drop is reduced. Note that Tm is the melting point of pure component X 1 under atmospheric pressure.

これに対しM点やM″点で固液の分離が行なわ
れたときには、この固相を大気圧中に解放しても
全量融解することはない。例えばM点から減圧を
開始すると、N点に至つて融解が開始され、以下
同様にして融解と共に降圧・降温するが、すぐに
融点Tmに到達して融解はそれ以上進まない。も
しM点における固液分離が不十分であると、結晶
の一部が降圧と共に一部融解する効果が潜熱とし
て表われて降温量が大きくなり、C点に至る。更
に降圧・降温するが、不純物が混入している為、
融点Tmより低い温度に達した時点で融解の進行
が停止する。M点における圧搾分離が更に不十分
であると線に達することなく一部融解しながら
D点に至る。この様にM点から出発するときは固
相の一部のみが融解し、またその純度は極めて低
い。更にM″点から出発する場合にはこの傾向が
一段と顕著になる。
On the other hand, when solid-liquid separation is performed at point M or M'', even if this solid phase is released into atmospheric pressure, the entire amount will not melt.For example, if depressurization is started from point M, then point N Melting begins at this point, and the pressure and temperature decrease in the same way as the melting occurs, but the melting point Tm is quickly reached and the melting does not proceed any further.If the solid-liquid separation at the M point is insufficient, crystallization The effect of some melting as the pressure decreases appears as latent heat, and the amount of temperature decrease increases, reaching point C.The pressure and temperature decrease further, but since impurities are mixed in,
The progress of melting stops when a temperature lower than the melting point Tm is reached. If compression separation at point M is still insufficient, point D is reached with some melting without reaching the line. In this way, when starting from point M, only a portion of the solid phase melts, and its purity is extremely low. Furthermore, this tendency becomes even more pronounced when starting from point M''.

一般に減圧に伴なう温度の低下は、現象として
は様々な形態をとり得るが、断熱的に減圧する場
合の降温量は非常に大きい。例えば一般の有機物
質を融解するときの降温量は100〜150℃にも及ぶ
から、第3図の場合においては、N′−E間が100
〜150℃の温度差を有している場合にのみ全量融
解が可能となる。又多くの有機物質における変態
圧力の温度依存性(線の勾配)は、30〜60Kg/
cm2であるから、N′−E間の温度差が100℃である
とすると、N′−E間の圧力差は3000〜6000Kg/
cm2でなければならない。しかも実際に固液分離を
行なうときの圧力は、これよりも更に数百〜数千
気圧高くなることが多く、結局減圧操作のみによ
つて固体の全量を融解する為には、M′点を極め
て高い圧力にしなければならない。
In general, the temperature drop that accompanies pressure reduction can take various forms, but the amount of temperature drop when pressure is reduced adiabatically is very large. For example, when melting ordinary organic substances, the temperature decreases as much as 100 to 150°C, so in the case of Figure 3, the distance between N' and E is 100°C.
Total melting is possible only when there is a temperature difference of ~150°C. In addition, the temperature dependence (slope of the line) of the transformation pressure in many organic materials is 30 to 60 kg/
cm 2 , so if the temperature difference between N' and E is 100℃, the pressure difference between N' and E is 3000 to 6000 kg/
Must be cm 2 . Moreover, the pressure when actually performing solid-liquid separation is often several hundred to several thousand atmospheres higher than this, and in the end, in order to melt the entire amount of solid only by depressurization, it is necessary to reach the M' point. The pressure must be extremely high.

しかし特別の圧力装置を必要とするという欠点
があるので、高圧力容器内に熱交換器を置くか、
高圧力容器そのものの加熱装置を使用する方法も
考えられないではない。しかし前者の場合は高圧
容器中の圧搾分離を困難にするし、後者の場合は
熱効率が悪い。
However, it has the disadvantage of requiring special pressure equipment, so either a heat exchanger is placed inside a high pressure vessel, or
It is not inconceivable to use the heating device of the high-pressure vessel itself. However, in the former case, compression separation in a high-pressure vessel becomes difficult, and in the latter case, thermal efficiency is poor.

以上詳細に述べた如く、加圧晶析工程、圧搾分
離工程及び特定成分取出し工程のいずれかにおい
ても困難な問題点がある。本発明はこれらの事情
に着目してなされたものであつて、前記問題点を
一挙に解決する方法を提供しようとするものであ
る。
As described in detail above, there are difficult problems in any one of the pressure crystallization step, the compression separation step, and the specific component extraction step. The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a method for solving the above problems all at once.

しかして本発明の構成とは、2成分又はそれ以
上の成分よりなる混合物から、1成分又はそれ以
上の特定成分を晶析する工程において、前記混合
物の温度を大気圧下又は低加圧下で調節すること
により、加圧によつて前記特定成分が結晶化しや
すい温度にした後、前記混合物を実質的に断熱加
圧して前記特定成分の一部を固化せしめるか或は
固相を増加せしめて固液共存状態とする点に要旨
があり、固液の圧搾分離工程においては、分離さ
れる液相のフイルター通過後の圧力が、濾過抵抗
が増大しはじめた時点の圧力よりも低くなる様に
しながら固相を圧搾する点に要旨があり、又は、
分離開始後一時的にこの圧力が高くなつたとして
も少なくとも圧搾分離開始後はこの圧力をそれ以
前の圧力よりも低くしながら固液分離することを
も要旨とするものである。更に特定成分の取出工
程においては、固相にかかる圧力を大気圧又はそ
の近傍の圧力に戻して固相の一部を融解すると共
に、高圧容器を開放して固体を大気圧中に取出す
点に要旨がある。以下これらを断熱加圧工程、圧
搾分離工程、固体取出工程と称すが、断熱加圧工
程の終了直後に固液共存混合物を局部的に冷却し
て固化を進行させる場合も本発明に含まれる。
Therefore, the structure of the present invention is that in the step of crystallizing one or more specific components from a mixture of two or more components, the temperature of the mixture is controlled under atmospheric pressure or under low pressure. After applying pressure to a temperature at which the specific component is likely to crystallize, the mixture is substantially adiabatically pressurized to solidify a portion of the specific component or to solidify by increasing the solid phase. The key point is to create a liquid coexistence state, and in the solid-liquid compression separation process, the pressure of the liquid phase to be separated after passing through the filter is lower than the pressure at the time when the filtration resistance begins to increase. The gist lies in squeezing the solid phase, or
Even if this pressure temporarily increases after the start of separation, the gist is to carry out solid-liquid separation while keeping this pressure lower than the previous pressure at least after the start of compression separation. Furthermore, in the process of extracting specific components, the pressure on the solid phase is returned to atmospheric pressure or a pressure close to it to melt a portion of the solid phase, and at the same time the high pressure container is opened and the solid is extracted into atmospheric pressure. There is a gist. These are hereinafter referred to as an adiabatic pressurization step, a compression separation step, and a solid extraction step, but the present invention also includes a case where the solid-liquid coexistence mixture is locally cooled to proceed with solidification immediately after the adiabatic pressurization step ends.

以下本発明を各工程毎に分説する。 The present invention will be explained separately for each step below.

(1) 断熱加圧工程 本工程は更に、温度調節を行なう第1工程、断
熱加圧する第2工程に分けられるが、便宜上第2
工程より説明する。
(1) Adiabatic pressurization process This process is further divided into a first process of temperature adjustment and a second process of adiabatic pressurization.
I will explain the process first.

まず第2工程にいう実質的な断熱加圧とは、高
圧容器、配管、加圧装置、圧力計や温度計或は圧
搾装置や管継手等の付属機器類と混合物間におけ
る熱授受量が、実質上乃至工業上無視し得る状況
下の加圧操作を意味する。この様な断熱加圧を達
成する為の具体的手段についてはいささかの制限
もないが、代表的な方法として次の2方法が例示
される。第1は、高圧容器、配管、加圧装置及び
付属機器の全部又は一部に断熱層を形成して前記
熱授受量を少なくする方法であり、第2は、混合
物の昇圧を可及的速やかに行ない、系内に温度勾
配が生じる隙を与えないうちに晶析を完了させる
方法である。勿論これらの方法を併用すれば、断
熱加圧は一層好都合に実施できるが、要は加圧に
伴なう昇温量をそのまま系内に封鎖して系内の均
一化を図ろうとするものであるから、第1図Bの
場合で説明すると、A→A″に加圧された混合物
をそのままG点まで加圧し、温度は上昇するにま
かせて晶析を完了しようとするものである。尚こ
の場合の容器温度(配管温度等を含む)は、加圧
後の到達温度(G点の温度)に予備調整しておい
てもよいが、断熱層の機能が十分に作用し、或は
十分な高速断熱昇圧が可能である限り混合物との
間の熱授受は殆んど回避できるので、本発明にお
いては容器温度等が制限されることは少ない。
First, the substantial adiabatic pressurization referred to in the second step means that the amount of heat exchanged between the mixture and attached equipment such as the high-pressure container, piping, pressurizing equipment, pressure gauges, thermometers, squeezing equipment, and pipe joints is It means pressurized operation under conditions that can be practically or industrially ignored. Although there are no particular restrictions on the specific means for achieving such adiabatic pressurization, the following two methods are exemplified as typical methods. The first method is to reduce the amount of heat transfer by forming a heat insulating layer on all or part of the high-pressure container, piping, pressurizing equipment, and attached equipment, and the second method is to increase the pressure of the mixture as soon as possible. In this method, crystallization is completed without creating a temperature gradient in the system. Of course, if these methods are used together, adiabatic pressurization can be carried out even more conveniently, but the point is that the temperature increase due to pressurization is sealed within the system and the system is made uniform. Therefore, to explain the case in Figure 1 B, the mixture that has been pressurized from A to A'' is pressurized as it is to point G, and the temperature is allowed to rise to complete crystallization. In this case, the container temperature (including piping temperature, etc.) may be pre-adjusted to the temperature reached after pressurization (temperature at point G), but if the function of the heat insulating layer is sufficiently effective or As long as high-speed adiabatic pressurization is possible, most of the heat exchange with the mixture can be avoided, so in the present invention, there are few restrictions on the container temperature, etc.

しかし高圧容器等に充填される混合物の温度に
ついてはある程度の制御が必要である場合もあ
り、この為本発明では前記第1工程が行なわれ
る。
However, the temperature of the mixture filled into a high-pressure container or the like may require some degree of control, and for this reason the first step is carried out in the present invention.

即ち前記の説明では、温度T0であるA点の混
合物を加圧していたが、第1図Bにみられる如く
A→A″の加圧によつてはじめて最初の結晶化が
起こつている。従つてA″点の温度はT0より更に
高くなつており、このことを第1図Aとの関連で
見ると、温度に関しては特定成分X1の結晶化が
起こりにくい条件側に移動したことになり、合目
的ではない。その為混合物が常温常圧下において
大部分が液相又は全量が液相である様な図例の場
合には、常圧下又は若干の加圧下において混合物
を冷却し特定成分X1が加圧により結晶化しやす
い温度に調節しておくことが望まれる。例えば第
1図BにおいてA点の混合物を常圧下温度T1
で冷却すると、特定成分X1の結晶化が開始さ
れ、言わば種結晶が存在する状態になつている。
従つて第2工程の断熱加圧を行なつたときに、過
飽和現象を起こす心配が少なくスムーズに固相量
を増大させることができる。又初晶が出ている為
に固化時の発熱量が少なく、勿論圧縮熱も少ない
から、共晶組成線X2=Xeへの到達点はG点より
も低温低圧側のF点になる。従つて昇圧量が少な
くてすみ経済的であるだけでなく短時間の内に晶
析終了点へ到達できるので、断熱加圧を行なう上
で一層好都合である。尚前記説明では容器温度及
び原料混合物の温度を共に常温(T0)であると仮
定すると共に、晶析終了点の温度をT0に一致さ
せた。従つて晶析サイクルの再現性が良好にな
り、しかも次の圧搾分離工程についても常温操作
が可能になるという利点があるが、一般に原料組
成比、加圧前の混合系の温度、該混合物の物性等
が分れば、加圧後の組成比や温度は昇圧量から算
出できるので、前記利点は実現性が高い。又前記
説明では、混合物を温度T1(B点)まで予備冷
却したが、B点よりもやや高温側で止めても不都
合はなく、更にB′点迄冷却してから断熱加圧しH
点で晶析を終了させることも可能である。B′点ま
で冷却した場合、原料液は初晶が生じるか、また
は過冷却状態となり、いずれの場合も断熱加圧固
化の特徴を満たすものである。尚高圧力下におけ
る冷却の困難さは先に述べておいたが、第1工程
における冷却は常圧下又は若干の加圧下で行なわ
れるので、操作は極めて容易である。従つてこの
冷却を高圧容器中で行なつてもよいが、一般的に
は別個の工程で行なうことが推奨される。
That is, in the above explanation, the mixture at point A, which is the temperature T 0 , was pressurized, but as shown in FIG. 1B, the first crystallization occurs only when the pressure is applied from A to A''. Therefore, the temperature at point A'' has become even higher than T0 , and if we look at this in relation to A in Figure 1, we can see that the temperature has moved to the side where crystallization of the specific component X1 is less likely to occur. , and it is not a useful purpose. Therefore, in cases where the mixture is mostly in a liquid phase or entirely in a liquid phase at room temperature and normal pressure, the mixture is cooled under normal pressure or slightly pressurized, and the specific component X 1 crystallizes under pressure. It is desirable to adjust the temperature to a temperature that is easy to change. For example, when the mixture at point A in FIG. 1B is cooled to a temperature T 1 under normal pressure, crystallization of the specific component X 1 is started, so that seed crystals are present, so to speak.
Therefore, when carrying out the second step of adiabatic pressurization, there is little concern that supersaturation will occur, and the amount of solid phase can be increased smoothly. Also, since the primary crystals are present, the amount of heat generated during solidification is small, and of course the heat of compression is also small, so the point at which the eutectic composition line X 2 =Xe is reached is point F, which is on the lower temperature and lower pressure side than point G. Therefore, the amount of pressure increase is small, which is not only economical, but also allows the crystallization end point to be reached within a short time, which is more convenient for carrying out adiabatic pressurization. In the above description, it is assumed that both the container temperature and the temperature of the raw material mixture are room temperature (T 0 ), and the temperature at the end point of crystallization is made to coincide with T 0 . Therefore, the reproducibility of the crystallization cycle is improved, and the next compression separation step also has the advantage of being able to be operated at room temperature. If the physical properties and the like are known, the composition ratio and temperature after pressurization can be calculated from the amount of pressure increase, so the above advantages are highly feasible. Furthermore, in the above explanation, the mixture was pre-cooled to the temperature T 1 (point B), but there is no problem in stopping the mixture at a temperature slightly higher than point B, and after further cooling to point B', adiabatic pressure is applied to H.
It is also possible to terminate the crystallization at a point. When cooled to point B', the raw material liquid either produces primary crystals or becomes supercooled, and in either case, it satisfies the characteristics of adiabatic pressure solidification. Although the difficulty of cooling under high pressure has been mentioned above, since the cooling in the first step is carried out under normal pressure or slightly increased pressure, the operation is extremely easy. This cooling may therefore be carried out in a high pressure vessel, but it is generally recommended that it be carried out in a separate step.

ところで加圧前の混合系中に多量の固体粒子が
分散している場合は、加圧による固相の増加速度
は非常に早い。通常の物質では加圧の開始と同時
に固相の増加が進行し、例えば1〜5分でほとん
ど理論固液比にまで到達するが、この場合も断熱
加圧は有意義である。即ち高圧容器は一般に厚肉
であり熱容量も大きいので、容器温度が混合系の
温度よりも低い場合には、容器壁に接する部分の
混合物は急速に固化しはじめ、スケール状の結晶
が容器内面に沿つて成長する。例えば前記温度差
が20℃であると、結晶成長速度は5mm/分にも及
び下記の如き害をもたらす。
By the way, if a large amount of solid particles are dispersed in the mixed system before pressurization, the rate of increase in the solid phase due to pressurization is very fast. In ordinary substances, the solid phase increases at the same time as pressurization starts, and reaches almost the theoretical solid-liquid ratio in, for example, 1 to 5 minutes, but adiabatic pressurization is also useful in this case. In other words, high-pressure containers are generally thick-walled and have a large heat capacity, so if the container temperature is lower than the temperature of the mixing system, the mixture in contact with the container wall will rapidly solidify, causing scale-like crystals to form on the inner surface of the container. grow along. For example, if the temperature difference is 20° C., the crystal growth rate will be as high as 5 mm/min, causing the following harms.

容器内部に温度分布が生じ、容器内の液相純
度が不均一になる。
Temperature distribution occurs inside the container, and the purity of the liquid phase within the container becomes non-uniform.

不純物がスケール中に巻込まれるが、これを
分離することは困難である。
Impurities are entrained in the scale, which is difficult to separate.

スケールが容器内壁面に沿つて盤状に成長
し、スケールより内側の液相分離が困難にな
る。
The scale grows in a plate shape along the inner wall surface of the container, making it difficult to separate the liquid phase inside the scale.

しかし断熱層を形成しておけばこの様な不都合
は回避できるし、急速昇圧による実質的断熱加圧
の場合も同様にして回避できる。
However, such inconveniences can be avoided by forming a heat insulating layer, and can be similarly avoided in the case of substantially adiabatic pressurization due to rapid pressure increase.

これらの説明にもかかわらず、後述するよう
に、スケールが発生しても問題にならないような
場合、すなわち、超高純度製品を目的としない場
合、収量を高めることを目的とする場合など、意
識的にスケールの発生を助長することが好ましい
場合もある。
Despite these explanations, as will be discussed later, in cases where the occurrence of scale is not a problem, i.e., when the purpose is not to produce ultra-high purity products, or when the purpose is to increase yield, etc. In some cases, it may be preferable to promote scale generation.

以上の説明により、断熱加圧前の結晶化促進が
有効であることは明白になつたが、常温常圧下に
おいて既に固相を含むスラリー状混合系について
は、本発明の第1工程による温度調節が自然現象
によつて達成されたものと考え、そのまま第2工
程に入ればよいのであつて、この様な場合が本発
明に含まれることは当然である。
From the above explanation, it has become clear that crystallization promotion before adiabatic pressurization is effective. However, for slurry-like mixed systems that already contain a solid phase at room temperature and normal pressure, temperature control according to the first step of the present invention is effective. It is sufficient to assume that this has been achieved by a natural phenomenon and proceed directly to the second step, and it is natural that such a case is included in the present invention.

また上記においては常圧下における温度調節
(冷却)の場合に触れたが、第一工程の調節は、
わずかな加圧下に行なつてもよい。この場合は、
わずかな加圧に伴なう圧縮熱によつて混合系の温
度がいつたん上昇した後に冷却して温度調節をす
るものであるから、混合系内の熱交換効率が高く
なつて均一状態が得られやすいだけでなく、低融
点混合物の融点が引上げられ、種結晶の発生が容
易になるという利点がある。
In addition, although the case of temperature adjustment (cooling) under normal pressure was mentioned above, the adjustment in the first step is
It may also be carried out under slight pressure. in this case,
The temperature of the mixing system rises briefly due to the heat of compression that comes with slight pressurization, and then it is cooled down to adjust the temperature, so the heat exchange efficiency within the mixing system is increased and a uniform state is achieved. This has the advantage that not only is the melting point of the low-melting point mixture raised, the generation of seed crystals becomes easier.

前記の第1工程(冷却)は全量液相又は大部分
が液相である場合の温度調節方法であつたが、常
温常圧下において全量固相又は大部分が固相であ
る混合物の場合には、いつたん固相の全量又は一
部を溶解し全量液相又は大部分液相の状態にし、
前記の場合より高温高圧側で断熱加圧を行なう必
要がある。もつとも種結晶が存在することの有意
性等については第1の冷却法と同じであるから、
第1工程における過加熱は避けねばならない。こ
うして冷却時の場合と同様の条件が形成された混
合系は引続き断熱加圧される。この時の効果は冷
却時の効果とほゞ同様であると考えられるが、高
融点化合物を処理することになるので、固液分離
段階も高温域で行なうことが必要であることは言
う迄もない。
The first step (cooling) described above was a temperature control method for cases where the entire amount is in a liquid phase or mostly in a liquid phase, but in the case of a mixture that is in an entirely solid phase or a mostly solid phase at room temperature and normal pressure, , once all or a portion of the solid phase is dissolved to a state where the entire amount is in a liquid phase or most of it is in a liquid phase,
Compared to the above case, it is necessary to perform adiabatic pressurization on the high temperature and high pressure side. Of course, the significance of the presence of seed crystals is the same as the first cooling method, so
Overheating in the first step must be avoided. The mixed system, in which conditions similar to those during cooling have been created, is then adiabatically pressurized. The effect at this time is thought to be almost the same as the effect at cooling, but it goes without saying that the solid-liquid separation step also needs to be carried out in a high temperature range since high melting point compounds are being treated. do not have.

尚加圧による温度調節の場合は、原料混合物を
完全融解した液相混合物に未融解の原料混合物を
加えて固液共存状態にしたものや、原料混合物に
溶媒等の第3物質を加えて相当量の固体を溶解し
て固液共存状態にしたものを利用する技術に置換
しても本発明の技術的範囲に含まれることは当然
であり、特許請求の範囲に記載した実施態様は本
発明を制限する主旨のものではない。
In the case of temperature control by pressurization, the unmelted raw material mixture is added to a liquid phase mixture in which the raw material mixture is completely melted to create a solid-liquid coexistence state, or the raw material mixture is mixed with a third substance such as a solvent. Of course, it is within the technical scope of the present invention even if the technology is replaced with a technology that utilizes a solid-liquid coexistence state by dissolving a large amount of solid, and the embodiments described in the claims are not limited to the present invention. It is not intended to limit the

こうして第1工程が完了すると第2工程に入る
が、断熱加圧の中心的事項は先に触れたので、以
下は断熱加圧の補足事項について述べる。
When the first step is thus completed, the second step begins.Since the main points of adiabatic pressurization have been mentioned above, supplementary points of adiabatic pressurization will be described below.

断熱加圧の1手段として高速昇圧を推奨した
が、例えばベンゼンを全量一瞬に加圧固化させる
ときの発熱量はベンゼンの温度を100℃も高める
程に多い。従つて熱伝導も熱容量も大きい鋼製厚
肉の高圧容器を使用するときには、短時間の昇圧
ではあつても大量の熱交換を避けることは不可能
である。従つて断熱層の形成は一層望まれるが、
断熱層を形成しておけば、容器温度と異なる温度
の原液を注入する時、断熱加圧時及び圧搾分離時
の全工程を通じて、混合物と容器等との熱移動量
は大幅に低減され一層合目的である。又この断熱
層を2層として中間にヒーターを入れておけば、
昇圧速度又は内部温度の上昇に連動させてヒータ
ーを加熱することにより、断熱層の温度を混合物
の温度に近づけ熱移動量を一層少なくすることも
できる。この様な断熱層としては、例えばフエノ
ール樹脂等の如き合成樹脂が小熱容量物質として
推奨されるが、当然ながら断熱層の材質は本発明
を制限するものではない。
Although high-speed pressurization was recommended as a means of adiabatic pressurization, for example, when pressurizing and solidifying the entire amount of benzene in an instant, the amount of heat generated is so large that it raises the temperature of benzene by as much as 100°C. Therefore, when using a thick-walled high-pressure vessel made of steel with large heat conduction and heat capacity, it is impossible to avoid a large amount of heat exchange even if the pressure is increased for a short time. Therefore, the formation of a heat insulating layer is even more desirable;
If a heat insulating layer is formed, the amount of heat transfer between the mixture and the container etc. will be significantly reduced throughout the entire process of injecting the stock solution at a temperature different from the container temperature, adiabatic pressurization, and compression separation, thereby further reducing the amount of heat transfer between the mixture and the container. It is a purpose. Also, if this insulation layer is made into two layers and a heater is placed in the middle,
By heating the heater in conjunction with the pressure increase rate or the rise in internal temperature, it is possible to bring the temperature of the heat insulating layer closer to the temperature of the mixture and further reduce the amount of heat transfer. As such a heat insulating layer, a synthetic resin such as phenolic resin is recommended as a material with a low heat capacity, but the material of the heat insulating layer is not intended to limit the present invention.

ところで本発明の第2工程では急速昇圧を推奨
したが、この場合に成長する結晶は温度をパラメ
ータとする急速冷却晶析法の場合と同様微細化し
やすい。特に高圧力による粘度上昇がこの傾向を
強める。しかも液相自体が高粘度になつているの
で、次の圧搾分離工程を困難にするという問題が
ある。そこで混合系の成分特に母液と相互に溶解
し、或はこれと容易に混合する第3物質を加える
ことにより、粘度を低下させて結晶粒を大きく成
長させると共に、固液の分離を容易ならしめる方
法が利用される。この第3物質は先に述べた溶媒
等の第3物質と同じで、一般的には低粘度溶媒例
えばベンゼン、キシレン、トルエン、ジオキサ
ン、四塩化炭素等の有機並びに無機溶媒が好まし
いが、特に処理後の母液や特定成分との分離を容
易に例えば蒸留等により分離できるものがよい。
従つて第3物質としては液体に限定されず、混合
物成分と反応しない気体(不活性ガスを含む)で
あつてもよい。この様な第3物質は混合物の全量
に対して3〜30重量%の範囲内で添加されるが、
混合物の組成、粘度、その他の条件に応じて最適
量を選択することができる。
By the way, in the second step of the present invention, rapid pressure increase is recommended, but the crystals grown in this case tend to be finer as in the case of the rapid cooling crystallization method in which temperature is a parameter. In particular, increased viscosity due to high pressure intensifies this tendency. Moreover, since the liquid phase itself has a high viscosity, there is a problem that the next compression separation step is difficult. Therefore, by adding a third substance that mutually dissolves or easily mixes with the components of the mixed system, especially the mother liquor, the viscosity is lowered, crystal grains grow larger, and the solid-liquid separation becomes easier. method is used. This third substance is the same as the third substance such as the solvent mentioned above, and generally low viscosity solvents such as organic and inorganic solvents such as benzene, xylene, toluene, dioxane, and carbon tetrachloride are preferred, but in particular, It is preferable to use one that can be easily separated from the mother liquor and specific components by, for example, distillation.
Therefore, the third substance is not limited to a liquid, but may be a gas (including an inert gas) that does not react with the mixture components. Such a third substance is added within a range of 3 to 30% by weight based on the total amount of the mixture, but
The optimum amount can be selected depending on the composition, viscosity, and other conditions of the mixture.

上記の如く実施される第2工程では、圧力管理
を行なうだけで固化量が調節できるが、このとき
の昇温量は固液の圧縮率、熱膨張係数、加圧前の
固液共存比と温度等の函数として求めることがで
きる。ちなみに液相高純度ベンゼンを5.4℃にお
いて加圧する場合は、10%を固化させる為に必要
な圧力は300気圧以上であり、この時の昇温量は
10℃に近い。又50%の固体を増加させるためには
1500気圧以上の圧力が必要で40℃前後の昇温を伴
なう。従つて本発明における断熱加圧の効果を有
効に享受する為には、混合物のうち少なくとも5
〜10%固化させ、加圧前より5℃好ましくは10℃
以上昇温させる様な混合物であることが望まし
い。
In the second step carried out as described above, the solidification amount can be adjusted simply by controlling the pressure, but the amount of temperature increase at this time depends on the solid-liquid compressibility, thermal expansion coefficient, and solid-liquid coexistence ratio before pressurization. It can be determined as a function of temperature, etc. By the way, when pressurizing liquid-phase high-purity benzene at 5.4℃, the pressure required to solidify 10% is 300 atmospheres or more, and the amount of temperature increase at this time is
Close to 10℃. Also to increase solids by 50%
A pressure of 1,500 atmospheres or more is required and the temperature rises to around 40℃. Therefore, in order to effectively enjoy the effect of adiabatic pressurization in the present invention, at least 5
~10% solidification, preferably 5℃, preferably 10℃ from before pressurization
It is desirable that the mixture is such that the temperature can be increased above or above.

尚この様な断熱加圧は、ピストンを有する高圧
容器中、固液分離部とは別個に設けた加圧装置中
或は両者を連結する配管中等で行なわれるが、加
圧固化に伴なう発熱が容器、加圧装置、配管等に
若干放出されることがあるとしても、積極的な放
熱を行なうものでない限り、本発明の断熱加圧を
満足するものである。
Such adiabatic pressurization is performed in a high-pressure container with a piston, in a pressurizing device installed separately from the solid-liquid separation section, or in piping connecting the two, but the Even if some heat may be released into the container, pressurizing device, piping, etc., the adiabatic pressurization of the present invention is satisfied as long as the heat is not actively dissipated.

この様に断熱加圧中は積極的な放熱は行なわな
いが、断熱加圧の終了後次の固液分離工程を行な
う迄の間に、固液共存状態にある混合物を局部的
に冷却して放熱することは、本発明の精神を逸脱
しない範囲において許容されることであり、固化
収率の改善と結晶粒の成長を図る方法として本発
明の技術的範囲に包含される。
In this way, heat is not actively radiated during adiabatic pressurization, but the mixture in solid-liquid coexistence state is locally cooled between the end of adiabatic pressurization and the next solid-liquid separation step. Radiation of heat is permissible within the scope of the spirit of the present invention, and is included within the technical scope of the present invention as a method for improving the solidification yield and growing crystal grains.

即ちこの方法は、断熱加圧工程の終了後、容器
類をしばらくそのまま放置し又は積極的に冷却
し、一部領域のみを放熱させてから圧搾分離に入
るものである。例えば第1図Bにおいて、温度
T0の高圧容器中に同温度のスラリーを入れ、そ
れをそのまま断熱加圧した結果I点に到達したと
する。混合物の温度は当然容器壁の温度T0より
高いので、器壁近傍の混合物は冷却され除々にJ
点の方に向かう。従つて例えば円筒状の高圧容器
であると、容器内の固相比は年輪状に徐々に変化
し、時間の経過につれて中心部へ影響していく、
この結果器壁近傍では、時に共晶点J′に達し更に
は共晶線X2=Xeを越えることもあり得る。従つ
てこの様な事態になる以前に固液分離を行なえば
よく、その時点では容器中央部の固液共存物はI
点の近傍にあり、本発明の目的に重大な悪影響を
与えるものではない。むしろ、冷却による結晶化
率の増大が図れる他、急速昇圧による微細結晶の
不安定さや若干の過飽和現象が、若干時間の保持
によつて解消されるという利点がある。
That is, in this method, after the adiabatic pressurization process is completed, the containers are left as they are for a while or are actively cooled, allowing heat to radiate only in a partial area, and then pressing and separating is started. For example, in Figure 1B, the temperature
Assume that a slurry at the same temperature is placed in a high-pressure container at T 0 and as a result of adiabatically pressurizing it, point I is reached. Since the temperature of the mixture is naturally higher than the temperature of the container wall, T 0 , the mixture near the container wall is cooled and gradually reaches J
Head towards the point. Therefore, for example, in the case of a cylindrical high-pressure container, the solid phase ratio inside the container gradually changes like a tree ring, and as time passes, it affects the center.
As a result, in the vicinity of the vessel wall, the eutectic point J' may sometimes be reached and even the eutectic line X 2 =Xe may be exceeded. Therefore, solid-liquid separation should be performed before such a situation occurs; at that point, the solid-liquid coexistence material in the center of the container is I.
It is in the vicinity of the point and does not have a significant adverse effect on the purpose of the present invention. Rather, there is an advantage that not only can the crystallization rate be increased by cooling, but also the instability of fine crystals and slight supersaturation caused by rapid pressure increase can be eliminated by holding for a certain amount of time.

従つてこの様な知見から、器壁を低温とし、断
熱加圧の段階でも徐々に放熱させる方法が本発明
方法の変法として提案され得る。即ちこの方法
は、本発明の第2工程を、加圧開始後固液分離工
程に入る迄の間、器壁に対して局部的に且つ徐々
に放熱しながら急速昇圧させて固液共存状態にす
ると言いかえることができる。この方法は断熱加
圧と矛盾する一面を有するが、放熱はあくまでも
局部的に行なうものであつて、断熱層の形成はや
はり好まれるところである。その結果A″→Gに
示されたカーブは、A″→G′に近いカーブにな
り、しかも温度分布に伴なう系内の不均一性は比
較的少なく押えることが可能になる。この方法は
どの様な混合物にも適用されるが、高融点物質の
分離において、高圧容器等を常温のままで使用す
る場合に有利である。
Therefore, based on this knowledge, a method can be proposed as a modification of the method of the present invention, in which the vessel wall is kept at a low temperature and heat is gradually radiated even during the adiabatic pressurization stage. That is, in this method, in the second step of the present invention, after the start of pressurization and before entering the solid-liquid separation step, the pressure is rapidly increased while gradually dissipating heat locally to the vessel wall to bring the solid-liquid coexistence state. Then you can rephrase it. Although this method has some aspects that are inconsistent with adiabatic pressurization, heat radiation is performed locally to the last, and the formation of a heat insulating layer is still preferred. As a result, the curve shown by A''→G becomes a curve similar to A''→G', and it is possible to suppress the non-uniformity within the system due to the temperature distribution to a relatively low level. Although this method can be applied to any mixture, it is advantageous when a high-pressure vessel or the like is used at room temperature in the separation of high-melting-point substances.

(2) 圧搾分離工程 高圧力下の晶析分離法は、圧力による固液変態
線の変動を利用するものであるが、高圧力下に共
存する特定成分の固相と、特定成分を含む母液と
が共存する場合の圧搾分離法において、第2図C
の段階から更にピストン2を下降させて圧搾圧力
を高めると、系内の圧力P1は母液の分離をしにく
いほど一層高くなる。ところで一般の混合物で
は、圧力の増加と共に特定成分の固化が進行する
ことは知られている。従つてフイルター3近傍の
濾過ケーキ5′は益々密になり、母液の流出抵抗
は極めて大きくなる。即ち圧搾圧力を高めて固液
分離の促進を図ろうとしても、系内母液中の特定
成分を固化させるだけであり、ある限度を越える
と母液の流出に悪影響を与える。そこで本発明
は、フイルター面上に詰まつた固体の一部を溶解
しながら母液の通路を確保しようとするものであ
る。
(2) Compression separation process The crystallization separation method under high pressure utilizes the fluctuation of the solid-liquid transformation line due to pressure. In the squeeze separation method when
When the piston 2 is further lowered from the step 2 to increase the squeezing pressure, the pressure P 1 in the system becomes even higher, making it difficult to separate the mother liquor. By the way, it is known that in general mixtures, specific components solidify as the pressure increases. Therefore, the filter cake 5' in the vicinity of the filter 3 becomes increasingly dense, and the outflow resistance of the mother liquor becomes extremely large. That is, even if an attempt is made to promote solid-liquid separation by increasing the squeezing pressure, this will only solidify specific components in the mother liquor within the system, and if a certain limit is exceeded, this will have an adverse effect on the outflow of the mother liquor. Therefore, the present invention aims to ensure a passage for the mother liquor while dissolving a portion of the solids clogging the filter surface.

第4図Aは、フイルター面の近傍において結晶
粒6,6が密に詰まつた状態を示す概念図で、母
液Lがほとんど流出し得ない状況になつている。
即ち大きな結晶粒6の表面には相当量の母液Lが
あり、しかも微粒結晶6′がその間隙に存在して
いる。この様な状態で系内の圧力を下げると、結
晶の一部が融解して母液L中の特定物質濃度が増
大すると共に前記間隙が拡大される。しかも微粒
結晶6′は表面積が広いので比較的容易に融解す
る。従つて第4図Bに示す如く母液の通路が確保
され、圧搾圧力を加えた場合には、母液は容易に
流出してフイルター方向に移動する。こうして高
密度の結晶粒層ができるごとに、換言すれば、圧
力P1が圧力P2より有意に高くなつたときに、或は
圧力P2が分離開始時の圧力P2より有意に低くなる
ごとに、更に換言すれば、濾過抵抗が増大するご
とに系内又は抵抗の大きい領域を減圧していけ
ば、その都度母液Lの通路が確保され、満足な圧
搾分離を継続して実施することが可能となる。
FIG. 4A is a conceptual diagram showing a state in which the crystal grains 6, 6 are densely packed near the filter surface, and the mother liquor L can hardly flow out.
That is, there is a considerable amount of mother liquor L on the surface of the large crystal grains 6, and fine crystal grains 6' are present in the gaps between them. When the pressure in the system is lowered in such a state, part of the crystals melts, the concentration of the specific substance in the mother liquor L increases, and the gap is enlarged. Moreover, since the fine crystals 6' have a large surface area, they melt relatively easily. Therefore, as shown in FIG. 4B, a passage for the mother liquor is secured, and when squeezing pressure is applied, the mother liquor easily flows out and moves toward the filter. Each time a dense grain layer is formed in this way, in other words, when the pressure P 1 becomes significantly higher than the pressure P 2 or when the pressure P 2 becomes significantly lower than the pressure P 2 at the beginning of separation. In other words, each time the filtration resistance increases, if the pressure inside the system or the region with high resistance is reduced, a passage for the mother liquor L is secured each time, and satisfactory compression separation can be continuously carried out. becomes possible.

ところでこの様な圧搾分離の過程では、フイル
ター近傍の結晶が、まず相対的に高純度になる。
そしてこれらの間隙を低粘度の母液が通ることに
なるので、固液平衡状態を維持する為に高純度結
晶粒の表面一部は必然的に融解される。融解の結
果結晶の表面温度が低下するので、結晶は逆に融
解から保護される傾向が生じる。従つて固体収量
(分離率)を極度に低減させる程のものではな
く、工業的意味においても重大な悪影響を与える
ことはない。
By the way, in such a process of compression separation, the crystals near the filter first become relatively highly pure.
Since a low-viscosity mother liquid passes through these gaps, a portion of the surface of the high-purity crystal grains is inevitably melted in order to maintain a solid-liquid equilibrium state. Since the surface temperature of the crystal decreases as a result of melting, the crystal tends to be protected from melting. Therefore, it does not significantly reduce the solid yield (separation rate) and does not have any serious adverse effects in an industrial sense.

次にこれら操作の具体的手法を第5図に基づい
て説明する。
Next, specific methods of these operations will be explained based on FIG. 5.

第5図Aは、通常のフイルタープレス法等でみ
られる現象である。即ちW点においてフイルター
の前後に差圧が生じはじめると(P1>P2)、圧搾
圧力はP3迄高められ内部の液圧P1は急激に高まる
が、フイルター背面の圧力P2は、常圧のままであ
るから変化しない。そして圧搾によつて液は流出
してフイルターの目詰まりが進行すると、系内の
圧力P1は徐々にP3に接近するが、この状態では、
液の通路はほとんど無くなり、フイルターの極く
近傍で部分的な圧搾分離が行なわれるに過ぎな
い。
FIG. 5A shows a phenomenon observed in the ordinary filter press method. That is, when a pressure difference begins to occur before and after the filter at point W (P 1 > P 2 ), the squeezing pressure is increased to P 3 and the internal hydraulic pressure P 1 increases rapidly, but the pressure P 2 at the back of the filter is Since it remains at normal pressure, it does not change. As the liquid flows out due to squeezing and the filter becomes clogged, the pressure P1 in the system gradually approaches P3 , but in this state,
There are almost no liquid passages, and only partial compression separation takes place in the vicinity of the filter.

第5図Bは、本発明操作法の一例である。圧力
P3において固液の圧搾分離が開始され、W点にお
いて内部圧力P1と排出液圧P2に開きが生じはじめ
たとする。同時に流出母液量が減少しはじめるこ
とは言う迄もない。このとき高圧容器内の圧力を
低下させると、前記事情によつて母液が流出する
ので、同一の圧搾圧力P3をかけておいても、P1
P2が接近し、圧搾分離は引続き効果的に実施でき
る。尚この時は、ほゞ全域の固相に、P3−P2ない
しP3−P1の圧搾圧力が作用する。
FIG. 5B is an example of the method of operation of the present invention. pressure
Suppose that solid-liquid compression separation is started at P 3 and a difference begins to occur between the internal pressure P 1 and the discharged liquid pressure P 2 at point W. Needless to say, at the same time, the amount of mother liquor flowing out begins to decrease. At this time, if the pressure inside the high-pressure container is lowered, the mother liquor will flow out due to the above circumstances, so even if the same squeezing pressure P3 is applied, P1 and
P 2 approaches and squeeze separation can still be carried out effectively. At this time, a compression pressure of P 3 -P 2 to P 3 -P 1 acts on almost the entire solid phase.

第5図Cは本発明の他の実施例を示すものであ
る。高圧容器内において上記の操作を行なうとき
には、混合物の固相が多くなつた時点で圧搾力損
失を生じることがある。これは、固相と容器壁面
との摩擦力によるものであるが、この圧損を補な
う意味でP3を高めることもある。しかし余り高め
ると鎖線で示す如くP1が高まることがあり、圧搾
分離不可能の事態を招くので上記損失を補なう範
囲内にとどめるべきである。
FIG. 5C shows another embodiment of the invention. When performing the above operation in a high-pressure container, a loss of squeezing force may occur when the solid phase of the mixture increases. This is due to the frictional force between the solid phase and the container wall, but P 3 may be increased to compensate for this pressure loss. However, if it is increased too much, P 1 may increase as shown by the chain line, leading to a situation where compression separation is impossible, so it should be kept within a range that compensates for the above loss.

第5図Dは、第5図Bの後、段階的に排出液圧
を低下させる場合の例であり、圧力P3は一定に保
持する必要はなくP′3の如く低下してもよい。第
5図Eは最初から或は任意の時点例えばW点から
連続的に排出液圧を低下させた場合の例である。
P3については前者の如く一定に保持させてもよ
く、後者のように連動して低下させてもよい。第
5図Fは、加圧されて固化が進行しているY点で
分離が開始され、更にW点まで加圧されて差圧が
生じ始めた分離の1例である。P2はY点での圧力
よりも必ずしも低くする必要はないが、少なくと
もW点の圧力を越えないことが好ましい。
FIG. 5D is an example in which the discharge liquid pressure is lowered in stages after FIG. 5B, and the pressure P3 does not need to be kept constant and may be lowered as shown in P'3 . FIG. 5E shows an example in which the discharge fluid pressure is continuously lowered from the beginning or from an arbitrary point, for example, point W.
P 3 may be held constant as in the former case, or may be decreased in conjunction as in the latter case. FIG. 5F shows an example of separation in which separation is started at point Y, where solidification is progressing under pressure, and pressure is further increased to point W, where differential pressure begins to occur. Although P 2 does not necessarily have to be lower than the pressure at point Y, it is preferable that it does not exceed the pressure at point W at least.

以上説明した如く、P1とP2に差が生じはじめた
時点、或はP2が分離開始時点より低下しはじめた
時点において排出液圧と、フイルター前面近傍の
圧力、次いで高圧容器内深部の液圧P1も減少する
方向で処理する点に本発明の要点が存在する。従
つて前記実施例及び特許請求の範囲に記載した実
施態様は本発明を制限するものではない。例えば
高圧容器内に相当量の母液が残存するにもかかわ
らず、母液の流出量が実質的に零である様な場合
には、第5図Cの鎖線に示す如く、フイルターか
ら離れた部分の液相圧力P1は明らかに分離開始時
点の圧力P1より高いので、P1を測定しないでも本
発明の実施をすることが可能である。
As explained above, at the point when a difference starts to appear between P 1 and P 2 , or when P 2 starts to decrease from the point at which separation begins, the discharge liquid pressure, the pressure near the front of the filter, and then the pressure deep inside the high-pressure vessel The key point of the present invention is that the process is performed in such a way that the hydraulic pressure P1 is also reduced. Therefore, the embodiments described in the examples and claims are not intended to limit the invention. For example, in a case where a considerable amount of mother liquor remains in the high-pressure container but the amount of mother liquor flowing out is essentially zero, the part away from the filter as shown by the chain line in Figure 5C. Since the liquid phase pressure P 1 is clearly higher than the pressure P 1 at the start of separation, it is possible to carry out the present invention without measuring P 1 .

又上記説明においては、P2は分離開始時の圧力
より低く、或はP1も分離開始時の圧力を越えない
と述べたが、分離の経過中はP1もP2も常に低い方
へ調整することは特に効果的である。第5図D,
Eはその一例であつたが、分離過程の任意の段階
で分離操作をいつたん中断し、圧力や温度等を調
整して固相の一部を融解させた後、或はその後再
び圧力を高めたり温度を低下させたりして晶出を
進行させた後に前記圧搾分離を再開させる場合に
は、少なくとも前段における分離の最終圧力より
も高い圧力で分離を再開することがあり得るのは
当然で、この様な場合も本発明の技術的範囲に含
まれることは言う迄もない。
Also, in the above explanation, it was stated that P 2 is lower than the pressure at the start of separation, or that P 1 does not exceed the pressure at the start of separation, but during the progress of separation, both P 1 and P 2 are always lower. Adjusting is particularly effective. Figure 5D,
E was one example, but the separation operation was stopped at any stage of the separation process, the pressure and temperature were adjusted to melt a part of the solid phase, or the pressure was increased again. When restarting the compression separation after crystallization has proceeded by lowering the temperature or lowering the temperature, it is natural that the separation may be restarted at a pressure higher than the final pressure of the separation in the previous stage. It goes without saying that such a case is also included within the technical scope of the present invention.

尚ここにいう圧力は静圧のみを意味するのでは
なく、油圧制御に基づく変動圧力や圧力振動のあ
る場合についても、液を排出する有効圧力として
理解されるべきである。又固体結晶粒群に加えら
れる圧搾圧力は、結晶粒群全体が真密化する方向
に作用するが、通常数十乃至数百、時には1000気
圧にも達する。そしてこれらの圧力値は、取扱う
混合物の結晶量と結晶粒度、母液の粘度、目標固
液化、フイルターからの距離等によつて適宜選択
される。尚固体粒同士の接触面では、この圧搾圧
力が相互に作用しているから、母液を通路方向に
押出すし、母液の圧力がより低下している場合で
も、この接触面は高圧に保持されているので、前
記の液圧段階で大量の融解を起こすことはない。
又上記実施例ではピストンシリンダー型におい
て、フイルターをシリンダー底部に配置した場合
であつたが、フイルターをピストンヘツド部やシ
リンダー内面に配した場合は勿論のこと、その他
の圧搾機構においても容易に適用することが可能
である。
Note that the pressure referred to herein does not mean only static pressure, but should also be understood as the effective pressure for discharging liquid even in the case of fluctuating pressure or pressure vibration based on hydraulic control. Further, the compression pressure applied to the solid crystal grain group acts in the direction of making the entire crystal grain group dense, and is usually several tens to hundreds of atmospheres, and sometimes reaches 1000 atmospheres. These pressure values are appropriately selected depending on the amount of crystals and crystal grain size of the mixture to be handled, the viscosity of the mother liquor, the target solidification and liquefaction, the distance from the filter, etc. Since this squeezing pressure acts on the contact surfaces between solid particles, the mother liquor is pushed out in the direction of the passage, and even when the pressure of the mother liquor is lower, this contact surface is maintained at a high pressure. Because of this, no significant melting occurs during the hydraulic stage.
Furthermore, although the above embodiment deals with a piston-cylinder type in which the filter is placed at the bottom of the cylinder, the present invention can easily be applied not only to cases where the filter is placed on the piston head or inside of the cylinder, but also to other compression mechanisms. Is possible.

(3) 固体取出工程 第6図は本工程の実施に使用される装置の一例
で、高圧容器9の内面には、必要に応じて断熱層
11が形成され、上下には油圧駆動のピストン
7,8が配置されている。12,13,14は液
相抜取用のパイプで、夫々に逆止バルブ12a,
13a,14aが配設される。尚ピストン8につ
いては、高圧容器9に固定される下プラグであつ
てもよい。又10は圧搾された固体、3はピスト
ン7,8の先端に間隙を残して取付けられるフイ
ルターであり、勿論ピストンと共に移動するし、
一方のフイルターを省略することもできる。
(3) Solid extraction process Figure 6 shows an example of the equipment used to carry out this process.A heat insulating layer 11 is formed on the inner surface of the high-pressure vessel 9 as required, and hydraulically driven pistons 7 are installed on the top and bottom. , 8 are arranged. 12, 13, and 14 are pipes for liquid phase extraction, and are equipped with check valves 12a and 14, respectively.
13a and 14a are provided. Note that the piston 8 may be a lower plug fixed to the high pressure container 9. Also, 10 is a compressed solid, and 3 is a filter that is attached to the tips of the pistons 7 and 8 with a gap left, and of course moves together with the pistons.
One of the filters can also be omitted.

さて本工程においては、まず高圧容器の圧力が
大気圧又はその近傍の圧力に戻される。その結果
特定成分の結晶は一部融解されるので、固体表面
に付着し、或は結晶間の隙間に取残されていた液
体不純物は融解によつて洗浄除去されると共に、
残つた固体は自からの融解液に覆われた状態にな
つて汚染から防止された高純度の固体が得られ
る。
In this step, first, the pressure in the high-pressure container is returned to atmospheric pressure or a pressure in the vicinity thereof. As a result, some of the crystals of the specific component are melted, so liquid impurities that have adhered to the solid surface or remained in the gaps between the crystals are washed away and removed by the melting.
The remaining solid is covered with its own melt, resulting in a highly pure solid that is protected from contamination.

本工程の実施態様については種々考えられ、特
許請求の範囲に記載したものはその一例に過ぎな
いが、代表的な方法は、圧力を連続的又は段階的
に徐々に減じ、生じた融解液を逐次分離する方法
である。従つて大気圧又はその近傍圧力への減圧
が瞬間的に行なわれるのではなく且つ融解液はそ
の都度固液共存系より排除されるので、融解液の
膨張熱による降温効果が少ない。しかもこの融解
液は不純液を伴なつてその都度除去されているか
ら不純液の除去効果が極めて高く、特定成分結晶
の不純物による融点降下も少ない。この様な次第
であるから、遂次減圧の任意の段階で少なくとも
1回の圧搾を行なつて固液分離を十分に行なうこ
とが推奨される。この圧搾によつて液相の除去を
十分に行なうと、金属やセラミツク等の粉末成形
(メカニカルプレスやラバープレス等)における
如く特定物質の多結晶粒子が圧搾され、巨大なブ
ロツク状固晶が得られる。
Various embodiments of this process can be considered, and the one described in the claims is just one example, but a typical method is to gradually reduce the pressure continuously or stepwise, and to remove the resulting melt. This is a method of sequential separation. Therefore, the pressure is not reduced to atmospheric pressure or a pressure close to it instantaneously, and the molten liquid is removed from the solid-liquid coexistence system each time, so that the temperature-lowering effect due to the heat of expansion of the molten liquid is small. Moreover, since this melted liquid is removed each time along with the impure liquid, the effect of removing the impure liquid is extremely high, and there is little drop in melting point due to impurities in the specific component crystals. Because of this, it is recommended that compression be performed at least once at any stage of successive pressure reduction to ensure sufficient solid-liquid separation. When the liquid phase is sufficiently removed by this squeezing, the polycrystalline particles of the specific substance are squeezed out, as in the case of powder compaction of metals, ceramics, etc. (mechanical press, rubber press, etc.), and huge block-shaped solid crystals are obtained. It will be done.

一般にこの様な圧搾は、高圧域で行なう程固相
の回収効率が高まり、低圧域である程固相の純度
が高まり、しかも大気圧に開放したときの固相ブ
ロツクが強固になる。従つて、段階的または連続
的減圧の過程における圧搾は数多く行なうことが
望ましく、段階的減圧の都度または連続的減圧に
連動して圧搾すれば、更に望ましい効果が得られ
る。
In general, in such compression, the higher the pressure is used, the higher the recovery efficiency of the solid phase is, and the lower the pressure is used, the higher the purity of the solid phase, and the stronger the solid phase block when it is exposed to atmospheric pressure. Therefore, it is desirable to perform many compressions in the process of stepwise or continuous pressure reduction, and more desirable effects can be obtained if compression is performed each time stepwise or in conjunction with continuous pressure reduction.

ここに言う圧搾の程度は、固液共存相における
平均的圧力と排出液相の圧力との差で表わされる
べきであり、多くの場合は数十乃至数百気圧、時
には1000気圧以上の圧力によつて良好な結果が得
られる。
The degree of compression referred to here should be expressed as the difference between the average pressure in the solid-liquid coexistence phase and the pressure in the discharged liquid phase, and in most cases the pressure is tens to hundreds of atmospheres, and sometimes more than 1000 atmospheres. Therefore, good results can be obtained.

以上の如くして得られたブロツク状固体は、最
終的に大気圧又はその近傍の圧力に迄減圧され、
その後高圧容器を開放して取出されるが、取出し
直前に再び圧搾して固液を分離したり、取出し後
の自然融解液や積極的加熱による一部融解液の圧
搾分離を行なえば、更に高純度の固体を得ること
ができる。特に大気圧への減圧後の圧搾は、断熱
器背面、ピストンと容器の間隙等に圧縮された淀
み部分の母液の圧力が開放されるので、この淀み
部分に残置していた液相を分離除去するうえで効
果的である。もつともこの不純液相は、高圧容器
から固体を取出す前にガス体で流出せしめること
も可能であるから、前記圧搾は必ずしも不可欠の
工程ではない。このようなガス体による分離は、
すでに圧搾によつて、固体がブロツク状となつて
いる時点では、前記淀み部分の残置母液の分離及
びブロツク表面の融解母液の除去に効果的であ
る。更にこの時ブロツク状固相を圧搾することに
よつて、減圧による融解量を最少に押えられる。
ガス体はなるべく混合物の成分と反応しないもの
であることが好ましい。通常数気圧、時には10気
圧以上のガス体を上方から流し、又は残置母液と
置換する。残置母液を真空置換することは格別な
事ではない。
The block-shaped solid obtained as described above is finally depressurized to atmospheric pressure or a pressure close to it, and
After that, the high-pressure container is opened and taken out, but if the solid-liquid is separated by squeezing again just before taking out, or if the natural molten liquid or a part of the molten liquid is squeezed and separated after being taken out, the yield will be even higher. A solid of purity can be obtained. In particular, during compression after depressurization to atmospheric pressure, the pressure of the mother liquor in the stagnation area compressed at the back of the insulator, the gap between the piston and the container, etc. is released, so the liquid phase remaining in this stagnation area is separated and removed. It is effective in doing so. However, this squeezing is not necessarily an essential step, since this impure liquid phase can also be forced out as a gas before the solid is removed from the high-pressure vessel. Separation by such a gaseous body is
When the solid is already in the form of a block due to compression, it is effective in separating the mother liquor remaining in the stagnation portion and removing the molten mother liquor on the surface of the block. Furthermore, by squeezing the block solid phase at this time, the amount of melting caused by reduced pressure can be minimized.
It is preferable that the gas is one that does not react with the components of the mixture. Usually, a gas of several atmospheres, sometimes more than 10 atmospheres, is flowed from above or replaced with the remaining mother liquor. There is nothing special about replacing the remaining mother liquor in a vacuum.

又上記の減圧や圧搾による固液分離或は固体の
取出し操作は、高圧容器と内部被処理物の間の熱
交換を断つた状態で処理することによつて一層効
果あらしめることができる。即ち減圧によつて内
部被処理物の温度が低下すると、高圧容器との間
に温度差が生じるが、その結果高圧容器側からの
熱の流入が生じると、高純度の固相が必要以上に
融解するし、高圧容器自体の温度が低下して次サ
イクルに悪影響を与えることもある。これに対し
断熱層を形成しておくと、固相の融解は外部条件
の影響から遮断され、工業的には実質上圧力管理
のみで操業を制御することが可能になり、高圧容
器内の均一性、条件伝播の均一性という圧力操作
の利点を有意義に享受することができる。尚この
様な断熱層としては、例えばフエノール樹脂等の
如き合成樹脂が小熱容量物質として推奨される
が、当然ながら断熱層の存否及び材質は本発明を
制限するものではない。
Further, the above solid-liquid separation or solid removal operation by reducing pressure or squeezing can be made more effective by performing the treatment in a state where heat exchange between the high-pressure container and the internal object to be treated is cut off. In other words, when the temperature of the internal processed material decreases due to depressurization, a temperature difference occurs between it and the high-pressure container, but as a result, when heat flows in from the high-pressure container side, the high-purity solid phase becomes more concentrated than necessary. It will melt, and the temperature of the high-pressure vessel itself may drop, adversely affecting the next cycle. On the other hand, if a heat insulating layer is formed, the melting of the solid phase will be blocked from the influence of external conditions, making it possible to virtually control the operation only by pressure management, and ensuring uniformity within the high-pressure vessel. The advantages of pressure manipulation such as uniformity and uniformity of condition propagation can be meaningfully enjoyed. As such a heat insulating layer, a synthetic resin such as phenolic resin is recommended as a material with a low heat capacity, but the presence or absence of the heat insulating layer and the material thereof are not intended to limit the present invention.

尚仮に、残存する固相を全量加熱融解させよう
とすると、例えば固相が50Kgのベンゼンである場
合には、潜熱が30cal/gであるから、全部で
1500Kcal/50Kg必要であり、2KWのヒーターで
加熱しても理論的に75分間加熱しなければなら
ず、熱の流出温度勾配による熱伝導等を考慮すれ
ば更に長時間の加熱が必要になる。これに対し固
体をそのまま放出するとすればわずか1分程度も
あれば十分であり、その生産性に与える影響は頗
る大きい。
If you try to heat and melt the entire remaining solid phase, for example, if the solid phase is 50 kg of benzene, the latent heat is 30 cal/g, so the total amount of
1500Kcal/50Kg is required, and even if heated with a 2KW heater, it would theoretically have to be heated for 75 minutes, and if heat conduction due to the heat outflow temperature gradient is taken into account, a longer heating time will be required. On the other hand, if the solid is to be discharged as it is, only about one minute is sufficient, and the impact on productivity is significant.

又更にブロツク状で取出された固体の表面が、
不純物を多量に含む液で、濡れている場合、ブロ
ツク状固体表面を熱風等で融解するだけで容易に
滴下分離しうる。以上の説明は、便宜上2成分単
純共晶系混合物の例を主として説明したが、この
方法は多成分共晶系であつてもよく、又固溶体系
の混合物でもよい。又特定成分は、特定の1物質
に限らず、2物質の共晶体や分子間化合物であつ
てもよい。要は高圧下における固化又は融解にと
もなつて、特定成分以外の成分が液相中に濃縮又
は希釈される全ての混合物に適用できるのであ
る。
Furthermore, the surface of the solid taken out in the form of a block is
If the liquid contains a large amount of impurities and is wet, it can be easily separated dropwise by simply melting the block-shaped solid surface with hot air or the like. For convenience, the above explanation has mainly focused on examples of two-component simple eutectic mixtures, but this method may also be applied to multi-component eutectic mixtures or solid solution mixtures. Further, the specific component is not limited to one specific substance, but may be a eutectic or an intermolecular compound of two substances. In short, it can be applied to all mixtures in which components other than specific components are concentrated or diluted in the liquid phase as they solidify or melt under high pressure.

本発明は以上の如く構成されており、その効果
を要約すれば次の通りである。
The present invention is constructed as described above, and its effects can be summarized as follows.

(1) 圧力分別晶析における最大の利点(系内の均
一性)を可及的好ましい状況で確保できる。
(1) The greatest advantage of pressure fractional crystallization (uniformity within the system) can be ensured under the best possible conditions.

(2) 断熱昇圧は短時間内に進行させることができ
るので、大型工業装置の短サイクル化が実現で
きる。
(2) Since adiabatic pressurization can proceed within a short time, it is possible to shorten the cycle time of large industrial equipment.

(3) 圧搾室内の不純物を均等且つ十分に排出する
ことができる。
(3) Impurities in the compression chamber can be discharged evenly and sufficiently.

(4) 特定成分を高純度の固体状で取出すことがで
きる。
(4) Specific components can be extracted in highly pure solid form.

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例 1 m−クレゾールとp−クレゾールの常温混合液
(混合比20:80)を断熱層付高圧容器内で急速に
加圧すると40℃、2000気圧で固液共存状態が得ら
れた。これを圧搾して固液分離し徐々に減圧しな
がら圧搾を繰返した。残つた固体を大気圧に戻す
と30℃の固液共存物となつた。これをただちに圧
搾分離し、残つた固体(p−クレゾール)を高圧
容器外に取出すと、2000気圧、40℃の時点におけ
る圧搾による理論収量の80%であり、到達純度は
99.5%であつた。
Example 1 When a room-temperature mixture of m-cresol and p-cresol (mixing ratio 20:80) was rapidly pressurized in a high-pressure container with a heat insulating layer, a solid-liquid coexistence state was obtained at 40°C and 2000 atm. This was compressed to separate solid and liquid, and the compression was repeated while gradually reducing the pressure. When the remaining solid was returned to atmospheric pressure, it became a solid-liquid coexistence at 30°C. When this is immediately compressed and separated and the remaining solid (p-cresol) is taken out of the high-pressure container, it is 80% of the theoretical yield by compression at 2000 atm and 40°C, and the purity achieved is
It was 99.5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは温度による固液変態点の推移を示す
グラフ、第1図Bは圧力と温度による固液変態点
の変化及び推移を示すグラフ、第2図は圧搾過程
の経過を示す概略断面図、第3図は減圧時の温度
変化を示すグラフ、第4図は減圧による結晶の融
解を示す説明図、第5図のうちAは公知のフイル
タープレス、B〜Fは本発明の夫々操作過程を示
すグラフ、第6図は固体取出時の装置概要を示す
断面図である。 1……高圧容器、2,7,8……ピストン、3
……フイルター、5……濾過ケーキ。
Figure 1A is a graph showing the transition of the solid-liquid transformation point depending on temperature, Figure 1B is a graph showing the change and transition of the solid-liquid transformation point depending on pressure and temperature, and Figure 2 is a schematic cross section showing the progress of the squeezing process. Figure 3 is a graph showing the temperature change during reduced pressure, Figure 4 is an explanatory diagram showing the melting of crystals due to reduced pressure, and in Figure 5, A is a known filter press, and B to F are the respective operations of the present invention. A graph showing the process, and FIG. 6 is a sectional view showing an outline of the apparatus during solid removal. 1... High pressure vessel, 2, 7, 8... Piston, 3
...Filter, 5...Filter cake.

Claims (1)

【特許請求の範囲】 1 2成分又はそれ以上の成分よりなる混合物か
ら、1成分又はそれ以上の特定成分を晶析し、晶
析した固体を取出す方法であつて、前記混合物の
温度を大気圧下又は低加圧下で調節して、加圧に
より前記特定成分が結晶化しやすい温度にした
後、前記混合物を実質的に断熱加圧して前記特定
成分の一部を固化せしめるか或は固相を増加せし
めて固液共存状態とし、次いでこの固液を高圧下
で圧搾し、フイルターを通して液体を分離するに
あたり、分離される液相のフイルター通過後の圧
力が、濾過抵抗が増大しはじめた時点の圧力より
も低くなる様にしながら固相を圧搾し、次に固相
にかかる圧力を大気圧又はその近傍の圧力に戻し
て固相の一部を融解すると共に、残された固体を
高圧容器外に開放して取出すことを特徴とする高
圧力利用の物質分離法。 2 高圧容器、配管、加圧装置及び付属機器の全
部又は一部に断熱層を形成して加圧する特許請求
の範囲第1項記載の方法。 3 混合物を急速に加圧する特許請求の範囲第1
又は2項記載の方法。 4 常温常圧下において全量液相又は大部分が液
相である混合物は冷却した後に断熱加圧する特許
請求の範囲第1,2又は3項記載の方法。 5 常温常圧下において全量固相又は大部分が固
相である混合物は加熱した後に断熱加圧する特許
請求の範囲第1,2又は3項記載の方法。 6 圧搾分離の開始後、固相側の内部圧力と排出
液圧との間に差が生じはじめたときに、固相収容
部の圧力を減圧して、分離液のフイルター通過後
の圧力を低くする特許請求の範囲第1〜5項のい
ずれかに記載の方法。 7 圧搾分離の開始後、フイルターからの排出液
量が減少しはじめたときに、固相収容部の圧力を
減圧して、分離液のフイルター通過後の圧力を低
くする特許請求の範囲第1〜5項のいずれかに記
載の方法。 8 排出液圧を段階的に連続的に低下させる特許
請求の範囲第6又は7項記載の方法。 9 固相収容部における未分離母液の圧力が、濾
過抵抗が増大しはじめた時点の圧力よりも高くな
らない様に固相収容部の固体を圧搾する特許請求
の範囲第1〜8項のいずれかに記載の方法。 10 大気圧又はその近傍の圧力に戻したときの
融解液の分離にあたつては、任意の段階で少なく
とも1回の圧搾を行なう特許請求の範囲第1〜9
項のいずれかに記載の方法。 11 高圧容器外に取出された固体を加熱し一部
融解除去する特許請求の範囲第1〜10項のいずれ
かに記載の方法。 12 融解液の分離にあたつては、少なくとも1
回圧搾を行なつて液相を分離した固相を大気圧又
は大気圧近傍の圧力に戻し、そのまゝ又は再び固
相に圧搾を加えつつ、ガス体を流すことによつて
液相を分離する特許請求の範囲第1〜10項のい
ずれかに記載の方法。 13 2成分又はそれ以上の成分よりなる混合物
から、1成分又はそれ以上の特定成分を晶析し、
晶析した固体を取出す方法であつて、前記混合物
の温度を大気圧下又は低加圧下で調節して、加圧
により前記特定成分が結晶化しやすい温度にした
後、前記混合物を実質的に断熱加圧して前記特定
成分の一部を固化せしめるか或は固相を増加せし
めて固液共存状態とした後、この混合物を局部的
に冷して固化を進行せしめ、次いでこの固液を高
圧下で圧搾し、フイルターを通して液体を分離す
るにあたり、分離される液相のフイルター通過後
の圧力が、濾過抵抗が増大しはじめた時点の圧力
よりも低くなる様にしながら固相を圧搾し、次に
固相にかかる圧力を大気圧又はその近傍の圧力に
戻して固相の一部を融解すると共に、残された固
体を高圧容器外に開放して取出すことを特徴とす
る高圧力利用の物質分離法。
[Scope of Claims] 1. A method for crystallizing one or more specific components from a mixture of two or more components and extracting the crystallized solid, the temperature of the mixture being lowered to atmospheric pressure. After adjusting the temperature under low or low pressure to a temperature at which the specific component is likely to crystallize by pressurization, the mixture is substantially adiabatically pressurized to solidify a part of the specific component or to form a solid phase. When the solid-liquid is compressed under high pressure and the liquid is separated through a filter, the pressure of the liquid phase to be separated after passing through the filter is equal to the point at which the filtration resistance begins to increase. The solid phase is squeezed while keeping the pressure lower than the pressure, and then the pressure on the solid phase is returned to atmospheric pressure or a pressure close to it to melt a part of the solid phase, and the remaining solid is removed from the high-pressure container. A material separation method that utilizes high pressure and is characterized by releasing and extracting the material. 2. The method according to claim 1, in which a heat insulating layer is formed on all or part of a high-pressure container, piping, pressurizing device, and accessory equipment to pressurize it. 3 Claim 1 in which the mixture is rapidly pressurized
Or the method described in Section 2. 4. The method according to claim 1, 2, or 3, wherein the mixture, which is entirely in liquid phase or mostly in liquid phase at room temperature and pressure, is cooled and then adiabatically pressurized. 5. The method according to claim 1, 2 or 3, wherein the mixture which is entirely solid or mostly solid at room temperature and pressure is heated and then adiabatically pressurized. 6 After the start of compression separation, when a difference begins to occur between the internal pressure on the solid phase side and the discharged liquid pressure, reduce the pressure in the solid phase storage section to lower the pressure of the separated liquid after passing through the filter. A method according to any one of claims 1 to 5. 7. Claims 1 to 7, which reduce the pressure in the solid phase storage section when the amount of liquid discharged from the filter starts to decrease after the start of compression separation to lower the pressure of the separated liquid after passing through the filter. The method described in any of Section 5. 8. The method according to claim 6 or 7, in which the discharge liquid pressure is continuously lowered stepwise. 9. Any one of claims 1 to 8, in which the solid in the solid phase storage section is squeezed so that the pressure of the unseparated mother liquor in the solid phase storage section does not become higher than the pressure at the time when the filtration resistance starts to increase. The method described in. 10 Claims 1 to 9, in which at least one compression is performed at any stage in separating the molten liquid when the pressure is returned to atmospheric pressure or its vicinity.
The method described in any of the paragraphs. 11. The method according to any one of claims 1 to 10, wherein the solid taken out of the high-pressure container is heated and partially melted and removed. 12 When separating the melt, at least 1
The solid phase from which the liquid phase has been separated by multiple compression is returned to atmospheric pressure or near atmospheric pressure, and the liquid phase is separated by flowing a gas while leaving it as it is or compressing the solid phase again. A method according to any one of claims 1 to 10. 13 Crystallizing one or more specific components from a mixture of two or more components,
A method for removing a crystallized solid, the temperature of the mixture being adjusted under atmospheric pressure or low pressure to a temperature at which the specific component is likely to crystallize due to pressurization, and then substantially adiabatic. After applying pressure to solidify a part of the specific component or increasing the solid phase to create a solid-liquid coexistence state, the mixture is locally cooled to advance solidification, and then the solid-liquid is heated under high pressure. When squeezing the solid phase and separating the liquid through a filter, the solid phase is squeezed while making sure that the pressure of the liquid phase to be separated after passing through the filter is lower than the pressure at the point when the filtration resistance begins to increase. Material separation using high pressure, which is characterized by returning the pressure on the solid phase to atmospheric pressure or a pressure close to it, melting a part of the solid phase, and releasing the remaining solid to the outside of the high-pressure container to take it out. Law.
JP11972877A 1977-10-04 1977-10-04 Separating method for substances utilizing high pressure Granted JPS5452678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11972877A JPS5452678A (en) 1977-10-04 1977-10-04 Separating method for substances utilizing high pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11972877A JPS5452678A (en) 1977-10-04 1977-10-04 Separating method for substances utilizing high pressure

Publications (2)

Publication Number Publication Date
JPS5452678A JPS5452678A (en) 1979-04-25
JPS6112724B2 true JPS6112724B2 (en) 1986-04-09

Family

ID=14768646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11972877A Granted JPS5452678A (en) 1977-10-04 1977-10-04 Separating method for substances utilizing high pressure

Country Status (1)

Country Link
JP (1) JPS5452678A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313101C1 (en) * 1993-04-22 1994-08-11 Hoechst Ag Process for separating and purifying substances by melt crystallisation at high pressures
DE4313121C1 (en) * 1993-04-22 1994-08-11 Hoechst Ag Process for separation and purification of substances by melt crystallisation
CN104107818B (en) * 2014-07-18 2016-03-09 中国天辰工程有限公司 A kind of clear scar method of movement of crystallization of adipic acid device

Also Published As

Publication number Publication date
JPS5452678A (en) 1979-04-25

Similar Documents

Publication Publication Date Title
US2747001A (en) Crystal purification process
US3487652A (en) Crystal separation and purification
JPS6112724B2 (en)
US5814231A (en) Separation of liquid eutectic mixtures by crystallization on cold surfaces and apparatus for this purpose
CA1309731C (en) Process for separating methtl derivatives of naphthalene according to crystallization under pressure
US2835598A (en) Separation by crystallization
US4784766A (en) Pressure crystallization equipment
US2813099A (en) Crystal purification process
JP2766059B2 (en) Method for separating 2,7-dimethylnaphthalene
US2890962A (en) Process and apparatus for purification of crystals
US3290891A (en) Batch crystal purification
US2809884A (en) Apparatus for separation by crystallization
US3082211A (en) Crystallization method and apparatus
JPS6112722B2 (en)
JPH0275303A (en) Separation of substance by cooling crystallization
JPS5810121B2 (en) Substance separation and purification equipment
JPS6125403B2 (en)
US2868830A (en) Separation by crystallization
JPS6112723B2 (en)
US2912469A (en) Fractional crystallization process
US2882215A (en) Fractional crystallization process
JP2004508286A (en) Separation of 2,4-toluenediamine from isomer mixture of toluenediamine
US3198607A (en) Fractional crystallization apparatus including recycle control
JPS63218204A (en) Method and device for pressure cooling crystallization
JPH0774172B2 (en) Method for separating 2,6-dimethylnaphthalene