JPH0418882B2 - - Google Patents

Info

Publication number
JPH0418882B2
JPH0418882B2 JP29180588A JP29180588A JPH0418882B2 JP H0418882 B2 JPH0418882 B2 JP H0418882B2 JP 29180588 A JP29180588 A JP 29180588A JP 29180588 A JP29180588 A JP 29180588A JP H0418882 B2 JPH0418882 B2 JP H0418882B2
Authority
JP
Japan
Prior art keywords
pressure
container
liquid
crystallization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29180588A
Other languages
Japanese (ja)
Other versions
JPH02139001A (en
Inventor
Katsuhiko Tsuzura
Masato Moritoki
Masami Takao
Harumasa Tanabe
Ichiji Hatakeyama
Nobuhiko Nishiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29180588A priority Critical patent/JPH02139001A/en
Publication of JPH02139001A publication Critical patent/JPH02139001A/en
Publication of JPH0418882B2 publication Critical patent/JPH0418882B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、圧力晶析方法に関し、詳細には特定
成分を含む原料混合物から特定成分を分離して得
るための圧力晶析方法に関する。 (従来の技術) 圧力晶析法は、従来の蒸留法や冷却晶析法では
分離困難な原料系への適用に大きな可能性を有し
ている事、高純度の製品が得易い事、高収率が得
易い事、及び、エネルギ消費量が少ない事等か
ら、近年の化学工業のフアイン化に伴つて大きな
注目を集めている分離精製技術である。 かかる圧力晶析法の概要は、例えば、化学工業
50巻(1986年)331頁「圧力晶析法と装置の概要」
に記載されている。これを第1図(プロセスフロ
ー及び装置の概念を示す図)によつて説明する
と、圧力容器1には、下方に蓋体(下蓋)2が設
けられ、ピストン5が油圧ユニツト3の作動によ
り容器1内にて上下動するように設けられてお
り、このピストン5と下蓋2とによつて圧力容器
1内に晶析室4が形成される。この晶析室4と排
液タンク6とは、減圧機構10及び弁11を介し
て配管9により連結されている。又、晶析室4と
予備晶析缶7とは、原料供給ポンプ8、弁12を
介して配管13により連結されている。 この装置において、原料は原料タンク14より
予備晶析缶7に送給され、ここで冷却されて圧力
晶析のための種結晶を生成する。これは種結晶を
含まないままの原料を圧力晶析にかけると、圧力
晶析では過飽和圧が一般的に数百気圧以上と比較
的高い場合が多く、初期結晶生成の為に高圧力が
必要となる恐れがあるためであり、種結晶を含ん
だスラリ状態で給液すると、かかる過飽和圧の心
配がないばかりか加圧により核発生を伴わずに結
晶の成長が期待出来る利点がある。 次に、配管13から弁12を介して原料を晶析
室4に注入する。晶析室4内に原料が充満する
と、ピストン先端部に開口を有するオーバーフロ
ー管15を通つて液流出が始まるので、これを検
知して弁12,16を閉じてピストン5による加
圧を開始する。原料液を加圧すると原料中の特定
物質の結晶化が進行して、晶析室4内は高圧下の
固液平衡状態となる。このとき生成する固体は一
般に極めて高純度の物質である。尚、固化の進行
に伴つて発生する固化潜熱により、晶析室4内の
温度は上昇するが、圧力晶析法では一般にこの温
度上昇防止の為の冷却は行わず、断熱的に加圧す
る方法が採用される。 次に、所定の圧力まで昇圧すると、一般的には
直ちに晶析が完了し、所定の固液比率(飽和状
態)に達するので、この圧力を検知すると直ちに
弁11を開き、固液分離を開始する。そして、弁
11開の状態で、油圧ユニツト3からピストン5
に作用する圧力を保持したままピストンの下降を
続けると、晶析室4内の圧力は一定に保持された
状態で液相が晶析室4から排液タンク6に排出さ
れる。更にピストン5の下降を継続すると晶析室
4内の結晶粒群は加圧圧搾され、結晶粒間の残留
液体は所謂「絞り出し作用」を受けて排液タンク
6に排出される。 ピストン5の下降が更に続くと、結晶粒群は晶
析室4の形状に沿つて一個の大きな塊状固体製品
へと成形されていく。この様にして液体を固体か
ら略完全に分離する段階になると、大気圧下の排
液タンク6に連通している晶析室4内の液相圧力
は次第に低下していくため、結晶表面は部分的に
融解し、所謂「発汗洗浄」が行われ、塊状固体製
品の精製がなされる。 晶析室4から排出される排液の圧力が所定の圧
力にまで低下すると、ピストン5の下降を停止
し、同ピストンの上昇を開始すると共に高圧容器
1も上昇させると、固体製品は下蓋2上に載置さ
れた状態で容器1から取り出される。これを製品
取り出し装置(図示せず)によつて取り出し、高
圧容器1を下降させて下蓋2に装着し、以下原料
の注入工程に戻り、同様の工程を繰り返す事にな
る。尚、原料の注入に先立ち、前述のオーバーフ
ロー管15内の残液を、窒素ガス等の製品に対し
て不活性なガスでパージし、次工程の注入時の満
液検知の為の準備をしておく。 以上の工程を繰り返すことによつて製品を連続
的に生産する。 (発明が解決しようとする課題) 圧力晶析方法は前述の通りバツチプロセスであ
り、1サイクルの時間は通常2〜5分程度と短時
間で運転されるが、この1サイクルの所要時間の
うち、加圧晶析後の液相分の高圧容器外排出時間
が大部分を占めている。このため、製品収率が低
い場合には、液相分の高圧容器外排出量が相対的
に多くなり、液排出時間も長くなつて、1サイク
ルに要する時間も長くなつて、単位時間当りの生
産量は低くなる。逆に製品収率が高い場合には、
液相分の排出量が相対的に少なくなり、液排出時
間も短くなつて、1サイクルに要する時間も短く
なり、単位時間当りの生産量は高くなる。このた
めに、同一原料から同一圧力晶析装置で目的物を
生産するに当り、その生産性を高める方策が要求
される様になつてきた。 一方、製品に要求される純度は、その目的・用
途によつて異なるが、フアイン化傾向の中で益々
高純度化が要求されてきている。例えば、中間体
の精製においては、その純度が高ければ高い程、
次工程の反応に要する他原料の量、副反応生成物
の量、所要エネルギ量等が少なくなり、次工程以
降の工程に大きな影響を与える。 本発明は、かかる現状に鑑みてなされたもので
あつて、従来圧力晶析法をその操作面から改良し
て、高収率で且つ高い生産性の元に、高純度の製
品を生産できる方法を提供するものである。 (課題を解決するための手段) 上記課題を達成するために、本発明は次のよう
な構成の圧力晶析方法としている。即ち、第1請
求項の方法は、特定成分を含む2種以上の成分か
らなる液体状混合物を冷却して特定成分の結晶を
5〜35%含むスラリに調整し、該スラリを高圧容
器内に供給し、該容器内にて断熱的な加圧晶析を
開始し、該容器内温度が特定成分の常圧での融点
以上で且つ該融点より25℃高い温度を越えない範
囲の温度になつた時点で前記加圧晶析を終了し、
次いで容器内圧力を維持した状態で液相分を容器
外へ排出し、続いて容器内液圧の断熱的降下によ
る容器内固体の部分融解を行いつつ該固体の圧搾
ならびに融解液の容器外への排出を、容器内の温
度および圧力が所定液組成に相当する状態に達す
る迄行つた後、容器内を常圧にして特定成分の固
体状製品を取り出すことを特徴とする圧力晶析方
法である。第2請求項の方法は、前記液体状混合
物が、固体状態の原料を予め完全に融解したもの
である第1請求項に記載の圧力晶析方法である。
また、第3請求項の方法は、容器内液圧の断熱的
降下を連続的または断続的に行う第1請求項に記
載の圧力晶析方法である。 (作 用) 本発明に係る圧力晶析方法は、前記の如く、先
ず特定成分を含む2種以上の成分からなる液体状
混合物を冷却して特定成分の結晶を5〜35%含む
スラリに調整し、該スラリを高圧容器内に供給
し、該容器内にて断熱的な加圧晶析を行うように
している。 このようにすると、供給されたスラリ中には圧
力晶析の種結晶となる特定成分の結晶が必ず含ま
れるようになる。故に、加圧晶析の際の初期結晶
生成に高圧力を要しなくなる。又、一次核発生を
伴わずに結晶の成長を起こさせ得るようになり、
そのために微細結晶を生じず、大きな結晶が出来
易くなるので、晶析後の固液分離が容易になり、
その結果製品収率および純度が高くなる。 ここで、上記原料中の特定成分結晶の含有率を
5〜35%にしているのは、5%未満では種結晶の
量が不充分であるため、一次核発生が生じて製品
収率が低くなる場合があり、35%を超えると容器
への供給が困難となり、又、加圧晶析の間におけ
る結晶生成量が低くなるために固化の進行に伴つ
て発生する固化潜熱による温度上昇が低くなつ
て、後述の要件である加圧晶析終了温度を確保し
得なくなるからである。 また、液体状混合物を冷却して上記含有率の調
整を行うようにしているのは、不純物を含まない
特定成分の結晶(高純度種結晶)を確実に生成さ
せ、その結果製品純度をより高いものにするため
である。このような冷却に処する液体状混合物
は、圧力晶析しようとする元の原料が常温で固体
(結晶)を含む固液混合体である場合は、該混合
体を完全融解して調整する必要がある。常温で液
体の場合は該液体そのものである。 元の原料が常温で固液混合体の場合、結晶を含
むにもかかわらず、上記の如く完全融解してから
冷却するのは、下記理由に因る。即ち、該元の原
料中の結晶は管理された状態で生成した結晶では
ないので、該結晶中には不純物が含まれている場
合が多い。そのため、該元の原料を供給して加圧
晶析すると、該結晶は種結晶として作用するが、
不純物がそのまま製品中に残り、製品純度の低下
を来す場合がある。これに対し、該元の原料を融
解した後冷却すると、不純物を含まない特定成分
の結晶(高純度種結晶)が生成され得るようにな
るからである。 又、元の原料が常温で固体の場合に、完全に融
解した後に冷却するのも、上記同様、高純度種結
晶を生成させるためである。尚、この場合の冷却
に関し、融解後所定温度まで冷却するが、該温度
は必然的に常温より高いものになる。 次に、前記加圧晶析の際の容器内温度が特定成
分の常圧での融点以上で且つ該融点より25℃高い
温度を越えない範囲の温度になつた時点で前記加
圧晶析を終了するようにしている。これは、加圧
晶析終了時点の容器内温度が常圧融点未満では、
後述の要件である固体の部分融解が生じ難く、発
汗洗浄が不充分となり、該融点より25℃高い温度
を越えると固体の部分融解の量が多くなり、不必
要に固体を融解させる事になり、製品収率が低く
なるからである。 上記加圧晶析により、その晶析終了時点では、
殆どが特定成分からなる結晶粒群が生成されてい
る。 次いで、容器内圧力を維持した状態で液相分を
容器外へ排出するようにしているので、容器内に
塊状固体が形成されるようになる。 続いて容器内液圧の断熱的降下による容器内固
体の部分融解を行いつつ該固体の圧搾ならびに融
解液の容器外への排出を行うようにしているの
で、発汗洗浄され、固体製品の精製がなされるよ
うになる。尚、上記固体の部分融解は、排出終了
後の圧力の低下によつて生じるものである。 即ち、固液分離が進むと、容器内の液相の割合
が小さくなり、これに伴つて圧力発生源からの容
器内原料に作用する圧力は一定にもかかわらず、
容器内の液相の圧力は低下し始め、これに伴つて
排出液の圧力も低下し始める。このように圧力低
下し始めると、容器内の状態は、圧力低下に伴い
平衡状態も低圧側に移行するので、結晶の部分融
解が生じる。ここで、この融解を生じさせつつ、
固相分を圧搾する事により(液相分を搾り出す事
により)、液相(不純物を含有)の残留量を少な
くして、製品純度を向上させる。該融解による結
晶洗浄と残留液相中の不純物量の相対的低下を促
進するため、容器内液相に作用する圧力を次第に
低下させる事が必要である。 容器内圧力の低下方法としては、(a)圧力発生源
の圧力を連続的に低下させる方法、(b)圧力発生源
の圧力を段階的に低下させる方法。(c)圧力発生源
の圧力を一定に保持したままで、自然低下させる
方法とがある。(a)、(c)の方法では、容器内圧力が
円滑に低下するため、平衡状態も円滑に移行し、
高純度、高収率が得られ易い。(b)の方法では、容
器内圧力が急激に階段状に低下するため、高圧容
器にシヨツクが与えられるので好ましくない。
又、圧搾は圧力発生源の圧力に依存するから、(c)
が最も高い圧搾圧で結晶が圧搾される事になり、
製品の固相密度が高く(液相分が少なく)、純度
が高くなる。 減圧発汗は前記加圧晶析後の温度依存性が大き
く、純品の常圧融点以下では発汗効果は少ない。 又、前記部分融解および圧搾ならびに融解液の
排出は、容器内の温度および圧力が所定液組成に
相当する状態に達する迄行うようにしているの
で、不必要な固体融解を防止し得、そのため製品
収率を高いものにし得る。 即ち、減圧発汗洗浄が進行するに連れて、容器
内の圧力が低下し、又、断熱減圧時の結晶融解に
よる融解潜熱(吸熱)によつて容器内温度が次第
に低下する(排液温度が低下する)。一方、容器
内の液組成は、部分融解と共に次第に目的物質の
濃度が増大しつつ排液が継続され、同時に結晶が
圧搾される事によつて、結晶粒界の液相は容器外
に絞り出される事になる。 結晶圧搾の結果、容器内の固相分率は次第に高
くなり、ついにはその圧搾条件によつて定まる或
る一定の固液比に達する。 この状態に達すると、容器内製品の純度は、結
晶自体は純粋成分であるから、不純物を含んだ液
相の量によつて一義的に定まる。一方、液相の不
純物濃度は、容器内の温度と圧力の状態によつて
一義的に定まる。 従つて、容器内の温度と圧力が判れば、液相の
不純物濃度即ち製品純度が判る事になる。 そこで、余分な結晶融解とその融解液の排出を
防止する事が製品収率上は好ましいので、容器内
の液相の状態(温度、圧力)が、所定の液組成に
相当する状態に達すると直ちに排液弁を閉じて排
液を終了する。 そのため高収率で且つ高い生産性の元に、高純
度の製品が得られるようになるのである。 (実施例) クレゾール混合物(p−成分80%、m−成分20
%)を原料とし、純度99.5%以上の高純度p−ク
レゾールを生産する事を目標に圧力晶析試験を実
施した。尚、p−クレゾールの常圧での融点は35
℃である。圧力晶析装置は第1図に示したものと
同様である。 下記においてTfは原料供給温度(℃)、Sfは原
料スラリ濃度(%)、Ppは圧搾圧力(Kgf/cm2)、
Pcは晶析圧力(Kgf/cm2)、Tcは晶析終了温度
(℃)、Teは液相分排出終了温度(℃)、Peは液相
分排出終了圧力(Kgf/cm2)、Xeは液相分排出終
了時の液組成(:p−クレゾールの濃度(%))、
Xpは製品純度(%)、Wpは製品収率(製品量/
原料量(%))を示すものであり、それぞれ変化
させた。 前記原料を加熱して完全に融解した後、予備晶
析缶7でTf(℃)に冷却してp−クレゾール結晶
をSf(%)含むスラリに調整し、晶析室4に供給
した。次いで断熱的にPc(Kgf/cm2)迄昇圧し、
晶析させた。昇圧後、晶析室4内の温度が上昇
し、Tc(℃)になつた時点で液相分排出を開始し
た。この排出は晶析室4内をPc(Kgf/cm)に維
持しながら行つた。続いてピストン圧をPc(Kg
f/cm2)に維持したままで晶析室4内の液圧を自
然に低下させる事により、減圧発汗洗浄(固体の
圧搾、部分融解、該融解液排出)を行つた。該発
汗洗浄が進むに連れて、晶析室4内の圧力・温度
が次第に低下した。該温度・圧力がTe(℃)・Pe
(Kgf/cm2)に達すると直ちに排液弁を閉じて排
液を終了した。尚、該終了時点の温度・圧力は、
晶析室4内の液が所定組成Xe(%)に相当するも
のである。次いで、容器内を常圧にして固体状製
品を取り出した。 得られた製品(p−クレゾール)の純度Xp
(%)及び収率Wp(%)を、上記Tf、Sf、Pc、
Pp、Tc、Te、
(Industrial Application Field) The present invention relates to a pressure crystallization method, and more particularly to a pressure crystallization method for separating and obtaining a specific component from a raw material mixture containing the specific component. (Conventional technology) Pressure crystallization has great potential for application to raw material systems that are difficult to separate using conventional distillation or cooling crystallization, is easy to obtain high-purity products, and has high It is a separation and purification technology that has been attracting a lot of attention as the chemical industry has become more sophisticated in recent years because of its easy yield and low energy consumption. The outline of such pressure crystallization method can be found, for example, in the chemical industry.
Volume 50 (1986) Page 331 "Overview of pressure crystallization method and equipment"
It is described in. This will be explained with reference to FIG. 1 (a diagram showing the process flow and the concept of the device). The piston 5 and the lower lid 2 form a crystallization chamber 4 within the pressure vessel 1 . The crystallization chamber 4 and the drain tank 6 are connected by a pipe 9 via a pressure reducing mechanism 10 and a valve 11. Further, the crystallization chamber 4 and the pre-crystallizer 7 are connected by a pipe 13 via a raw material supply pump 8 and a valve 12. In this apparatus, raw materials are fed from a raw material tank 14 to a pre-crystallizer 7, where they are cooled to produce seed crystals for pressure crystallization. This is because when raw materials without seed crystals are subjected to pressure crystallization, the supersaturation pressure is generally relatively high, typically several hundred atmospheres or more, and high pressure is required for initial crystal formation. This is because there is a risk that the slurry containing seed crystals will be supplied, which has the advantage that not only is there no need to worry about such supersaturation pressure, but crystal growth can be expected without nucleation due to pressurization. Next, the raw material is injected into the crystallization chamber 4 from the pipe 13 via the valve 12. When the crystallization chamber 4 is filled with the raw material, the liquid begins to flow out through the overflow pipe 15 having an opening at the tip of the piston, so this is detected, the valves 12 and 16 are closed, and pressurization by the piston 5 is started. . When the raw material liquid is pressurized, crystallization of a specific substance in the raw material progresses, and the inside of the crystallization chamber 4 enters a solid-liquid equilibrium state under high pressure. The solid produced at this time is generally a substance of extremely high purity. Note that the temperature inside the crystallization chamber 4 rises due to the latent heat of solidification generated as solidification progresses, but in the pressure crystallization method, generally, cooling is not performed to prevent this temperature rise, but the pressure is applied adiabatically. will be adopted. Next, when the pressure is increased to a predetermined pressure, crystallization generally completes immediately and a predetermined solid-liquid ratio (saturation state) is reached, so as soon as this pressure is detected, the valve 11 is opened and solid-liquid separation begins. do. Then, with the valve 11 open, the piston 5 is transferred from the hydraulic unit 3.
When the piston continues to descend while maintaining the pressure acting on the crystallization chamber 4, the liquid phase is discharged from the crystallization chamber 4 to the drain tank 6 while the pressure within the crystallization chamber 4 is maintained constant. Further, as the piston 5 continues to descend, the crystal grains in the crystallization chamber 4 are compressed and the remaining liquid between the crystal grains is discharged into the drain tank 6 through the so-called "squeezing action". As the piston 5 continues to descend, the crystal grains are formed into one large lumpy solid product along the shape of the crystallization chamber 4. When the liquid is almost completely separated from the solid in this way, the liquid phase pressure in the crystallization chamber 4, which is connected to the drain tank 6 under atmospheric pressure, gradually decreases, so that the crystal surface Partial melting and so-called "sweating washing" takes place and purification of the bulk solid product takes place. When the pressure of the liquid discharged from the crystallization chamber 4 drops to a predetermined pressure, the piston 5 stops descending, and at the same time the piston starts rising, the high-pressure container 1 also rises, and the solid product is removed from the bottom lid. 2 is taken out from the container 1. This is taken out by a product take-out device (not shown), the high-pressure container 1 is lowered and attached to the lower lid 2, and the process returns to the raw material injection process and the same process is repeated. Prior to the injection of raw materials, the residual liquid in the overflow pipe 15 described above is purged with a gas inert to the product, such as nitrogen gas, to prepare for full liquid detection during injection in the next step. I'll keep it. By repeating the above steps, products are produced continuously. (Problems to be Solved by the Invention) As mentioned above, the pressure crystallization method is a batch process, and the time for one cycle is usually about 2 to 5 minutes, which is a short time. The time spent draining the liquid phase from the high-pressure container after pressure crystallization occupies most of the time. Therefore, when the product yield is low, the amount of liquid phase discharged from the high-pressure container becomes relatively large, the liquid discharge time becomes longer, and the time required for one cycle becomes longer. Production will be lower. Conversely, if the product yield is high,
The amount of liquid phase discharged is relatively small, the liquid discharge time is shortened, the time required for one cycle is also shortened, and the production amount per unit time is increased. For this reason, there has been a demand for measures to increase productivity when producing desired products from the same raw materials using the same pressure crystallizer. On the other hand, the purity required for a product varies depending on its purpose and use, but with the trend toward finer products, higher purity is increasingly required. For example, in the purification of intermediates, the higher the purity, the more
The amount of other raw materials, the amount of side reaction products, the amount of energy required for the reaction in the next step, etc. are reduced, which greatly affects the steps after the next step. The present invention has been made in view of the current situation, and is a method that improves the conventional pressure crystallization method from its operational aspects and can produce high-purity products with high yield and high productivity. It provides: (Means for Solving the Problems) In order to achieve the above problems, the present invention provides a pressure crystallization method having the following configuration. That is, the method of the first claim cools a liquid mixture consisting of two or more components containing a specific component to prepare a slurry containing 5 to 35% of crystals of the specific component, and places the slurry in a high-pressure container. and start adiabatic pressure crystallization in the container, until the temperature inside the container reaches a temperature that is equal to or higher than the melting point of the specific component at normal pressure and does not exceed 25°C higher than the melting point. The pressure crystallization is terminated at the point when
Next, the liquid phase is discharged to the outside of the container while maintaining the pressure inside the container, and then the solid inside the container is partially melted by an adiabatic drop in the liquid pressure inside the container, and the solid is squeezed and the melted liquid is discharged from the container. is discharged until the temperature and pressure inside the container reach a state corresponding to a predetermined liquid composition, and then the inside of the container is brought to normal pressure and a solid product of a specific component is taken out. be. The method according to the second aspect is the pressure crystallization method according to the first aspect, wherein the liquid mixture is obtained by completely melting solid raw materials in advance.
Further, the method according to the third aspect is the pressure crystallization method according to the first aspect, in which the liquid pressure in the container is adiabatically lowered continuously or intermittently. (Function) As described above, in the pressure crystallization method according to the present invention, first, a liquid mixture consisting of two or more components containing a specific component is cooled and adjusted to a slurry containing 5 to 35% of crystals of the specific component. Then, the slurry is supplied into a high-pressure container, and adiabatic pressure crystallization is performed within the container. In this way, the supplied slurry will definitely contain crystals of the specific component that will serve as seed crystals for pressure crystallization. Therefore, high pressure is not required for initial crystal formation during pressurized crystallization. In addition, it has become possible to cause crystal growth without primary nucleation,
Therefore, large crystals are easily formed without producing fine crystals, which facilitates solid-liquid separation after crystallization.
This results in high product yield and purity. Here, the content of specific component crystals in the above raw materials is set at 5 to 35% because if it is less than 5%, the amount of seed crystals is insufficient, causing primary nucleation and resulting in a low product yield. If it exceeds 35%, it will be difficult to supply the container, and since the amount of crystals produced during pressure crystallization will be low, the temperature rise due to the latent heat of solidification generated as solidification progresses will be low. This is because it becomes impossible to secure the pressure crystallization end temperature, which is a requirement described later. In addition, the reason why the liquid mixture is cooled to adjust the above content rate is to ensure that crystals of specific components (high-purity seed crystals) that do not contain impurities are generated, resulting in higher product purity. The purpose is to make it into something. If the original raw material to be subjected to pressure crystallization is a solid-liquid mixture containing solids (crystals) at room temperature, the liquid mixture to be subjected to such cooling must be prepared by completely melting the mixture. be. If it is a liquid at room temperature, it is the liquid itself. When the original raw material is a solid-liquid mixture at room temperature, the reason why it is completely melted and then cooled as described above even though it contains crystals is as follows. That is, since the crystals in the original raw material are not generated under controlled conditions, the crystals often contain impurities. Therefore, when the original raw material is supplied and crystallized under pressure, the crystals act as seed crystals, but
Impurities may remain in the product, resulting in a decrease in product purity. On the other hand, if the original raw material is melted and then cooled, crystals of the specific component (high-purity seed crystals) containing no impurities can be generated. Further, when the original raw material is solid at room temperature, the reason why it is cooled after completely melting is to generate high-purity seed crystals, as described above. Regarding cooling in this case, after melting, the material is cooled to a predetermined temperature, but this temperature is inevitably higher than room temperature. Next, when the temperature inside the container during the pressure crystallization reaches a temperature that is equal to or higher than the melting point of the specific component at normal pressure and does not exceed a temperature 25°C higher than the melting point, the pressure crystallization is carried out. I'm trying to finish it. This means that if the temperature inside the container at the end of pressure crystallization is below the melting point at normal pressure,
Partial melting of the solid, which is a requirement described later, is difficult to occur, and sweat cleaning becomes insufficient.If the temperature exceeds 25℃ higher than the melting point, the amount of partial melting of the solid increases, resulting in unnecessary melting of the solid. This is because the product yield becomes low. By the above-mentioned pressure crystallization, at the end of the crystallization,
A crystal grain group consisting mostly of specific components is generated. Next, since the liquid phase is discharged outside the container while maintaining the pressure inside the container, a lumpy solid is formed inside the container. Subsequently, the solid inside the container is partially melted by an adiabatic drop in the liquid pressure inside the container, and the solid is squeezed and the melted liquid is discharged outside the container, so that the solid product is washed by sweat and purified. It will be done. Incidentally, the above-mentioned partial melting of the solid occurs due to a decrease in pressure after completion of discharge. In other words, as solid-liquid separation progresses, the proportion of liquid phase in the container decreases, and as a result, even though the pressure acting on the raw material in the container from the pressure source remains constant,
The pressure of the liquid phase in the container begins to decrease, and the pressure of the discharged liquid begins to decrease accordingly. When the pressure begins to decrease in this manner, the equilibrium state within the container shifts to the low pressure side as the pressure decreases, resulting in partial melting of the crystals. Here, while causing this melting,
By squeezing out the solid phase (by squeezing out the liquid phase), the amount of residual liquid phase (containing impurities) is reduced and product purity is improved. In order to promote crystal cleaning by the melting and a relative reduction in the amount of impurities in the remaining liquid phase, it is necessary to gradually reduce the pressure acting on the liquid phase in the container. Methods for lowering the pressure inside the container include (a) a method of continuously lowering the pressure of the pressure source, and (b) a method of lowering the pressure of the pressure source in stages. (c) There is a method of naturally lowering the pressure of the pressure source while keeping it constant. In methods (a) and (c), the pressure inside the container decreases smoothly, so the equilibrium state also transitions smoothly,
High purity and high yield can be easily obtained. In method (b), the pressure inside the container drops rapidly in a stepwise manner, which gives a shock to the high-pressure container, which is not preferable.
Also, since squeezing depends on the pressure of the pressure source, (c)
The crystals will be squeezed with the highest compression pressure,
The product has a high solid phase density (low liquid phase content) and high purity. Reduced pressure sweating is highly dependent on the temperature after the pressure crystallization, and the sweating effect is small below the normal pressure melting point of the pure product. In addition, since the partial melting and squeezing and discharge of the melted liquid are performed until the temperature and pressure within the container reach a state corresponding to a predetermined liquid composition, unnecessary solid melting can be prevented, and therefore the product High yields can be obtained. In other words, as decompression sweat cleaning progresses, the pressure inside the container decreases, and the temperature inside the container gradually decreases due to latent heat of fusion (endotherm) due to crystal melting during adiabatic depressurization (the temperature of the drained liquid decreases). do). On the other hand, the liquid composition inside the container is such that the concentration of the target substance gradually increases with partial melting, and draining continues, and at the same time, the crystals are squeezed, so that the liquid phase at the grain boundaries is squeezed out of the container. It will happen. As a result of crystal squeezing, the solid phase fraction within the container gradually increases, and finally reaches a certain solid-liquid ratio determined by the squeezing conditions. When this state is reached, the purity of the product in the container is uniquely determined by the amount of the liquid phase containing impurities, since the crystal itself is a pure component. On the other hand, the impurity concentration in the liquid phase is uniquely determined by the temperature and pressure conditions inside the container. Therefore, if the temperature and pressure inside the container are known, the concentration of impurities in the liquid phase, that is, the purity of the product can be determined. Therefore, it is preferable in terms of product yield to prevent excess crystal melting and discharge of the melt, so when the liquid phase state (temperature, pressure) in the container reaches a state corresponding to a predetermined liquid composition, Immediately close the drain valve to finish draining. Therefore, high purity products can be obtained with high yield and high productivity. (Example) Cresol mixture (p-component 80%, m-component 20%
%) as a raw material, a pressure crystallization test was conducted with the goal of producing high-purity p-cresol with a purity of 99.5% or higher. Furthermore, the melting point of p-cresol at normal pressure is 35
It is ℃. The pressure crystallizer is similar to that shown in FIG. In the following, Tf is the raw material supply temperature (°C), Sf is the raw material slurry concentration (%), Pp is the compression pressure (Kgf/cm 2 ),
Pc is the crystallization pressure (Kgf/cm 2 ), Tc is the crystallization end temperature (°C), Te is the liquid phase discharge end temperature (°C), Pe is the liquid phase discharge end pressure (Kgf/cm 2 ), and Xe is the liquid composition at the end of liquid phase discharge (: p-cresol concentration (%)),
Xp is product purity (%), Wp is product yield (product amount/
The amount of raw materials (%) was changed. After heating the raw material to completely melt it, it was cooled to Tf (°C) in a pre-crystallizer 7 to prepare a slurry containing Sf (%) of p-cresol crystals, and the slurry was supplied to the crystallization chamber 4. Next, the pressure was increased adiabatically to Pc (Kgf/cm 2 ),
crystallized. After the pressure was increased, the temperature inside the crystallization chamber 4 rose, and when it reached Tc (°C), discharge of the liquid phase was started. This discharge was performed while maintaining the inside of the crystallization chamber 4 at Pc (Kgf/cm). Next, the piston pressure is Pc (Kg
By naturally lowering the liquid pressure in the crystallization chamber 4 while maintaining the temperature at a temperature of 1.5 f/cm 2 ), vacuum sweat cleaning (squeezing of solids, partial melting, and discharge of the molten liquid) was performed. As the perspiration cleaning progressed, the pressure and temperature inside the crystallization chamber 4 gradually decreased. The temperature and pressure are Te (℃) and Pe
(Kgf/cm 2 ), the drain valve was immediately closed to complete draining. The temperature and pressure at the end of the process are as follows:
The liquid in the crystallization chamber 4 corresponds to a predetermined composition of Xe (%). Next, the inside of the container was brought to normal pressure and the solid product was taken out. Purity of the obtained product (p-cresol) Xp
(%) and yield Wp (%) above Tf, Sf, Pc,
Pp, Tc, Te,

【表】【table】

【表】【table】

【表】 Pe、Xeと共に第1表及び第2表に示す。 第1〜2表から判るように、No.1〜3は原料ス
ラリ濃度Sfが高過ぎるので加圧晶析量が相対的に
少なく、そのため減圧過程での発汗精製による母
液純度のアツプが困難であり、製品純度Xpが達
成し難い。 No.4、6、7及び9は本発明に係る方法であ
り、No.5及び8に比べて液相分排出終了時の液組
成Xeが、他の諸条件の元で適度に設定されてい
る事を示している。尚、No.7は純度Xpが99.7%
と目標値よりも高過ぎる為、収率Wpが他の条件
のものよりも1%程度低くなつている。 No.11は、純度Xpが100%と最高の値を示してい
るが、原料スラリ濃度Sfが0である為、収率Wp
が他の条件のものに比して極端に低くなつてい
る。 (発明の効果) 本発明に係る圧力晶析方法によれば、高い製品
収率および製品純度が得られるようになる。
[Table] Shown in Tables 1 and 2 together with Pe and Xe. As can be seen from Tables 1 and 2, in Nos. 1 to 3, the raw material slurry concentration Sf was too high, so the amount of pressurized crystallization was relatively small, and therefore it was difficult to increase the purity of the mother liquor through sweat purification during the depressurization process. Yes, product purity Xp is difficult to achieve. Nos. 4, 6, 7, and 9 are methods according to the present invention, and compared to Nos. 5 and 8, the liquid composition Xe at the end of liquid phase discharge is set appropriately under other conditions. It shows that there is. In addition, No. 7 has a purity Xp of 99.7%.
Since this value is too high than the target value, the yield Wp is about 1% lower than that under other conditions. No. 11 has the highest purity Xp of 100%, but since the raw material slurry concentration Sf is 0, the yield Wp
is extremely low compared to those under other conditions. (Effects of the Invention) According to the pressure crystallization method according to the present invention, high product yield and product purity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、圧力晶析方法に係るプロセスフロー
及び装置の概念を示す図である。 1…圧力容器、2…下蓋、3…油圧ユニツト、
4…晶析室、5…ピストン、6…排液タンク、7
…予備晶析缶、8…原料供給ポンプ、9,13…
配管、10…減圧機構、11,12,16…弁、
14…原料タンク、15…オーバーフロー管。
FIG. 1 is a diagram showing a process flow and a concept of an apparatus related to a pressure crystallization method. 1...Pressure vessel, 2...Lower lid, 3...Hydraulic unit,
4...Crystallization chamber, 5...Piston, 6...Drainage tank, 7
... Pre-crystallization can, 8... Raw material supply pump, 9, 13...
Piping, 10... pressure reduction mechanism, 11, 12, 16... valve,
14... Raw material tank, 15... Overflow pipe.

Claims (1)

【特許請求の範囲】 1 特定成分を含む2種以上の成分からなる液体
状混合物を冷却して特定成分の結晶を5〜35%含
むスラリに調整し、該スラリを高圧容器内に供給
し、該容器内にて断熱的な加圧晶析を開始し、該
容器内温度が特定成分の常圧での融点以上で且つ
該融点より25℃高い温度を越えない範囲の温度に
なつた時点で前記加圧晶析を終了し、次いで容器
内圧力を維持した状態で液相分を容器外へ排出
し、続いて容器内液圧の断熱的降下による容器内
固体の部分融解を行いつつ該固体の圧搾ならびに
融解液の容器外への排出を、容器内の温度および
圧力が所定液組成に相当する状態に達する迄行つ
た後、容器内を常圧にして特定成分の固体状製品
を取り出すことを特徴とする圧力晶析方法。 2 前記液体状混合物が、固体状態の原料を予め
完全に融解したものである第1請求項に記載の圧
力晶析方法。 3 容器内液圧の断熱的降下を連続的または断続
的に行う第1請求項に記載の圧力晶析方法。
[Scope of Claims] 1. A liquid mixture consisting of two or more components containing a specific component is cooled to prepare a slurry containing 5 to 35% of crystals of the specific component, and the slurry is supplied into a high-pressure container, When adiabatic pressure crystallization is started in the container, and the temperature inside the container reaches a temperature that is equal to or higher than the melting point of the specific component at normal pressure and does not exceed 25°C higher than the melting point. After completing the pressure crystallization, the liquid phase is discharged from the container while maintaining the pressure inside the container, and then the solid inside the container is partially melted by an adiabatic drop in the liquid pressure inside the container. After squeezing and discharging the melted liquid out of the container until the temperature and pressure inside the container reach a state corresponding to a predetermined liquid composition, the inside of the container is brought to normal pressure and the solid product of the specific component is taken out. A pressure crystallization method characterized by: 2. The pressure crystallization method according to claim 1, wherein the liquid mixture is obtained by completely melting solid raw materials in advance. 3. The pressure crystallization method according to claim 1, wherein the liquid pressure in the container is adiabatically lowered continuously or intermittently.
JP29180588A 1988-11-17 1988-11-17 Pressure crystallization method Granted JPH02139001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29180588A JPH02139001A (en) 1988-11-17 1988-11-17 Pressure crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29180588A JPH02139001A (en) 1988-11-17 1988-11-17 Pressure crystallization method

Publications (2)

Publication Number Publication Date
JPH02139001A JPH02139001A (en) 1990-05-29
JPH0418882B2 true JPH0418882B2 (en) 1992-03-30

Family

ID=17773651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29180588A Granted JPH02139001A (en) 1988-11-17 1988-11-17 Pressure crystallization method

Country Status (1)

Country Link
JP (1) JPH02139001A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766059B2 (en) * 1990-09-12 1998-06-18 財団法人石油産業活性化センター Method for separating 2,7-dimethylnaphthalene

Also Published As

Publication number Publication date
JPH02139001A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
US4877445A (en) Method for producing a metal from its halide
JPS58181834A (en) Refinement of metal
JPH0273929A (en) Purification of gallium by partial solidification
EP0273509A1 (en) Process- and apparatus for recovering a pure substance from a liquid mixture by crystallization
JPH0418882B2 (en)
JP2766059B2 (en) Method for separating 2,7-dimethylnaphthalene
US4966978A (en) Process for separating indole in refined form
JPH0275303A (en) Separation of substance by cooling crystallization
JPH0417682B2 (en)
JPH0356761B2 (en)
JPH05331079A (en) Separation and purification of 2,6-diisoproylnaphthalene
JPH06234695A (en) Method for purifying fatty acid
JPH0268101A (en) Pressure crystallization process
JPH0412162B2 (en)
JP3198651B2 (en) Pressure crystallization separation method for polymorphous crystalline materials
JPH0221902A (en) Method for crystallization under pressure
JPH02126903A (en) Pressure crystallization method
JPH02157003A (en) Method for purifying substances by pressure crystallization process
JPH0119366B2 (en)
JPH0779924B2 (en) Pressure crystallizer
JPH02214503A (en) Separation by cooled crystallization
JPH0774172B2 (en) Method for separating 2,6-dimethylnaphthalene
JPH0355163B2 (en)
JPH06254303A (en) Batch pressure crystallizing method
JPH0487601A (en) Method and device for continuously separating and refining material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees