JPH02157003A - Method for purifying substances by pressure crystallization process - Google Patents

Method for purifying substances by pressure crystallization process

Info

Publication number
JPH02157003A
JPH02157003A JP30907588A JP30907588A JPH02157003A JP H02157003 A JPH02157003 A JP H02157003A JP 30907588 A JP30907588 A JP 30907588A JP 30907588 A JP30907588 A JP 30907588A JP H02157003 A JPH02157003 A JP H02157003A
Authority
JP
Japan
Prior art keywords
pressure
liquid phase
mixture
container
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30907588A
Other languages
Japanese (ja)
Other versions
JPH0779922B2 (en
Inventor
Masami Takao
高尾 政己
Ichiji Hatakeyama
畠山 一司
Harumasa Tanabe
田辺 晴正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30907588A priority Critical patent/JPH0779922B2/en
Publication of JPH02157003A publication Critical patent/JPH02157003A/en
Publication of JPH0779922B2 publication Critical patent/JPH0779922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To raise the purity of products by taking a mixture out of a high pressure vessel and effecting thereafter the separation of liquid phase therefrom. CONSTITUTION:A mixture of cresol (80% p-cresol, remainder being m-cresol) is cooled to 15 deg.C in a preliminary crystallization tank to form it into a slurry, which slurry is then fed into a high pressure vessel so as to be pressurized up to 1,500atm. to effect crystallization, following which its liquid phase is discharged under 1,500atm. to the outside until half of the liquid has been discharged, whereupon the discharge of liquid phase is stopped and the pressure in the vessel is reduced to atmospheric pressure, whereby the mixture in the vessel(nearly a slurry) is taken out of the vessel to be transferred to a centrifuge, where the liquid phase is separated and thereafter the solids are recovered. The solids thus obtained are p-cresol of 99.85% purity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧力晶析法を用いた物質の精製法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for purifying substances using pressure crystallization.

(従来の技術) 圧力晶析法は、従来の蒸留法や冷却晶析法では分離困難
な原料系への適用に大きな可能性を有している事、高純
度の製品が得易い事、高収率が得易い事、及び、エネル
ギ消費量が少ない事等から、近年の化学工業のファイン
化に伴って大きな注目を集めている分離精製技術であり
、実用されてきている。
(Conventional technology) Pressure crystallization has great potential for application to raw material systems that are difficult to separate using conventional distillation or cooling crystallization, is easy to obtain high-purity products, and has high Due to its easy yield and low energy consumption, it is a separation and purification technology that has been attracting a lot of attention as the chemical industry has become increasingly refined in recent years, and has been put into practical use.

かかる圧力晶析法の概要は、例えば、化学工業50巻(
1986年)331頁「圧力晶析法と装置の概要」に記
載されている。これを第1図(プロセスフロー及び装置
の概念を示す図)によって説明すると、圧力容器(1)
には、下方に蓋体(下蓋)(2)が設けられ、ピストン
(5)が油圧ユニット(3)の作動により容器(1)内
にて上下動するように設けられており、このピストン(
5)と下蓋(2)とによって圧力容器(1)内に晶析室
(4)が形成される。この晶析室(4)と排液タンク(
6)とは、減圧機構00)及び弁(11)を介して配管
(9)により連結されている。又、晶析室(4)と予備
晶析缶(7)とは、原料供給ポンプ(8)、弁0りを介
して配管03)により連結されている。
An overview of this pressure crystallization method can be found, for example, in Kagaku Kogyo Volume 50 (
(1986), p. 331, "Outline of pressure crystallization method and apparatus". To explain this using Figure 1 (a diagram showing the process flow and the concept of the device), the pressure vessel (1)
A lid body (lower lid) (2) is provided below, and a piston (5) is provided to move up and down within the container (1) by the operation of a hydraulic unit (3). (
5) and the lower lid (2) form a crystallization chamber (4) within the pressure vessel (1). This crystallization chamber (4) and the drain tank (
6) is connected by a pipe (9) via a pressure reducing mechanism 00) and a valve (11). Further, the crystallization chamber (4) and the pre-crystallizer (7) are connected via a raw material supply pump (8) and a valve (03) via a pipe (03).

この装置において、原料は原料タンク04より予備晶析
缶(7)に送給され、ここで冷却されて圧力晶析のため
の種結晶を生成する。これは種結晶を含まないままの原
料を圧力晶析にかけると、圧力晶析では過飽和圧が一般
的に数百気圧以上と比較的高い場合が多く、初期結晶生
成の為に高圧力が必要となる恐れがあるためであり、種
結晶を含んだスラリ状態で給液すると、かかる過飽和圧
の心配がないばかりか加圧により核発生を伴わずに結晶
の成長が期待出来る利点がある。
In this apparatus, raw materials are fed from a raw material tank 04 to a pre-crystallizer (7), where they are cooled to produce seed crystals for pressure crystallization. This is because when raw materials without seed crystals are subjected to pressure crystallization, the supersaturation pressure is generally relatively high, typically several hundred atmospheres or more, and high pressure is required for initial crystal formation. This is because there is a risk that the slurry containing seed crystals will be supplied, which has the advantage that not only is there no need to worry about such supersaturation pressure, but crystal growth can be expected without nucleation due to pressurization.

次に、配管03)から弁02)を介して原料を晶析室(
4)に注入する。晶析室(4)内に原料が充満すると、
ピストン先端部に開口を有するオーバーフロー管(15
1を通って液流出が始まるので、これを検知して弁02
)、 06)を閉じてピストン(5)による加圧を開始
する。原料液を加圧すると原料中の特定物質の結晶化が
進行して、晶析室(4)内は高圧下の固液平衡状態とな
る。このとき生成する固体は一般に極めて高純度の物質
である。尚、同化の進行に伴って発ηユする固化潜熱に
より、晶析室(4)内の温度は上昇するが、圧力晶析法
では一般にこの温度上昇防止の為の冷却は行わず、断熱
的に加圧する方法が採用される。昇温後の到達温度即ち
固液分離開始温度は、製品の純度、収率に影響を及ぼす
から、これは原料混合物の比熱、同化潜熱等を考慮して
給液温度により調整する。
Next, the raw material is passed from pipe 03) to valve 02) into the crystallization chamber (
4) Inject. When the crystallization chamber (4) is filled with raw materials,
An overflow pipe (15) with an opening at the tip of the piston
As the liquid begins to flow out through valve 02, this is detected and valve 02 is opened.
), 06) are closed and pressurization by the piston (5) is started. When the raw material liquid is pressurized, crystallization of a specific substance in the raw material progresses, and the inside of the crystallization chamber (4) becomes in a solid-liquid equilibrium state under high pressure. The solid produced at this time is generally a substance of extremely high purity. Note that the temperature inside the crystallization chamber (4) rises due to the latent heat of solidification generated as assimilation progresses, but in the pressure crystallization method, cooling is generally not performed to prevent this temperature rise, and instead an adiabatic A method of applying pressure is adopted. The temperature reached after the temperature rise, that is, the temperature at which solid-liquid separation starts, affects the purity and yield of the product, so this is adjusted by the temperature of the supplied liquid, taking into consideration the specific heat, latent heat of assimilation, etc. of the raw material mixture.

次に、所定の圧力まで昇圧すると、−船釣には直ちに所
定の固液比率(飽和状態)に達するので、この圧力を検
知すると直ちに弁01)を開き、油圧ユニット(3)か
らピストン(5)に作用する圧力を保持したままピスト
ンの下降を続けると、晶析室(4)内の圧力は一定に保
持された状態で液相が晶析室(4)から排液タンク(6
)に排出される。更にピストン(5)の下降を継続する
と晶析室(4)内の結晶粒群は加圧圧搾され、結晶粒間
の残留液体は所謂「絞り出し作用」を受けて排液タンク
(6)に排出される。
Next, when the pressure is increased to a predetermined pressure, the predetermined solid-liquid ratio (saturation state) is immediately reached. ), the pressure inside the crystallization chamber (4) remains constant and the liquid phase flows from the crystallization chamber (4) to the drain tank (6).
) is discharged. Further, as the piston (5) continues to descend, the crystal grains in the crystallization chamber (4) are compressed and the remaining liquid between the crystal grains is discharged into the drain tank (6) through the so-called "squeezing action". be done.

ピストン(5)の下降が更に続くと、結晶粒群は晶析室
(4)の形状に沿って一個の大きな塊状固体製品へと成
形されていく。この様にして液体を固体から略完全に分
離する段階になると、大気圧下の排液タンク(6)に連
通している晶析室(4)内の液相圧力は次第に低下して
いくため、結晶表面は部分的に融解し、所謂「発汗洗浄
」が行われ、塊状固体製品の精製がなされる。
As the piston (5) continues to descend further, the crystal grains are formed into one large lumpy solid product along the shape of the crystallization chamber (4). When the liquid is almost completely separated from the solid in this way, the liquid phase pressure in the crystallization chamber (4) communicating with the drain tank (6) under atmospheric pressure gradually decreases. , the crystal surface is partially melted, a so-called "sweating wash" is carried out, and the bulk solid product is purified.

晶析室(4)から排出される排液の圧力が所定の圧力に
まで低下すると、ピストン(5)の下降を停止し、同ピ
ストンの上昇を開始すると共に高圧容器(1)も上昇さ
せると、固体製品は下蓋(2)上に載置された状態で容
器(1)から取り出される。これを製品取り出し装置(
図示せず)によって取り出し、高圧容器(1)を下降さ
せて下蓋(2)に装着し、以下原料の注入工程に戻り、
同様の工程を繰り返す事になる。尚、原料の注入に先立
ち、前述のオーバーフロー管θω内の残液を、窒素ガス
等の製品に対して不活性なガスでパージし、次工程の注
入時の満液検知の為の準備をしておく。
When the pressure of the waste liquid discharged from the crystallization chamber (4) decreases to a predetermined pressure, the piston (5) stops descending, and at the same time the piston begins to rise, the high pressure container (1) also rises. , the solid product is removed from the container (1) while being placed on the lower lid (2). This is the product removal device (
(not shown), lower the high-pressure container (1) and attach it to the lower lid (2), and then return to the raw material injection process.
The same process will be repeated. Before injecting the raw material, purge the remaining liquid in the overflow pipe θω with a gas inert to the product, such as nitrogen gas, to prepare for full liquid detection during injection in the next process. I'll keep it.

以上の工程を繰り返すことによって製品を連続的に生産
する。
By repeating the above steps, products are produced continuously.

(発明が解決しようとする課題) 以上に述べたように、従来の圧力晶析方法は、高圧容器
内にて原料を加圧して晶析さゼて固液共存状態の混合物
と成し、続いて加圧下で液相分を排出して固液分離し、
更に該容器内の混合物(残留液体を含む結晶粒群)を圧
搾することにより、該容器内に特定成分の固体状製品を
形成さゼた後、該製品を取り出すものである。
(Problems to be Solved by the Invention) As described above, in the conventional pressure crystallization method, raw materials are pressurized in a high-pressure container to crystallize to form a solid-liquid mixture, and then The liquid phase is discharged under pressure and solid-liquid separation is carried out.
Furthermore, by squeezing the mixture (crystal grains containing residual liquid) in the container, a solid product of specific components is formed in the container, and then the product is taken out.

かかる圧力晶析方法により得られる固体状製品の状態に
関する模式図を第2図に示す。この図に示す如く、液体
08)(図中、黒塗り部分)が製品内部の結晶粒09間
に閉し込められて残留している。
A schematic diagram of the state of a solid product obtained by such a pressure crystallization method is shown in FIG. As shown in this figure, the liquid 08) (black portion in the figure) remains trapped between the crystal grains 09 inside the product.

この残留液体08)は、供給される原料や圧力晶析の各
工程の操作条件により一義的に定まる組成を存するので
、必然的に特定成分以外の成分(不純物)を含むもので
ある。そのため、固体状製品を完全な純粋物質になし得
ない。又、該製品は高度に圧搾された塊となっているの
で、結晶粒面同志の結合力が強く、そのため該製品中の
残留液体θB)を除去し分離する事は極めて困難である
。従って従来の圧力晶析方法には製品の高純度化に自ず
と限界がある。これは、製品の高純度化が非常に要求さ
れる圧力晶析方法において極めて重大な問題点である。
This residual liquid 08) has a composition uniquely determined by the supplied raw materials and the operating conditions of each step of pressure crystallization, and therefore inevitably contains components (impurities) other than the specific components. Therefore, solid products cannot be completely pure substances. Furthermore, since the product is a highly compressed mass, the bonding force between the crystal grain surfaces is strong, and therefore it is extremely difficult to remove and separate the residual liquid θB) in the product. Therefore, conventional pressure crystallization methods naturally have limitations in achieving high purity products. This is an extremely serious problem in pressure crystallization methods that require extremely high product purity.

上記製品純度の限界を打破すべく、固液分離工程の一部
を封入気体または供給気体を用いて行う圧力晶析方法も
提案されている。この方法は液相分を気体で置換する事
により液相分を排出するものであり、結晶粒間の残留液
体の量を減少さ・U得る。然しなから、この方法は、圧
力を千数百気圧〜数千気圧にする必要があるので、従来
よりも非常に高い耐圧強度を存する高圧容器が必要とな
り、又、そのために高圧容器形状が制限される等の装置
上の問題点がある。尚、これよりも低圧で行う事もでき
るが、この場合は結晶群中での液流路長さが大きくなる
ので、固液分離時間が長くなり、その結果として処理能
力が低下し、生産量の低下を招くことになる。又、気体
の吹き抜は現象が発生し易くなり、その結果として製品
純度が低下することになる。
In order to overcome the above-mentioned product purity limit, a pressure crystallization method has also been proposed in which part of the solid-liquid separation step is performed using an enclosed gas or a supplied gas. This method discharges the liquid phase by replacing it with gas, thereby reducing the amount of liquid remaining between the crystal grains. However, this method requires a pressure of several hundred to several thousand atmospheres, which requires a high-pressure container with much higher pressure resistance than conventional methods, and this also limits the shape of the high-pressure container. There are problems with the equipment, such as Note that it is possible to perform the process at a lower pressure than this, but in this case, the length of the liquid flow path in the crystal group increases, so the solid-liquid separation time becomes longer, resulting in a decrease in processing capacity and production volume. This will lead to a decrease in In addition, gas blowing tends to cause phenomena, resulting in a decrease in product purity.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来のものがもつ以上のような問題点を解
消し、高圧容器の耐圧強度の」−Hを要することなく、
又、生産量の低下を招くことなく、従来の圧力晶析方法
での製品純度の限界を打破し得る圧力晶析法を用いた物
質の精製法を提供しようとするものである。
The present invention has been made with attention to these circumstances, and its purpose is to solve the above-mentioned problems of the conventional ones, and to improve the pressure resistance of the high-pressure container without requiring -H.
Another object of the present invention is to provide a method for purifying a substance using pressure crystallization, which can overcome the limits of product purity in conventional pressure crystallization without reducing production.

(課題を解決するための手段) 上記の目的を達成するために、本発明は次のような構成
の圧力晶析法を用いた物質の精製法としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for purifying a substance using a pressure crystallization method having the following configuration.

即ち、第1請求項に記載の方法は、゛特定成分を含む2
種以上の成分から成る原料を高圧容器に供給し、該容器
内原料を加圧することにより晶析させて固液共存状態の
混合物と成し、続いて加圧下で高圧容器外への液相分の
排出を開始し、高圧容器内混合物が塊状化する前に該排
出を停止し、次いで該混合物を高圧容器外に取り出し、
更に該容器外混合物に液相分の分離処理を施し、特定成
分の固体を回収することを特徴とする圧力晶析法を用い
た物質の精製法である。
That is, the method according to the first claim provides ``2 containing a specific component.
A raw material consisting of more than one component is supplied to a high-pressure container, and the raw material in the container is pressurized to crystallize it into a mixture in a solid-liquid coexistence state, and then the liquid phase is transferred to the outside of the high-pressure container under pressure. start discharging, stop the discharging before the mixture in the high-pressure container becomes agglomerated, and then take out the mixture outside the high-pressure container,
This is a substance purification method using a pressure crystallization method, which is characterized in that the mixture outside the container is subjected to a liquid phase separation treatment and solids of specific components are recovered.

第2請求項に記載の方法は、前記高圧容器外混合物の液
相分の分離処理をした後、更に溶媒洗浄を施し、該洗浄
後に特定成分の固体を回収することを特徴とする請求 用いた物質の精製法である。
The method according to claim 2 is characterized in that after the liquid phase of the mixture outside the high-pressure container is separated, solvent washing is further performed, and solids of specific components are recovered after the washing. It is a method of purifying substances.

第3請求項に記載の方法は前記高圧容器外混合物の液相
分の分離処理を、液相分を気体で置換することにより行
う第1請求項又は第2請求項に記載の圧力晶析法を用い
た物質の精製法である。
The method according to claim 3 is the pressure crystallization method according to claim 1 or 2, in which the liquid phase of the mixture outside the high-pressure container is separated by replacing the liquid phase with gas. This is a method for purifying substances using

第4請求項に記載の方法は高圧容器外混合物を濾過する
事により前記置換を行う第3請求項に記載の圧力晶析法
を用いた物質の精製法である。
The method according to the fourth aspect is a method for purifying a substance using the pressure crystallization method according to the third aspect, in which the substitution is performed by filtering the mixture outside the high-pressure container.

第5請求項に記載の方法は、高圧容器外混合物を遠心分
離処理する事により前記置換を行う第3請求項に記載の
圧力晶析法を用いた物質の精製法である。
The method according to claim 5 is a method for purifying a substance using the pressure crystallization method according to claim 3, in which the substitution is performed by centrifuging the mixture outside the high-pressure container.

第6請求項に記載の方法は、前記濾過を真空濾過器で行
う第4請求項に記載の圧力晶析法を用いた物質の精製法
である。
The method according to claim 6 is a method for purifying a substance using the pressure crystallization method according to claim 4, in which the filtration is performed using a vacuum filter.

第7請求項に記載の方法は、前記濾過を加圧気体を用い
て行う第4請求項に記載の圧力晶析法を用いた物質の精
製法である。
The method according to claim 7 is a method for purifying a substance using the pressure crystallization method according to claim 4, in which the filtration is performed using pressurized gas.

(作 用) 本発明に係る圧力晶析方法は、以上説明したように、高
圧容器内原料を加圧晶析させて固液共存状態の混合物と
成し、続いて加圧下で高圧容器外への液相分の排出を開
始し、高圧容器内混合物が塊状化する前に該排出を停止
するようにしている。このようにすると液相分の一部乃
至は殆どが高圧容器外へ排出されるが、該排出後の高圧
容器内混合物は固い塊ではなく、スラリ状乃至は軟質状
のものとなる。
(Function) As explained above, in the pressure crystallization method according to the present invention, the raw material in the high-pressure container is crystallized under pressure to form a mixture in a solid-liquid coexistence state, and then the material is transferred under pressure to the outside of the high-pressure container. The liquid phase of the container is started to be discharged, and the discharge is stopped before the mixture in the high-pressure container becomes lumpy. In this way, part or most of the liquid phase is discharged to the outside of the high-pressure container, but the mixture in the high-pressure container after the discharge is not a solid mass but becomes a slurry or a soft material.

次いでかかる高圧容器内混合物を高圧容器外に取り出す
ようにしている。該高圧容器外混合物は、必然的にスラ
リ状乃至は軟質状のものであるので、結晶同志の結合力
が弱く、そのため混合物中の残留液体を除去し分離する
事は極めて容易なものである。
Then, the mixture in the high-pressure container is taken out of the high-pressure container. Since the mixture outside the high-pressure container is necessarily in the form of a slurry or a soft substance, the bonding force between the crystals is weak, and therefore it is extremely easy to remove and separate the residual liquid in the mixture.

かかる容器外混合物に液相分の分離処理を施し、特定成
分の固体を回収するようにしている。このように液相分
の分離処理は容器外で行われるので、大気圧下でなし得
、そのため機械的な圧搾分離法に限定されることなく、
最も効果的な分離処理を選択することが可能となる。又
、上記混合物は前記の如く残留液体の除去・分離が極め
て容易なものである。故に、この分離処理により、液相
分の殆ど全てを分離し除去し得るようになる。従って、
回収される特定成分の固体(製品)の純度を高くし得、
従来の圧力晶析方法での製品純度の限界を打破し得るよ
うになる。
The mixture outside the container is subjected to a liquid phase separation treatment to recover the solids of specific components. Since the liquid phase separation process is performed outside the container, it can be performed under atmospheric pressure, and is therefore not limited to mechanical compression separation methods.
It becomes possible to select the most effective separation process. Further, as mentioned above, the residual liquid of the above mixture is extremely easy to remove and separate. Therefore, this separation process makes it possible to separate and remove almost all of the liquid phase. Therefore,
The purity of the solid (product) of the specific component to be recovered can be increased,
It becomes possible to overcome the limits of product purity in conventional pressure crystallization methods.

又、第2請求項に記載の方法は、前記高圧容器外混合物
の液相分の分離処理をした後、更に溶媒洗浄を施し、該
洗浄後に特定成分の固体を回収するようにしているので
、より確実に高純度化し得るようになる。
Furthermore, in the method according to the second claim, after the liquid phase of the mixture outside the high-pressure container is separated, solvent washing is further performed, and solids of specific components are recovered after the washing. High purity can be achieved more reliably.

以上に記述した方法は、当然に高圧容器の耐圧強度の上
昇を要することなく、又、生産量の低下を招くことなく
行い得るものである。
Naturally, the method described above can be carried out without requiring an increase in the pressure resistance of the high-pressure container and without causing a decrease in production.

本発明に係る方法において、前記高圧容器外混合物の液
相分の分離処理は、液相分を気体で置換する方法により
行うことができ、該置換法によるのが望ましい。該置換
法は他の方法よりも容易に実施し得、且つ液相分の分離
量を高め得るからである。
In the method according to the present invention, the separation treatment for the liquid phase of the mixture outside the high-pressure container can be carried out by a method of replacing the liquid phase with a gas, and it is preferable to use this replacement method. This is because the substitution method is easier to implement than other methods and can increase the amount of liquid phase separated.

上記置換は、より具体的には濾過法や遠心分離法により
行えばよい。
More specifically, the above substitution may be performed by a filtration method or a centrifugation method.

この濾過法は真空濾過器を用いる方法か、或いは加圧気
体を用いる方法によるのが好ましい。これは、液相分の
分離速度が大きくなり、生産量が向上されるようになる
からである。両者の選択は結晶の形状および寸法により
決められる。
This filtration method is preferably a method using a vacuum filter or a method using pressurized gas. This is because the separation rate of the liquid phase increases, and the production amount is improved. The choice between the two is determined by the shape and size of the crystal.

(実施例) 本発明に係る実施例を説明する。尚、実施例に使用した
圧力晶析装置は、1.52のパイロットプラントであり
、その構成内容は規模(容量)を除いて前記第1図で説
明したものと同様である。
(Example) An example according to the present invention will be described. The pressure crystallizer used in the examples is a 1.52 pilot plant, and its configuration is the same as that described in FIG. 1 above, except for the scale (capacity).

1蓋±1 クレゾール混合物(p−クレゾール80χ、残部がm−
クレゾール)を、予備晶析缶で15°Cに冷却してスラ
リ状態と成し、高圧容器(晶析室)に注入した後、容器
内原料を1500気圧まで加圧して晶析させた。引き続
き圧力を1500気圧に保持しつつ容器外への液相分の
排出を開始し、液相分の半量が排出された時点で液相分
排出を停止した。次いで大気圧まで減圧し、容器内混合
物(略スラリ状)を容器外に取り出し、遠心分離機に移
して液相分の分離処理を施し、その後固体を回収した。
1 lid ±1 cresol mixture (p-cresol 80χ, remainder m-
Cresol) was cooled to 15°C in a pre-crystallizer to form a slurry state, and poured into a high-pressure container (crystallization chamber), and the raw material in the container was pressurized to 1500 atmospheres to crystallize. Subsequently, while maintaining the pressure at 1500 atm, discharging the liquid phase to the outside of the container was started, and when half of the liquid phase was discharged, discharging the liquid phase was stopped. Next, the pressure was reduced to atmospheric pressure, and the mixture in the container (substantially in the form of slurry) was taken out of the container, transferred to a centrifuge, and subjected to liquid phase separation treatment, after which solids were collected.

得られた固体は純度99.85χのp−クレゾールであ
った。この純度は、従来法による場合(例えば次に示す
比較例1)の純度99.70χに比較して大差ないよう
に見受けられるが、この水準の純度領域としての差異を
考慮すると上記の如き純度上昇は極めて大きな効果であ
り、工業的には極めて大きな意義を有するものである。
The obtained solid was p-cresol with a purity of 99.85χ. This purity does not seem to be much different from the purity of 99.70χ obtained by the conventional method (for example, Comparative Example 1 shown below), but considering the difference in this level of purity range, the above purity increase This is an extremely large effect and has extremely great industrial significance.

尚、上記実施例は高圧容器内混合物が略スラリ状である
時点で液相分排出を停止したが、この実施例の他に高圧
容器内混合物が軟質の固体状ケキとなった時点、又は、
かかるケーキとなる前の時点で液相分排出を停止しても
、上記実施例と同様の効果が得られる。
In the above example, the liquid phase discharge was stopped when the mixture in the high-pressure container was in a substantially slurry state, but in addition to this example, the discharge of the liquid phase component was stopped when the mixture in the high-pressure container became a soft solid cake, or when the mixture in the high-pressure container became a soft solid cake.
Even if the liquid phase discharge is stopped before such a cake is formed, the same effect as in the above embodiment can be obtained.

また、液相分の分離処理は遠心分離機により行ったが、
この他濾過法によっても上記実施例と同様の効果が得ら
れる。
In addition, the liquid phase was separated using a centrifuge.
In addition, the same effects as in the above embodiment can be obtained by using a filtration method.

更に、容器外に取り出された混合物をそのまま液相分の
分離処理したが、容器外に取り出された混合物が軟質の
固体状ケーキの場合には、該混合物中法相分と同−組成
の液、又は、それより不純物が少ない液を添加してスラ
リ化した後、液相分の分離処理をすれば、分離処理し易
くなる。又、容器外に取り出された混合物が略スラリ状
である場合でも、上記と同様の液添加を行ってよりスラ
リ化した後、液相分の分離処理をすれば、より分離処理
し易くなる。ごれらの場合、製品純度については上記実
施例と同様の効果が得られる。
Furthermore, the mixture taken out of the container was directly subjected to a separation treatment for the liquid phase, but if the mixture taken out of the container was a soft solid cake, a liquid having the same composition as the legal phase in the mixture, Alternatively, if a liquid containing less impurities is added to form a slurry and then the liquid phase is separated, the separation becomes easier. Further, even if the mixture taken out of the container is in the form of a slurry, it is easier to separate the mixture by adding a liquid in the same manner as described above to form a slurry and then separating the liquid phase. In the case of Gore et al., the same effect as in the above example can be obtained regarding product purity.

−旧較眉土 実施例Iと同様、原料を15°Cに冷却し、高圧容器に
注入し、1500気圧まで加圧し、引き続きこの圧力を
保持しつつ液相分を排出して固液分離した後、圧搾し、
600気圧まで減圧発汗させ、容器内に形成された固体
を取り出した。
-Same as in Example I, the raw material was cooled to 15°C, poured into a high-pressure container, pressurized to 1500 atm, and continued to maintain this pressure while discharging the liquid phase to separate solid and liquid. After that, squeeze
After sweating under reduced pressure to 600 atmospheres, the solid formed in the container was taken out.

得られた上記固体の純度は99.70χであった。The purity of the obtained solid was 99.70χ.

(発明の効果) 本発明に係る圧力晶析法を用いた物質の精製法によれば
、高圧容器の耐圧強度の上昇を要することなく、又、生
産量の低下を招くことなく、従来の圧力晶析方法での製
品純度の限界を打破し得るようになる。
(Effects of the Invention) According to the method for refining a substance using the pressure crystallization method according to the present invention, it is possible to eliminate the conventional pressure It will be possible to overcome the limits of product purity in crystallization methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧力晶析方法に係るプロセスフロー及び
装置の概念を示す図、第2図は従来の圧力晶析方法によ
り得られる固体状製品の状態に関する模式図である。 (1)−圧力容器     (2)−下蓋(3)−油圧
ユニット   (4)−晶析室(5)−ピストン   
  (6)−排液タンク(7)−予備晶析缶    (
8)−原料供給ポンプ(9)面一配管      0口
)−減圧機構(II)Q2106)−一弁      
圓−原料タンク0ω−オーバーフロー管 θカー結晶粒
08)−残留液体 特許出願人 株式会社 神戸製鋼期 化 理 人 弁理士  全史 章−
FIG. 1 is a diagram showing a process flow and the concept of an apparatus related to a conventional pressure crystallization method, and FIG. 2 is a schematic diagram regarding the state of a solid product obtained by the conventional pressure crystallization method. (1) - Pressure vessel (2) - Lower lid (3) - Hydraulic unit (4) - Crystallization chamber (5) - Piston
(6) - Drainage tank (7) - Pre-crystallizer (
8) - Raw material supply pump (9) flush piping 0 ports) - pressure reduction mechanism (II) Q2106) - one valve
En - Raw material tank 0ω - Overflow pipe θ Kerr grain 08) - Residual liquid Patent applicant Kobe Steel Seikagaku Co., Ltd. Patent attorney Akira Zenshi -

Claims (7)

【特許請求の範囲】[Claims] (1)特定成分を含む2種以上の成分から成る原料を高
圧容器に供給し、該容器内原料を加圧することにより晶
析させて固液共存状態の混合物と成し、続いて加圧下で
高圧容器外への液相分の排出を開始し、高圧容器内混合
物が塊状化する前に該排出を停止し、次いで該混合物を
高圧容器外に取り出し、更に該容器外混合物に液相分の
分離処理を施し、特定成分の固体を回収することを特徴
とする圧力晶析法を用いた物質の精製法。
(1) A raw material consisting of two or more components including a specific component is supplied to a high-pressure container, and the raw material in the container is pressurized to crystallize it into a mixture in a solid-liquid coexistence state. Start discharging the liquid phase to the outside of the high-pressure vessel, stop the discharge before the mixture inside the high-pressure vessel becomes agglomerated, then take out the mixture outside the high-pressure vessel, and add the liquid phase to the mixture outside the vessel. A method for purifying substances using pressure crystallization, which is characterized by performing separation treatment and recovering solid components of specific components.
(2)前記高圧容器外混合物の液相分の分離処理をした
後、更に溶媒洗浄を施し、該洗浄後に特定成分の固体を
回収することを特徴とする第1請求項に記載の圧力晶析
法を用いた物質の精製法。
(2) Pressure crystallization according to claim 1, characterized in that after the liquid phase of the mixture outside the high-pressure container is separated, solvent washing is further performed, and solids of specific components are recovered after the washing. A method for purifying substances using a method.
(3)前記高圧容器外混合物の液相分の分離処理を、液
相分を気体で置換することにより行う第1請求項又は第
2請求項に記載の圧力晶析法を用いた物質の精製法。
(3) Purification of the substance using the pressure crystallization method according to claim 1 or 2, in which the separation treatment of the liquid phase of the mixture outside the high-pressure container is performed by replacing the liquid phase with gas. Law.
(4)高圧容器外混合物を濾過する事により前記置換を
行う第3請求項に記載の圧力晶析法を用いた物質の精製
法。
(4) A method for purifying a substance using a pressure crystallization method according to claim 3, wherein the substitution is performed by filtering the mixture outside the high-pressure container.
(5)高圧容器外混合物を遠心分離処理する事により前
記置換を行う第3請求項に記載の圧力晶析法を用いた物
質の精製法。
(5) A method for purifying a substance using a pressure crystallization method according to claim 3, wherein the substitution is performed by centrifuging the mixture outside the high-pressure container.
(6)前記濾過を真空濾過器で行う第4請求項に記載の
圧力晶析法を用いた物質の精製法。
(6) A method for purifying a substance using a pressure crystallization method according to claim 4, wherein the filtration is performed using a vacuum filter.
(7)前記濾過を加圧気体を用いて行う第4請求項に記
載の圧力晶析法を用いた物質の精製法。
(7) A method for purifying a substance using a pressure crystallization method according to claim 4, wherein the filtration is performed using pressurized gas.
JP30907588A 1988-12-06 1988-12-06 Purification of substances using pressure crystallization Expired - Fee Related JPH0779922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30907588A JPH0779922B2 (en) 1988-12-06 1988-12-06 Purification of substances using pressure crystallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30907588A JPH0779922B2 (en) 1988-12-06 1988-12-06 Purification of substances using pressure crystallization

Publications (2)

Publication Number Publication Date
JPH02157003A true JPH02157003A (en) 1990-06-15
JPH0779922B2 JPH0779922B2 (en) 1995-08-30

Family

ID=17988579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30907588A Expired - Fee Related JPH0779922B2 (en) 1988-12-06 1988-12-06 Purification of substances using pressure crystallization

Country Status (1)

Country Link
JP (1) JPH0779922B2 (en)

Also Published As

Publication number Publication date
JPH0779922B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
EP1842577B1 (en) A solid-liquid separation process
JPS63185402A (en) Method and apparatus for recovering pure substance from liquid mixture by crystallization
JPH02157003A (en) Method for purifying substances by pressure crystallization process
CA1144737A (en) Process for purifying crystalline potassium chloride
EP1250308A1 (en) Process for the recovery of purified terephthalic acid (pta)
US5220098A (en) Process for separating 2, 7-dimethylnaphthalene under pressure
JPH0699346B2 (en) Method and apparatus for crystallizing a manifold
US2467274A (en) Process and apparatus for recovering in the form of alkali metal salts the oxides of nitrogen from gases containing the same
JPS5810121B2 (en) Substance separation and purification equipment
JPH02126903A (en) Pressure crystallization method
JPH05331079A (en) Separation and purification of 2,6-diisoproylnaphthalene
JPH02214503A (en) Separation by cooled crystallization
JPH0417682B2 (en)
JPH0199604A (en) Method for operating multipurpose pressure crystallizer
JPH0418882B2 (en)
JPH0286803A (en) Apparatus and method for pressure crystallization
JPH09176055A (en) Purification of crystalline substance
JPH01311062A (en) Separation and purification of indole
JPH026801A (en) Pressure crystallization method
JPH02198601A (en) Method for pressure crystallization
JPH0355163B2 (en)
JPH046401B2 (en)
JPH0268101A (en) Pressure crystallization process
JPS6161841B2 (en)
WO2000006279A1 (en) Process for purifying solid chemical products by dry-sweating

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees