JPS63218204A - Method and device for pressure cooling crystallization - Google Patents
Method and device for pressure cooling crystallizationInfo
- Publication number
- JPS63218204A JPS63218204A JP62051021A JP5102187A JPS63218204A JP S63218204 A JPS63218204 A JP S63218204A JP 62051021 A JP62051021 A JP 62051021A JP 5102187 A JP5102187 A JP 5102187A JP S63218204 A JPS63218204 A JP S63218204A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- raw material
- mother liquor
- solid
- material mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 45
- 238000002425 crystallisation Methods 0.000 title claims description 38
- 230000008025 crystallization Effects 0.000 title claims description 30
- 238000000034 method Methods 0.000 title claims description 26
- 239000002994 raw material Substances 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 43
- 239000012452 mother liquor Substances 0.000 claims abstract description 42
- 239000013078 crystal Substances 0.000 claims abstract description 30
- 230000007246 mechanism Effects 0.000 claims abstract description 22
- 238000007906 compression Methods 0.000 claims abstract description 10
- 230000006835 compression Effects 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 17
- 238000007599 discharging Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 239000002344 surface layer Substances 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000002002 slurry Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Filtration Of Liquid (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、特定成分を含む原料混合物から、比較的低い
操作圧力でしかも熱効率良く特定成分を晶析分離し得る
様に改善された加圧冷却晶析法、及びこの方法に有利に
通用される加圧冷却晶析装置に関するものである。Detailed Description of the Invention [Industrial Field of Application] The present invention provides an improved pressurization method that enables crystallization and separation of a specific component from a raw material mixture containing the specific component at a relatively low operating pressure and with high thermal efficiency. The present invention relates to a cooling crystallization method and a pressurized cooling crystallization apparatus that is advantageously used in this method.
[従来の方法]
加圧冷却晶析法とは、複数成分を含む液相又はスラリー
からなる原料を一般的には予備冷却してから高圧容器内
へ導入し、母液排出管路を閉鎖した状態で高圧力(たと
えば1000気圧を超える様な高圧力)を加えて特定成
分の結晶を促進させる方法であり、この操作によって特
定成分の結晶と残留液(母液)からなる固液混合状態が
得られる。その時点で母液排出管路の閉鎖を解除して前
記固液共存状態にピストン圧力を加え、母液をフィルタ
経由で系外へ排出し、残った固相を圧搾しながら更に固
液を分離し母液を排出すると、高純度の特定成分を回収
することができる。[Conventional method] The pressurized cooling crystallization method is a method in which a raw material consisting of a liquid phase or slurry containing multiple components is generally pre-cooled and then introduced into a high-pressure container, with the mother liquor discharge pipe closed. This is a method of applying high pressure (for example, high pressure exceeding 1000 atmospheres) to promote the crystallization of a specific component, and through this operation, a solid-liquid mixed state consisting of crystals of the specific component and residual liquid (mother liquor) is obtained. . At that point, the mother liquor discharge pipe is unblocked, piston pressure is applied to the above-mentioned solid-liquid coexistence state, the mother liquor is discharged out of the system via the filter, and the remaining solid phase is squeezed to further separate the solid and liquid. By discharging the gas, high-purity specific components can be recovered.
たとえば第3図は、従来の圧力晶析装置を示す概念図で
あり、原料混合物Aは予備冷却槽1で適当な温度まで冷
却された後、スラリーポンプ2から原料供給管路L!を
通して圧力晶析装置3の高圧室4内へ送り込まれる。そ
してピストン5を駆動して高圧室4内の原料を加圧し該
原料中の特定成分結晶を増加もしくは生成させた後、液
相成分(母液)はスクリーンから母液排出管路L2を通
して圧搾・排出し、しかる後高圧室4内に残った特定成
分の結晶を回収するものである。図中V、、V2は開閉
弁、Nは排出ノズル、6は排液タンク、7は加圧ユニッ
トを夫々示す。For example, FIG. 3 is a conceptual diagram showing a conventional pressure crystallizer, in which the raw material mixture A is cooled to an appropriate temperature in the pre-cooling tank 1, and then passed from the slurry pump 2 to the raw material supply pipe L! It is fed into the high pressure chamber 4 of the pressure crystallizer 3 through the pressure crystallizer 3. After driving the piston 5 to pressurize the raw material in the high pressure chamber 4 and increase or generate crystals of a specific component in the raw material, the liquid phase component (mother liquor) is squeezed and discharged from the screen through the mother liquor discharge pipe L2. After that, the crystals of the specific component remaining in the high pressure chamber 4 are recovered. In the figure, V, V2 are on-off valves, N is a discharge nozzle, 6 is a drain tank, and 7 is a pressurizing unit, respectively.
上記圧力晶析法を工程順に示すと下記の通りとなる。The steps of the pressure crystallization method described above are as follows.
!二開閉弁v2を閉じ、開閉弁■1を開いて高圧室4内
へ原料混合物を供給する工程、I■:開閉弁vIを閉じ
、ピストン5を作動して原料混合物に高圧を付与して特
定成分の結晶を増加もしくは発生させる工程、
III :開閉弁■2を開ぎ、高圧室4内の母液をスク
リーン及び母液排出管路L2及び排出ノズル経由で排出
させる工程、
■:ピストン5を作動して高圧室4内に残った母液を圧
搾除去する工程、
V:高圧室4を開放して特定成分の結晶を取出す工程。! Step I: Close the on-off valve v2 and open the on-off valve v1 to supply the raw material mixture into the high pressure chamber 4, I: Close the on-off valve vI, actuate the piston 5 to apply high pressure to the raw material mixture, and specify Step of increasing or generating crystals of the components, III: Opening the on-off valve ■2 and discharging the mother liquor in the high pressure chamber 4 via the screen, the mother liquor discharge pipe L2 and the discharge nozzle, ■: Activating the piston 5. V: Step of opening the high pressure chamber 4 and taking out crystals of a specific component.
上記Vの工程が終了した後は再びIの工程に戻り、この
操作を繰り返すことによって特定成分の分離・回収が連
続的に行なわれる。第4図は該操業時における操作圧力
の経時変化を概念的に示したものであり、また第5図は
同じく操業時の温度と圧力の関係を示したものである。After the above step V is completed, the process returns to step I, and by repeating this operation, the specific component is continuously separated and recovered. FIG. 4 conceptually shows the change in operating pressure over time during the operation, and FIG. 5 similarly shows the relationship between temperature and pressure during the operation.
[発明が解決しようとする問題点]
第3図において直線Wは特定成分(純物質)の固液平衡
線、直ksxは原料混合物の固液平衡線、Yは高圧晶析
により分離される母液の等濃度線、Zは共晶混合物の固
液平衡線を夫々示し、太実線の矢印に沿って高圧晶析分
離を行なうものとする。[Problems to be solved by the invention] In Fig. 3, the straight line W is the solid-liquid equilibrium line of a specific component (pure substance), the straight line ksx is the solid-liquid equilibrium line of the raw material mixture, and Y is the mother liquor separated by high-pressure crystallization. The isoconcentration line Z indicates the solid-liquid equilibrium line of the eutectic mixture, and high-pressure crystallization separation is performed along the thick solid arrow.
即ち原料混合物をA点まで予備冷却した後加圧すると、
B点(直線Xとの交点)に達するまでは温度上昇を殆ん
ど伴なうことなく急速に昇圧するが、B点を超える圧力
になると特定成分の晶出に伴なう発熱が生ずるため、昇
圧と共にかなりの温度上昇が見られる様になる。そして
本例では原料混合物を圧力Pまで昇圧して特定成分の結
晶を生成乃至増加させた後結晶化しなかフた母液を濾過
排出して高純度の特定成分を回収するものであり、この
昇圧工程では特定成分の晶出に伴なう発熱によって温度
はTまで上昇している。従来例では、この状態を得た後
開閉弁V2 (第3図)を開いて母液を排出除去し、
更に圧搾を行なって母液をより完全に除去するものであ
るが、このとき操作圧力が直線Wよりも下になる様なこ
とがあると、折角晶出させた特定成分までも溶融排出さ
れてロスとなるので、排出ノズルNの開度を調整したり
あるいは冷却することにより、操作圧力・温度の関係が
直線Wを下回ることのない様に制御される。That is, when the raw material mixture is pre-cooled to point A and then pressurized,
The pressure increases rapidly with almost no temperature rise until it reaches point B (the point of intersection with straight line , a considerable temperature rise can be seen as the pressure increases. In this example, the raw material mixture is pressurized to a pressure P to generate or increase crystals of a specific component, and then the uncrystallized mother liquor is filtered and discharged to recover a highly pure specific component. In this case, the temperature rises to T due to heat generation accompanying the crystallization of a specific component. In the conventional example, after this state is obtained, the on-off valve V2 (Fig. 3) is opened to discharge and remove the mother liquor.
The mother liquor is further squeezed to remove the mother liquor more completely, but if the operating pressure is lower than the straight line W, even the specific components that have been taken pains to crystallize will be melted and discharged, resulting in loss. Therefore, by adjusting the opening degree of the discharge nozzle N or cooling it, the relationship between operating pressure and temperature is controlled so as not to fall below the straight line W.
この図からも容易に理解することができる様に、特定成
分の晶出を効率良く進めるための圧力は、原料温度が高
くなるにつれて急激に高くなるが、圧力晶析工程では前
述の如く晶出が進むにつれて凝縮により原料温度は上昇
していくので、それに応じて操作圧力を高くせざるを得
ない。その結実装置及び配管ラインの耐圧設計強度を極
端に高くしなければならないばかりでなく、加圧ユニッ
トの加圧性能も非常に大きなものとしなけらばならず、
設備費が高騰してくる。しかもこの方法では、晶析分離
時の圧力と放圧時の圧力(常圧)の圧力差が非常に大き
くなるため、最終の圧搾工程で生ずる特定物質結晶の溶
融量が多く、収率が低下するという問題もある。As can be easily understood from this figure, the pressure needed to efficiently promote the crystallization of a specific component increases rapidly as the raw material temperature increases, but in the pressure crystallization process, as described above, As the temperature progresses, the temperature of the raw material increases due to condensation, so the operating pressure must be increased accordingly. Not only must the pressure-resistant design strength of the fruiting equipment and piping lines be extremely high, but the pressurizing performance of the pressurizing unit must also be extremely high.
Equipment costs are rising. Moreover, in this method, the pressure difference between the pressure during crystallization separation and the pressure during pressure release (normal pressure) is extremely large, so a large amount of crystals of specific substances are melted in the final compression process, resulting in a decrease in yield. There is also the problem of doing so.
本発明者らはこうした問題点を改善するための手段とし
て、第5図に破線矢印で示す様な方法を考えた。即ち原
料混合物を従来法よりも更に低温まで予測冷却してA°
点まで降温させておき、次いで加圧晶析を行なう方法で
あり、この方法であれば加圧開始温度を低下させている
分だけ加圧晶析後の温度(To)も低く抑えることがで
き、0点に示す如く先の晶析操作圧Pよりもかなり低い
圧力P°で同等の晶析効率を得ることができる。The inventors of the present invention have devised a method as shown by the broken line arrow in FIG. 5 as a means to improve these problems. In other words, the raw material mixture is predictively cooled to a lower temperature than in the conventional method.
This is a method in which the temperature is lowered to a certain point, and then pressure crystallization is performed.With this method, the temperature after pressure crystallization (To) can be kept low by the same amount as the pressure starting temperature is lowered. , as shown at point 0, the same crystallization efficiency can be obtained at a pressure P° that is considerably lower than the previous crystallization operating pressure P.
しかも晶析分離時の圧力と放圧時の圧力の圧力差を少な
めに抑えることができるので、特定成分結晶の収率低下
も抑制することができる。Moreover, since the pressure difference between the pressure during crystallization separation and the pressure during pressure release can be suppressed to a small level, a decrease in the yield of specific component crystals can also be suppressed.
しかしながらこの方法では、原料混合物をA点からA°
点まで冷却するのに大きな冷却装置が必要となり、殊に
室温以下まで冷却しようとした場合通常の水冷型予備冷
却機とは別に専用の冷凍装置が必要となり、イニシャル
コスト及びランニンングコストが大幅に加重される。し
かもこの冷却工程で原料混合物中の結晶量が増大し過ぎ
る様なことがあると、高圧室4へ送給するまでの配管し
1内や開閉弁Vlx更にはスラリーポンプ2等で管詰り
を生じ、操業不能に陥ることもある。However, in this method, the raw material mixture is moved from point A to A°
A large cooling device is required to cool the product to a certain point, and in particular, when attempting to cool the product below room temperature, a dedicated refrigeration device is required in addition to the normal water-cooled pre-cooler, which significantly increases the initial cost and running cost. be done. Moreover, if the amount of crystals in the raw material mixture increases too much during this cooling process, it may cause clogging in the piping 1 leading to the supply to the high pressure chamber 4, the on-off valve Vlx, the slurry pump 2, etc. , and may even become inoperable.
本発明はこの様な事情に着目してなされたものであって
、その目的は、晶析操作温度を低下させることによって
晶析操作圧力の低減を可能とし、しかもそれに伴う冷凍
設備等の負担増や管路閉塞等を生ずることのない様な加
圧冷却晶析法及びかかる晶析法の実施に有利に適用され
る装置を提供しようとするものである。The present invention has been made in view of these circumstances, and its purpose is to reduce the crystallization operation pressure by lowering the crystallization operation temperature, and to reduce the accompanying burden on refrigeration equipment, etc. It is an object of the present invention to provide a pressurized cooling crystallization method that does not cause pipe line blockage, etc., and an apparatus that can be advantageously applied to carry out such a crystallization method.
[問題点を解決するための手段]
上記の目的を達成することのできた本発明晶析法の構成
は、
I:温度調節された原料混合物を加圧する工程、
■■二上記加圧された原料混合物を、該加圧後の原料温
度よりも低温に保持された
高圧配管を通過させつつ冷却すること
により、特定成分の結晶を発生もしく
は増加させて固液分離装置内へ注入
し、次いで固液共存状態にある原料混
合物から濾過機構を介して母液を分離
・排出させる工程、
III :固液分離装置への原料の供給を停止し、前記
母液の分離・排出工程よりも
低圧で残留母液を排出させる工程、
を含むところに要旨を有するものであり、また本発明装
置の構成は、特定成分を含む原料混合物から特定成分を
加圧冷却晶析させるための装置であって、原料混合物の
温度調節機構、原料混合物の増圧供給機構、増圧された
原料混合物搬送用の高圧配管、濾通分離機構を備えた固
液分離装置、及び流量調節機構または圧力調節機構を備
えた母液排出用配管を備えてなるところに要旨を有する
ものである。[Means for solving the problems] The structure of the crystallization method of the present invention that can achieve the above object is as follows: I: Pressurizing the temperature-controlled raw material mixture; By cooling the mixture while passing it through a high-pressure pipe maintained at a lower temperature than the raw material temperature after pressurization, crystals of a specific component are generated or increased, and the crystals are injected into a solid-liquid separator, and then solid-liquid A step of separating and discharging the mother liquor from the coexisting raw material mixture via a filtration mechanism, III: Stopping the supply of raw materials to the solid-liquid separator and discharging the residual mother liquor at a lower pressure than in the mother liquor separation/discharge step. The apparatus of the present invention is an apparatus for pressure-cooling crystallization of a specific component from a raw material mixture containing the specific component, and includes a step of controlling the temperature of the raw material mixture. mechanism, a pressurized supply mechanism for the raw material mixture, high-pressure piping for conveying the pressurized raw material mixture, a solid-liquid separation device equipped with a filtration separation mechanism, and a mother liquor discharge piping equipped with a flow rate adjustment mechanism or a pressure adjustment mechanism. The gist lies in the fact that it is prepared.
[作用及び実施例]
本発明者らは、第5図で説明した如く原料混合物を加圧
した時に生じる圧縮熱や潜熱によって原料混合物がかな
りの高温まで昇温するという事実に着目し、原料混合物
をまず加圧して昇温させてから冷却する方法を採用すれ
ば、通常の水温との間にかなりの温度差があり水冷によ
っても効率の良い冷却ができるのではないかと考えた。[Operations and Examples] As explained in FIG. We thought that if we first pressurized the water to raise its temperature and then cooled it down, there would be a considerable temperature difference between it and the normal water temperature, and that efficient cooling could be achieved even with water cooling.
即ち特別の冷凍装置等を使用する必要がないので経済的
でもある。この様な操作手順を第5図に従フて説明する
と、第5図に破線矢印で示した如く、たとえば常温付近
の原料混合物を常温以下(たとえばθ℃程度以下)まで
冷却するには、目標温度に応じた低温の冷媒を使用しな
ければならず、冷凍装置の使用が不可欠となるが、加圧
によりたとえば50℃程度以上まで昇温した原料混合物
を常温付近まで降温させる場合であれば常温の工業用水
等をそのまま利用することによって冷却の目的を十分に
果たすことができるはずである。That is, it is also economical since there is no need to use a special refrigeration device. To explain such an operating procedure according to Fig. 5, as shown by the broken line arrow in Fig. 5, for example, in order to cool a raw material mixture near room temperature to below room temperature (for example, below about θ°C), the target It is necessary to use a low-temperature refrigerant depending on the temperature, and the use of a freezing device is essential. However, if a raw material mixture that has been heated to about 50°C or higher by pressurization is to be cooled down to around room temperature, it is necessary to use a refrigerant at room temperature. It should be possible to fully achieve the purpose of cooling by using industrial water as is.
本発明者らはこうした着想を活用し、原料をまず加圧し
である程度原料温度が上昇した段階で冷却する方法を考
えた。即ち第1図の実線矢印はこの方法を採用したとき
の圧力・温度変化を示したものであり[細鎖線矢印は第
5図の太実線矢印(従来法)に相当する]、原料混合物
をA点から加圧すると、B点を経た後0点方向にむかっ
て昇圧・昇温していくが、その途中のC゛点、即ち圧力
がp ’、温度がT l 1点に到達した時点で昇圧を
停止してD点まで冷却し、この時点で晶析を行なった後
母液の分離・圧搾除去を行なう様にすれば、従来法の0
点で晶析及び母液の分離・圧搾を行なったのと同様の晶
析分離効果を得ることができ、しかも操作圧力及び温度
の低下、降圧時の圧力ドロップ量の減少並びに冷却効率
の向上といった多くの効果を享受することができる。但
し加圧状態で晶析装置全体を冷却できる様にすることは
設備上の負担が大きく、また加圧・冷却により大量の結
晶が析出した状態で高圧室内へ供給しようとすると管詰
りを生じる恐れがでてくる。The present inventors took advantage of this idea and devised a method in which the raw material is first pressurized and then cooled once the temperature of the raw material has risen to a certain extent. In other words, the solid line arrows in Figure 1 indicate pressure and temperature changes when this method is adopted [the thin chain line arrows correspond to the thick solid line arrows (conventional method) in Figure 5], and the raw material mixture A When pressurized from point B, the pressure and temperature increase toward point 0, but at point C' in the middle, that is, the pressure reaches p' and the temperature reaches T1 point. If the pressure increase is stopped, the temperature is cooled to point D, and the mother liquor is separated and squeezed out after crystallization at this point, the conventional method
It is possible to obtain the same crystallization and separation effect as crystallization and separation/squeezing of the mother liquor at the point, and in addition, there are many advantages such as lower operating pressure and temperature, reduced pressure drop during pressure reduction, and improved cooling efficiency. You can enjoy the effects of However, being able to cool the entire crystallizer under pressure places a heavy burden on the equipment, and there is a risk that pipe clogging will occur if a large amount of crystals have precipitated due to pressurization and cooling and is then fed into the high-pressure chamber. comes out.
この様なところから本発明では、前述の如くまず[I]
温度調節された原料混合物を加圧する。From this point of view, in the present invention, as described above, first [I]
Pressurize the temperature-controlled raw material mixture.
この段階では該原料混合物中の特定成分の一部を結晶化
させてもあるいは結晶化させなくともよく、過飽和状態
あるいは未飽和状態でもかまわない0次いで[II ]
該加圧された原料混合物を、該加圧後の原料温度よりも
低温に保持された高圧配管内を通過させながら冷却する
ことにより、特定成分の結晶を発生もしくは増加させて
固液分離装置(即ち高圧室内)へ注入し、以下従来例と
同様にして母液の分離及び圧搾濾過を行なう方法を採用
することとしている。即ち本発明では、特定成分結晶の
急増する冷却工程を高圧下の高速輸送状態で行なう方法
を採用しており、静止状態で晶析を行なった場合に比べ
て結晶が微細化されて流動性の良いスラリー状態に保つ
ことができ、管詰り現象を可及的に防止することができ
る。しかも高圧配管は常圧配管に比べて細径に構成され
ているのが昔通であるので、冷却水等による間接冷却等
も効率良く行なうことができる。かくして管詰りの問題
を生ずることなく、■操作圧力・温度の低減、■圧力ド
ロップ及びそれに伴う収率低下の防止、■冷却設備の簡
素化と冷却効率アップ、といった目的を一挙に達成し得
ることとなった。At this stage, a part of the specific component in the raw material mixture may or may not be crystallized, and may be in a supersaturated or unsaturated state.
By cooling the pressurized raw material mixture while passing it through a high-pressure pipe maintained at a temperature lower than the temperature of the raw material after pressurization, crystals of a specific component are generated or increased, and the solid-liquid separation device ( That is, a method is adopted in which the mother liquor is injected into a high-pressure chamber and the mother liquor is subsequently separated and compressed and filtered in the same manner as in the conventional example. In other words, the present invention employs a method in which the cooling process in which crystals of a specific component rapidly increase is carried out under high pressure and high-speed transport, resulting in finer crystals and improved fluidity compared to when crystallization is performed in a static state. It is possible to maintain a good slurry state and prevent pipe clogging as much as possible. Moreover, since high-pressure piping is traditionally configured to have a smaller diameter than normal-pressure piping, indirect cooling using cooling water or the like can be performed efficiently. In this way, the objectives of ■reducing operating pressure and temperature, ■preventing pressure drop and the resulting decrease in yield, and ■simplifying cooling equipment and increasing cooling efficiency can be achieved all at once without causing problems with pipe clogging. It became.
第2図は上記方法を実施する際に使用される装置を例示
する概略フロー図であり、晶析装置本体3以降の構成は
第3図に示した従来例と実質的に同様であるので、同一
の部分には同一の符号を付すことにより重複説明は省略
する。図示例からも明らかな様に、本発明では原料混合
物を晶析装置本体3の高圧室4内へ供給するまでの工程
に主たる特徴を有するものであり、原料混合物Aはまず
予備冷却槽1で図示しない水冷機構等によって常温付近
まで冷却された後、高圧ポンプ8a、8bによって所定
圧力まで昇圧しつつ原料供給配管し1方向へ送給される
。ここまでの加圧送給工程は、第1図におけるA→B−
C’の工程に相当する。面図ではピストン型の高圧ポン
プを2基並設し切換運転により連続操業できる様にした
例を示したが、予備ポンプを含めて3基以上並設したり
、あるいは1基の高圧ポンプで間欠送給する構成とする
こともでき、更にはギヤポンプ型等の他の高圧送給機構
を採用することも勿論可能である。これら高圧ポンプ8
a、8b以降の原料供給管路L1は耐圧構造とされるほ
か、晶析装置本体3直前位置の該管路L1には冷却機構
9が付設されており、この部分では昇圧により昇温した
原料混合物の冷却が行なわれる。この冷却工程は第1図
におけるC゛→Dの工程に相当する。該冷却の行なわれ
る原料供給管路は、冷却効率向上のため蛇腹管としたり
フィン付き管とすることも勿論有効である。また冷媒と
してはアンモニアガス等を用いることも可能であるが、
冷却設備の簡素化という本発明の趣旨に照らして最も有
利なのは冷却水であり、本発明で該供給管路を流れる原
料混合物は前述の如く昇圧により相当高温となっている
ので、通常の工業用水等でも十分に冷却することができ
る。もっとも必要によっては氷水等を使用することも勿
論可能である。FIG. 2 is a schematic flow diagram illustrating an apparatus used in carrying out the above method, and the structure of the crystallizer main body 3 and subsequent parts is substantially the same as the conventional example shown in FIG. Duplicate explanations will be omitted by assigning the same reference numerals to the same parts. As is clear from the illustrated example, the main feature of the present invention is the process up to supplying the raw material mixture into the high pressure chamber 4 of the crystallizer main body 3, and the raw material mixture A is first heated in the preliminary cooling tank 1. After being cooled down to around room temperature by a water cooling mechanism (not shown) or the like, the material is raised to a predetermined pressure by high-pressure pumps 8a and 8b, and is fed through the raw material supply pipe in one direction. The pressurized feeding process up to this point is from A to B- in Fig. 1.
This corresponds to step C'. The plan view shows an example in which two piston-type high-pressure pumps are installed in parallel and can be operated continuously by switching operation, but three or more piston-type high-pressure pumps can be installed in parallel, including a backup pump, or one high-pressure pump can be operated intermittently. It is also possible to adopt a configuration in which the pressure is fed, and it is also of course possible to employ other high-pressure feeding mechanisms such as a gear pump type. These high pressure pumps 8
The raw material supply pipe L1 after a and 8b has a pressure-resistant structure, and a cooling mechanism 9 is attached to the pipe L1 located immediately before the crystallizer main body 3. Cooling of the mixture takes place. This cooling step corresponds to the step C→D in FIG. It is of course effective to use a bellows tube or a finned tube as the raw material supply conduit through which the cooling is performed to improve cooling efficiency. It is also possible to use ammonia gas etc. as a refrigerant, but
In view of the purpose of the present invention, which is to simplify the cooling equipment, cooling water is most advantageous, and since the raw material mixture flowing through the supply pipe in the present invention is at a considerably high temperature due to pressure increase as described above, it is not necessary to use ordinary industrial water. etc. can also be sufficiently cooled. Of course, it is also possible to use ice water or the like if necessary.
この様にして加圧・冷却された原料混合物は、開閉弁v
Iから高圧室4へ送り込まれ、引き続き開閉弁V、を閉
、開閉弁■2を開とし、排出ノズルの開度調整の後、図
示しないスクリーンを通して母液の分離・排出が行なわ
れる。その後高圧室4内の圧力が上記圧力よりも若干低
くなった時点でピストン5を作動して圧搾を行なうと、
高圧室4内の結晶表面に付着した母液は、降圧によりわ
ずかに表層部から溶融した特定成分と共にしぼり出され
、高圧室4内には高純度の特定成分の結晶のみが残るこ
ととなる。従ってその後高圧室4を開放してケーキ状の
特定成分を取り出し、あるいは高圧室4を放圧後加温し
て特定成分の結晶を一旦溶融した後、別途設けた排出管
路を通して取り出せばよい。The raw material mixture pressurized and cooled in this way is
The mother liquor is sent from I to the high pressure chamber 4, and then the on-off valve V is closed, the on-off valve 2 is opened, and after adjusting the opening of the discharge nozzle, the mother liquor is separated and discharged through a screen (not shown). After that, when the pressure in the high pressure chamber 4 becomes slightly lower than the above pressure, the piston 5 is operated to perform compression.
The mother liquor adhering to the surface of the crystal in the high pressure chamber 4 is squeezed out along with a slight amount of the melted specific component from the surface layer due to the pressure drop, leaving only highly purified crystals of the specific component in the high pressure chamber 4. Therefore, the high-pressure chamber 4 may then be opened to take out the specific component in the form of a cake, or the high-pressure chamber 4 may be depressurized and heated to once melt the crystals of the specific component, and then taken out through a separately provided discharge pipe.
上記説明からも容易に理解できる様に、本発明では基本
的には高圧ポンプ8a、8bによって晶析操作圧力を確
保すると共に冷却機構9にょフて晶析操作温度を確保す
るものであり、晶析装置本体3内での昇圧及び降温は起
こらずピストン5は圧搾時のみ使用される。従って原料
混合物中の特定成分含量が少ない(晶析量が母液に対し
て相対的に少ない)場合は、原料混合物を加圧冷却しつ
つ高圧室4内へ供給すると共に、フィルターを通して継
続的に母液を排出し、高圧室4内に一定量の特定成分結
晶が蓄積した時点で圧搾分離工程へ移る様にすれば、特
定成分結晶の取り出し開度(即ち高圧室4の開放回数)
を少なくすることができ、生産性、操業性を共に高める
ことができるので好ましい。この場合、高圧室4の原料
入口側に圧力計P1を、また母液出口側に圧力計P2を
設けると共に、これらPs、Pzを差圧センサーQ+
に接続しておき、高圧室4内に所定量の結晶が蓄積した
ことを該差圧センサーQ+ によって検知して圧搾(即
ちピストン5の作動)を開始する様に自動制御回路を組
んでおけば、結晶の蓄積に応じた圧搾開始時期の設定を
正確にコントロールすることができる。As can be easily understood from the above explanation, the present invention basically uses the high pressure pumps 8a and 8b to secure the crystallization operating pressure, and the cooling mechanism 9 to ensure the crystallization operating temperature. No pressure rise or temperature fall occurs within the analyzer main body 3, and the piston 5 is used only during compression. Therefore, when the content of a specific component in the raw material mixture is low (the amount of crystallization is relatively small relative to the mother liquor), the raw material mixture is cooled under pressure and fed into the high pressure chamber 4, and the mother liquor is continuously passed through a filter. If the specific component crystals are discharged and the compression separation step is started when a certain amount of specific component crystals have accumulated in the high pressure chamber 4, the opening degree for extracting the specific component crystals (i.e., the number of times the high pressure chamber 4 is opened) can be changed.
This is preferable because it can reduce the amount of water and improve both productivity and operability. In this case, a pressure gauge P1 is provided on the raw material inlet side of the high pressure chamber 4, and a pressure gauge P2 is provided on the mother liquor outlet side, and these Ps and Pz are connected to a differential pressure sensor Q+.
If the differential pressure sensor Q+ detects that a predetermined amount of crystals have accumulated in the high pressure chamber 4, an automatic control circuit can be constructed to start compression (that is, actuation of the piston 5). , it is possible to accurately control the setting of the compression start time according to the accumulation of crystals.
また最終の圧搾分離工程で母液排出側管路を一気に大気
圧まで放圧すると、該放圧の影響が高圧室4内に及んで
特定成分結晶の溶融量が増大し回収率が低下してくる恐
れがあるが、たとえば母液排出側ラインに複数の放圧ノ
ズルを直列に配設する等の手段を講じ、該圧搾分離工程
で母液排出側を連続的もしくは段階的に降圧させる様に
すれば、特定成分結晶の溶融圧搾ロスを必要最小限に抑
えることができる。In addition, if the mother liquor discharge side pipe is depressurized all at once to atmospheric pressure in the final compression separation step, the influence of this depressurization extends to the inside of the high pressure chamber 4, increasing the amount of melted specific component crystals and decreasing the recovery rate. Although there is a risk, if measures such as arranging a plurality of pressure relief nozzles in series on the mother liquor discharge side line are taken to reduce the pressure on the mother liquor discharge side continuously or stepwise in the compression separation process, It is possible to suppress the melting and pressing loss of specific component crystals to the necessary minimum.
ところで本発明では、前述の如く高圧流動状態で冷却す
る方法を採用しており、晶出物による管詰りは生じ難い
が、操業時に過圧もしくは過冷却状態が生じた様な場合
には、晶出物の急増により管詰りを生ずる恐れも皆無と
は言えないので、かかる状況を想定した対策を講じてお
くに越したことはない。この様な観点から第2図の例で
は、原料供給ラインの管詰りを自動検知することのでき
る機構も付加されている。即ち高圧ポンプ8a。By the way, in the present invention, as mentioned above, a method of cooling in a high-pressure fluidized state is adopted, and pipe clogging due to crystallized substances is unlikely to occur, but if overpressure or supercooling state occurs during operation, crystallization may occur. Since there is a possibility that pipe clogging may occur due to a sudden increase in waste, it is best to take measures to anticipate such a situation. From this point of view, in the example shown in FIG. 2, a mechanism that can automatically detect clogging of the raw material supply line is also added. That is, the high pressure pump 8a.
8bの原料吐出側ラインに夫々圧力計Pa、Pbを設け
ると共に、高圧室4への原料入側ラインに設けた前記圧
力計PIを活用し、これらPa。Pressure gauges Pa and Pb are provided in the raw material discharge line of 8b, respectively, and the pressure gauge PI provided in the raw material inlet line to the high pressure chamber 4 is utilized to measure these Pa.
pbとPlを差圧センサーQ2に接続しておき、両者の
差圧を常時検知しておく。Pa又はpbとPLの間の原
料供給管路LI内で管詰りが生じると差圧センサーQ2
によって検知される差圧が急増するので、この差圧を検
知することによって管詰りを直ちに知ることができる。Pb and Pl are connected to a differential pressure sensor Q2, and the differential pressure between them is constantly detected. If clogging occurs in the raw material supply pipe LI between Pa or pb and PL, the differential pressure sensor Q2
Since the differential pressure detected by this increases rapidly, by detecting this differential pressure, it is possible to immediately know if the pipe is clogged.
従ってこの様な現象が生じたときは、加圧ポンプ8a、
8bの駆動を停止して原料供給管路L1内を放圧するか
、あるいは冷却機構9の内部に温水等を供給して該管路
Ll内を加温し、該管路L1内の結晶を溶融させれば、
管詰りを即座に解消することができる。Therefore, when such a phenomenon occurs, the pressure pump 8a,
8b is stopped to release the pressure inside the raw material supply pipe L1, or hot water or the like is supplied to the inside of the cooling mechanism 9 to heat the inside of the pipe L1 and melt the crystals in the pipe L1. If you let me,
Pipe clogging can be cleared immediately.
[発明の効果]
本発明は以上の様に構成されており、その効果を要約す
ると次の通りである。[Effects of the Invention] The present invention is configured as described above, and its effects are summarized as follows.
■原料混合物を加圧し昇温した状態で冷却する方法を採
用しているので常温程度の冷却水でも十分に効率良く冷
却することができ、格別の冷凍設備等が全く不要であり
、ランニングコストも低減できる。■Since we use a method that cools the raw material mixture while it is pressurized and heated, it can be cooled efficiently even with cooling water at room temperature, and there is no need for special refrigeration equipment, which reduces running costs. Can be reduced.
■圧力晶析を比較的低い温度で行なうことができるので
過度に昇圧する必要がなく、設備全体の耐圧強度を低め
に設計することができ、設備費の低減及び操業性及び安
全性を高めることができる。■Since pressure crystallization can be performed at a relatively low temperature, there is no need to increase the pressure excessively, and the overall pressure resistance of the equipment can be designed to be low, reducing equipment costs and improving operability and safety. Can be done.
■加圧冷却晶析時と放圧取り出し時の圧力ドロップを少
なくすることができ、特定成分の溶融ロスを必要な最小
限に抑えることができる。■It is possible to reduce the pressure drop during pressure cooling crystallization and depressurization extraction, and the melt loss of specific components can be suppressed to the necessary minimum.
■上記■〜■に示した本発明の特徴は、昇圧による温度
上昇の大きい物質の加圧冷却晶析分離に最大限有効に発
揮される。(2) The features of the present invention shown in (1) to (4) above are most effectively exhibited in the pressure-cooling crystallization separation of substances whose temperature increases due to pressure increase.
第1図は本発明法を採用したときの圧力と温度の推移を
示す説明図、第2図は本発明の実施例を示す概略フロー
図、第3図は従来法を示す概念図、第4図は従来法を採
用したときの経時的圧力変化を示すグラフ、第5図は従
来法及び改善法を採用したときの圧力と温度の推移を示
す説明図である。
1:予備冷却槽 2ニスラリ−ポンプ3:圧力晶
析装置本体 4:高圧室
5:ピストン 6:母液タンク7:加圧ユニッ
ト
8a、8b:加圧ポンプFig. 1 is an explanatory diagram showing the transition of pressure and temperature when the method of the present invention is adopted, Fig. 2 is a schematic flow diagram showing an embodiment of the present invention, Fig. 3 is a conceptual diagram showing the conventional method, and Fig. 4 The figure is a graph showing changes in pressure over time when the conventional method is employed, and FIG. 5 is an explanatory diagram showing changes in pressure and temperature when the conventional method and the improved method are employed. 1: Pre-cooling tank 2 Nis slurry pump 3: Pressure crystallizer main body 4: High pressure chamber 5: Piston 6: Mother liquor tank 7: Pressurization units 8a, 8b: Pressure pump
Claims (6)
、 II:上記加圧された原料混合物を、該加圧後の原料温度
よりも低温に保持された高圧配管を通過させつつ冷却す
ることにより、特定成分の結晶を発生もしくは増加させ
て固液分離装置内へ注入し、次いで固液共存状態にある
原料混合物から濾過機構を介して母液を分離・排出させ
る工程、 III:固液分離装置への原料の供給を停止し、前記母液
の分離・排出工程よりも低圧で残留母液を排出させる工
程、 を含むことを特徴とする特定物質の加圧冷却晶析法。(1) I: Pressurizing the temperature-controlled raw material mixture; II: Cooling the pressurized raw material mixture while passing it through a high-pressure pipe maintained at a lower temperature than the raw material temperature after pressurization. A step in which crystals of a specific component are generated or increased and injected into a solid-liquid separator, and then the mother liquor is separated and discharged from the raw material mixture in a solid-liquid coexistence state via a filtration mechanism. III: Solid-liquid separator A method for pressurized cooling crystallization of a specific substance, comprising the steps of: stopping the supply of raw materials to the mother liquor, and discharging the residual mother liquor at a pressure lower than that in the mother liquor separation/discharge step.
液分離装置による母液の分離を継続的に行なう特許請求
の範囲第1項に記載の加圧冷却晶析法。(2) The pressurized cooling crystallization method according to claim 1, wherein pressurization of the raw material mixture, injection into a solid-liquid separator, and separation of the mother liquor by the solid-liquid separator are continuously carried out.
を加圧下に圧搾しつつ、母液は連続的もしくは段階的に
減圧しつつ排出させる特許請求の範囲第1または2項に
記載の加圧冷却晶析法。(3) In the step III, the crystals in the solid-liquid separator are squeezed under pressure while the mother liquor is discharged while being continuously or stepwise reduced in pressure. Pressure cooling crystallization method.
却晶析させるための装置であって、原料混合物の温度調
節機構、原料混合物の増圧供給機構、増圧された原料混
合物搬送用の高圧配管、濾過分離機構を備えた固液分離
装置、及び流量調節機構または圧力調節機構を備えた母
液排出用配管を備えてなることを特徴とする加圧冷却晶
析装置。(4) An apparatus for pressurizing and cooling crystallizing a specific component from a raw material mixture containing a specific component, which includes a temperature adjustment mechanism for the raw material mixture, a pressurized supply mechanism for the raw material mixture, and a mechanism for conveying the pressurized raw material mixture. A pressurized cooling crystallizer comprising a high-pressure pipe, a solid-liquid separator equipped with a filtration separation mechanism, and a mother liquor discharge pipe equipped with a flow rate adjustment mechanism or a pressure adjustment mechanism.
の差圧を検知する差圧センサーを備え、且つ該センサー
によって検知される差圧が所定値に達した時点で、前記
固液分離装置における原料の圧搾を開始する機構を備え
てなることを特徴とする特許請求の範囲第4項に記載の
加圧冷却晶析装置。(5) A differential pressure sensor is provided to detect the differential pressure between the raw material inlet side pressure and the mother liquor outlet side pressure of the solid-liquid separator, and when the differential pressure detected by the sensor reaches a predetermined value, the solid-liquid 5. The pressurized cooling crystallizer according to claim 4, further comprising a mechanism for starting compression of the raw material in the separator.
口側圧力の差圧を検知する圧力センサーを備え、且つ該
センサーによって検知される差圧により前記高圧配管内
の詰まりを検知し得る様にした特許請求の範囲第4また
は5項に記載の加圧冷却晶析装置。(6) Equipped with a pressure sensor that detects the differential pressure between the outlet pressure of the pressure increase mechanism and the raw material inlet pressure of the solid-liquid separator, and detects clogging in the high-pressure pipe based on the differential pressure detected by the sensor. A pressurized cooling crystallizer according to claim 4 or 5, which is adapted to perform the following steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62051021A JPH0640923B2 (en) | 1987-03-05 | 1987-03-05 | Pressure cooling crystallization method and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62051021A JPH0640923B2 (en) | 1987-03-05 | 1987-03-05 | Pressure cooling crystallization method and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63218204A true JPS63218204A (en) | 1988-09-12 |
JPH0640923B2 JPH0640923B2 (en) | 1994-06-01 |
Family
ID=12875139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62051021A Expired - Lifetime JPH0640923B2 (en) | 1987-03-05 | 1987-03-05 | Pressure cooling crystallization method and equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640923B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5082635A (en) * | 1989-02-28 | 1992-01-21 | Kabushiki Kaisha Kobe Seiko Sho | High-pressure crystallographic observation apparatus |
-
1987
- 1987-03-05 JP JP62051021A patent/JPH0640923B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5082635A (en) * | 1989-02-28 | 1992-01-21 | Kabushiki Kaisha Kobe Seiko Sho | High-pressure crystallographic observation apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0640923B2 (en) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB807100A (en) | Improvements in process and apparatus for purification of crystals | |
EP1663439B1 (en) | A solid-liquid separation process | |
US3364690A (en) | Process for crystallization | |
JPS63218204A (en) | Method and device for pressure cooling crystallization | |
US4784766A (en) | Pressure crystallization equipment | |
JP2766059B2 (en) | Method for separating 2,7-dimethylnaphthalene | |
US2988895A (en) | Process for low temperature dehydration | |
US3082211A (en) | Crystallization method and apparatus | |
JPS5810121B2 (en) | Substance separation and purification equipment | |
JPH0412161B2 (en) | ||
CN219167751U (en) | Crystallization and separation integrated equipment with ultrahigh pressure and decompression functions | |
JPH01210001A (en) | Pressure crystallization separation unit and pressure crystallization separation method | |
JPS6112724B2 (en) | ||
JPH02126901A (en) | Method and device for pressure crystallization | |
JPH0698245B2 (en) | Pressure crystallizer | |
JPH02126903A (en) | Pressure crystallization method | |
JP2849149B2 (en) | Pressure crystallization equipment | |
JPH06104163B2 (en) | Pressure crystallization method and pressure crystallization apparatus | |
JPS6218201B2 (en) | ||
JPH01266804A (en) | Pressure crystallization process | |
JPH0356761B2 (en) | ||
JPH046401B2 (en) | ||
JPH0417682B2 (en) | ||
JPH0779924B2 (en) | Pressure crystallizer | |
JPH0779922B2 (en) | Purification of substances using pressure crystallization |