JPH0779925B2 - Pressure crystallizer and method - Google Patents

Pressure crystallizer and method

Info

Publication number
JPH0779925B2
JPH0779925B2 JP32394088A JP32394088A JPH0779925B2 JP H0779925 B2 JPH0779925 B2 JP H0779925B2 JP 32394088 A JP32394088 A JP 32394088A JP 32394088 A JP32394088 A JP 32394088A JP H0779925 B2 JPH0779925 B2 JP H0779925B2
Authority
JP
Japan
Prior art keywords
pressure
piston
solid phase
solid
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32394088A
Other languages
Japanese (ja)
Other versions
JPH02169003A (en
Inventor
正博 冨田
春夫 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32394088A priority Critical patent/JPH0779925B2/en
Publication of JPH02169003A publication Critical patent/JPH02169003A/en
Publication of JPH0779925B2 publication Critical patent/JPH0779925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧力晶析装置および方法に関する。FIELD OF THE INVENTION The present invention relates to pressure crystallizers and methods.

(従来の技術) 圧力晶析法は、従来の蒸留法や冷却晶析法では分離困難
な原料系への適用に大きな可能性を有している事、高純
度の製品が得易い事、高収率が得易い事、及び、エネル
ギ消費量が少ない事等から、近年の化学工業のファイン
化に伴って大きな注目を集めている分離精製技術であ
る。
(Prior Art) The pressure crystallization method has great potential for application to a raw material system that is difficult to separate by the conventional distillation method or cooling crystallization method, that a high-purity product is easily obtained, and It is a separation and purification technology that has been attracting a great deal of attention as the chemical industry has become finer in recent years because of its easy yield and low energy consumption.

かかる圧力晶析法に使用されている従来の装置の代表例
を第11図に示す。第11図において、(1)は耐圧容器を
構成する耐圧性筒体、(2)は筒体(1)の内周壁に配
設された個液分離用の筒状フィルタ、(3)は耐圧性筒
体(1)の下開口部に密嵌される蓋体、(4)は耐圧性
筒体(1)の上開口部から嵌入される加圧・圧搾用のピ
ストン、(5)は原料供給管路、V1は給液弁、(6)は
排液通路、V2は排液弁、(7)は晶析取出し用のプッシ
ャ、(8)は晶析物取出し用のシュートを示すものであ
る。
A typical example of the conventional apparatus used for such pressure crystallization method is shown in FIG. In FIG. 11, (1) is a pressure-resistant cylindrical body that constitutes a pressure-resistant container, (2) is a cylindrical filter for separating individual liquid disposed on the inner peripheral wall of the cylindrical body (1), and (3) is a pressure-resistant container. A lid tightly fitted in the lower opening of the flexible cylinder (1), (4) a pressurizing / squeezing piston fitted from the upper opening of the pressure resistant cylinder (1), and (5) a raw material. Supply line, V 1 is a feed valve, (6) is a drain passage, V 2 is a drain valve, (7) is a pusher for taking out crystallization, and (8) is a chute for taking out crystallization. It is a thing.

前記第11図に示した装置を用いて、圧力晶析を行う場合
の手順に関し、その代表例を下記に説明する。
A typical example of the procedure for performing pressure crystallization using the apparatus shown in FIG. 11 will be described below.

(a) 排液弁V2を閉とした状態で、給液弁V1を開いて
原料供給管路(5)から耐圧性筒体(1)内へ原料を供
給する。
(A) With the drainage valve V 2 closed, the liquid feed valve V 1 is opened to feed the raw material from the raw material supply pipe (5) into the pressure resistant cylinder (1).

(b) 供給が終わると給液弁V1を閉じ、その状態でピ
ストン(4)を降下させて耐圧性筒体(1)内の原料に
高圧力を作用させ、特定成分の晶析を促進させる。
(B) When the supply is completed, the liquid supply valve V 1 is closed, and in that state, the piston (4) is lowered to apply a high pressure to the raw material in the pressure resistant cylinder (1) to promote crystallization of a specific component. Let

(c) 晶析が終わると排液弁V2を開いて加圧下で液相
分を容器外へ排出して個液分離する。通常の場合は該分
離後に更に容器内固相分を圧搾して残留液を排出する
(以降、このように圧搾を行う場合も圧搾を含めて個液
分離という)。尚、圧搾を行わない場合もある。
(C) When crystallization is completed, the drain valve V 2 is opened, and the liquid phase is discharged under pressure to separate the individual liquid. In the usual case, after the separation, the solid phase in the container is further squeezed to discharge the residual liquid (hereinafter, squeezing is also referred to as individual liquid separation when the squeezing is performed in this way). In some cases, the pressing is not performed.

かかる固液分離工程では、耐圧性筒体(1)内に圧力を
作用させ、フィルタ(2)を通して液状物を排出させ
る。この液状物はフィルタ(2)の背面側に設けられた
隙間から下蓋(3)の排液通路(6)を経て排出され
る。
In the solid-liquid separation step, pressure is applied to the pressure-resistant cylindrical body (1) to discharge the liquid substance through the filter (2). This liquid substance is discharged from the gap provided on the back side of the filter (2) through the drainage passage (6) of the lower lid (3).

(d) 固液分離後、第12図に示す如く、耐圧性筒体
(1)を上昇させて筒体(1)内を開放し、次いでシュ
ート(8)を進出させると共に、プッシャ(7)を前進
させて晶析物(固相分)Cを取出す。
(D) After solid-liquid separation, as shown in FIG. 12, the pressure-resistant cylinder (1) is raised to open the inside of the cylinder (1), and then the chute (8) is advanced and the pusher (7) is moved. And the crystallization product (solid phase component) C is taken out.

上記(d)の工程を終えた後は、再び(a)の工程に戻
り、この操作を繰り返すことによって特定成分の分離・
回収が連続的に行われる。
After the step (d) is completed, the process returns to the step (a) again, and this operation is repeated to separate the specific component.
Recovery is continuous.

(発明が解決しようとする課題) ところが、以上に述べたような従来の圧力晶析装置およ
び方法は、前記工程(d)の固相分取出しを行う際に、
前記の如き筒体(1)内の開放とシュート(8)及びプ
ッシャの進出とを要するため、固相分取出しにかなりの
長時間を要するという問題点がある。又、固相分取出し
は、シュート(8)及びプッシャ(7)の退出と、筒体
(1)の下降及び下蓋(3)との嵌合とを要するので、
これにもかなりの長時間を要する。以上の問題点は、繰
り返し操業サイクルの所要時間が長くなり、生産性が悪
くなるという問題点に繋がるものである。
(Problems to be Solved by the Invention) However, in the conventional pressure crystallization apparatus and method as described above, when performing solid phase fractionation in the step (d),
Since the opening of the cylindrical body (1) and the advance of the chute (8) and the pusher are required as described above, there is a problem that it takes a considerably long time to take out the solid phase. In addition, solid phase extraction requires retreating of the chute (8) and pusher (7), lowering of the tubular body (1) and fitting with the lower lid (3).
This also takes quite a long time. The above problems lead to the problem that the time required for the repeated operation cycle becomes long and the productivity deteriorates.

また、固相分取出しの際、筒体(1)上昇開始時点から
固相分取出し完了時点までの間に、筒体(1)内の残留
液(不純物を含んでいる)が滴下し、固相分に降りかか
るため、固相分(製品)の純度が低下するという問題点
がある。
During the solid phase extraction, the residual liquid (containing impurities) in the tube (1) is dripped and solidified between the start of the rising of the tube (1) and the completion of the extraction of the solid phase. There is a problem that the purity of the solid phase component (product) decreases because it falls on the phase component.

更に、晶析後の固液共存状態の混合物における固相分の
量(濃度)が低い場合(例えば25%以下の場合)は、固
液分離後の固相分の高さが低くなるので、固相分取出し
が容易にし得なくなるという問題点がある。又、固相分
の結晶粒径が小さい場合(脂肪族系化合物の圧力晶析の
場合などに認められる)や、固相分(製品)の純度が低
い場合などは、固液分離後の固相分がシャーベット状の
如く軟質又は半固形状のものになり、かかる場合は不純
物混入を招くことなく固相分取出しを行う事は極めて困
難となるという問題点がある。
Furthermore, when the amount (concentration) of the solid phase component in the mixture in the solid-liquid coexisting state after crystallization is low (for example, 25% or less), the height of the solid phase component after the solid-liquid separation becomes low, There is a problem that the solid phase extraction cannot be performed easily. In addition, when the crystal grain size of the solid phase component is small (as observed in the pressure crystallization of aliphatic compounds) or when the purity of the solid phase component (product) is low, the solid phase after solid-liquid separation The phase component becomes soft or semi-solid like a sherbet, and in such a case, it is extremely difficult to take out the solid phase fraction without introducing impurities.

本発明はこの様な事情に着目してなされたものであっ
て、その目的は従来のものが3つ以上のような問題点を
解消し、固相分取出し時間を短縮化し、繰り返し操業サ
イクルの所要時間を短縮でき、また、製品純度を向上で
き、更に、固液分離後の固相分の高さが低くなる場合、
固相分が軟質又は半固形状のものになる場合でも固相分
取出しが容易にし得る圧力晶析装置および方法を提供し
ようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to solve the problems such as three or more of the conventional ones, shorten the solid phase extraction time, and reduce the number of repeated operation cycles. If the required time can be shortened, the product purity can be improved, and the height of the solid phase after solid-liquid separation becomes low,
An object of the present invention is to provide a pressure crystallization apparatus and a method capable of facilitating solid phase extraction even when the solid phase becomes soft or semi-solid.

(課題を解決するための手段) 上記の目的を達成するために、本発明は次の如き構成の
圧力晶析装置および方法としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a pressure crystallization apparatus and method having the following configurations.

即ち、本発明に係る装置は、耐圧性筒体と、該筒体の一
方側開口部から該筒体を進退する第1ピストンと、該筒
体の他方側開口部から該筒体内を進退する第2ピストン
とを有し、該筒体内および/またはピストン押圧面に液
相分排出用フィルタが配設された圧力晶析装置であっ
て、前記耐圧性筒体に該筒体壁を貫通する固相分取出し
用孔が設けられていることを特徴とする圧力晶析装置で
ある。
That is, in the device according to the present invention, the pressure-resistant cylindrical body, the first piston that advances and retracts the cylindrical body from the one side opening of the cylindrical body, and the forward and backward movement of the cylinder inside the other side opening of the cylindrical body. A pressure crystallizer having a second piston, and a filter for discharging a liquid phase component arranged in the cylinder and / or on the piston pressing surface, wherein the pressure-resistant cylinder penetrates the cylinder wall. The pressure crystallizer is characterized in that a solid phase extraction hole is provided.

本発明に係る方法は、耐圧性筒体内に第1ピストンおよ
び/または第2ピストンを挿入して容器を形成し、該容
器に原料を供給し、加圧して固液共存状態の混合物と成
し、引き続き加圧下で液相分を容器外に排出して固液分
離した後、固相分を容器外へ取り出す圧力晶析方法であ
って、上記固相分を第1ピストンおよび第2ピストンに
より耐圧性筒体の固相分取出し用孔に移動させ、該孔か
ら押し出すことにより、前記固相分の取り出しを行うこ
とを特徴とする圧力晶析方法である。
In the method according to the present invention, a container is formed by inserting a first piston and / or a second piston into a pressure resistant cylinder, and a raw material is supplied to the container and pressurized to form a mixture in a solid-liquid coexisting state. A method for pressure crystallization in which a liquid phase component is continuously discharged under pressure from the container for solid-liquid separation, and then a solid phase component is taken out of the container, wherein the solid phase component is removed by a first piston and a second piston. The pressure crystallization method is characterized in that the solid phase component is taken out by moving it to a solid phase fraction extraction hole of the pressure-resistant cylinder and extruding from the hole.

(作 用) 本発明に係る圧力晶析装置は、以上説明したように、固
相分取出し用孔を備えた耐圧性筒体(以降、筒体とい
う)と、筒体内を進退する第1ピストン及び第2ピスト
ンとを有し、又、筒体内側および/またはピストン押圧
面に液相分排出用フィルタを配設するようにしている。
故に、筒体内に第1ピストンおよび/または第2ピスト
ンを挿入して容器を形成し、該容器に原料を供給する
と、該原料を加圧し得る。従って、固液共存状態の混合
物と成し、固液分離し得る。
(Operation) As described above, the pressure crystallizer according to the present invention includes a pressure-resistant cylindrical body (hereinafter referred to as a cylindrical body) having a solid-phase extraction hole, and a first piston that moves forward and backward in the cylindrical body. And a second piston, and a filter for discharging a liquid phase component is arranged inside the cylinder and / or on the piston pressing surface.
Therefore, when the first piston and / or the second piston is inserted into the cylinder to form a container and the raw material is supplied to the container, the raw material can be pressurized. Therefore, a solid-liquid coexisting mixture is formed, and solid-liquid separation is possible.

上記容器形成および原料供給は、下記の如くすると行い
得る。即ち、装置が縦型(耐圧性筒体の軸心が垂直)で
あり、固相分取出し用孔(以降、取出孔という)が筒体
上部にある場合は、筒体の下部に下側ピストンを挿入
し、又、取出孔が筒体下部にある場合は、該孔を閉鎖す
る位置まで下側ピストンを挿入した後、原料を注入す
る。
The container formation and the raw material supply can be performed as follows. That is, when the device is vertical (the axis of the pressure-resistant cylinder is vertical) and the solid-phase extraction hole (hereinafter referred to as the extraction hole) is on the upper part of the cylinder, the lower piston is placed on the lower part of the cylinder. If the extraction hole is located in the lower part of the cylinder, the lower piston is inserted to the position where the hole is closed, and then the raw material is injected.

装置が横型であり、取出孔が筒体右部にある場合は、取
出孔を閉鎖しない位置まで左右の両ピストンを挿入し、
取出孔から原料を注入した後、取出孔を閉鎖する位置ま
で右側ピストンを挿入する。尚、ピストンがその中を通
る原料供給管を有する場合は、両ピストンを挿入(右側
ピストンは取出孔閉鎖位置まで挿入)した後、原料供給
管から原料を注入する。
If the device is horizontal and the extraction hole is on the right side of the cylinder, insert both left and right pistons to the position where the extraction hole is not closed,
After injecting the raw material from the take-out hole, insert the right piston to the position where the take-out hole is closed. When the piston has a raw material supply pipe passing through it, both pistons are inserted (the right piston is inserted to the extraction hole closing position), and then the raw material is injected from the raw material supply pipe.

前記固液分離後は、第1ピストンおよび第2ピストンに
より固相分を筒体の取出孔部に移動させ、固相分に力を
作用させると、該孔から固相分を押し出し、取り出し得
るこのとき、固相分が軟質状のものである場合は流体の
如くその逆に固相分が硬い固体である場合は該固体が押
し潰されながら押し出される。
After the solid-liquid separation, the first piston and the second piston move the solid-phase component to the extraction hole portion of the cylindrical body, and when a force is applied to the solid-phase component, the solid-phase component can be pushed out from the hole and taken out. At this time, when the solid phase is a soft one, like a fluid, when the solid phase is a hard solid, the solid is crushed and extruded.

上記固相分の取出孔部への移動は、例えば第1ピストン
および第2ピストンとで固相分を挟持しながら行うこと
が出来、瞬時に且つ容易に行い得るものである。又、押
し出しに要する時間は、ピストン加圧力を大きくする事
および/または横穴の断面積を大きくする事により短く
し得る。故に、固相分取出し時間を短縮化し得るように
なる。
The movement of the solid phase component to the extraction hole portion can be performed, for example, while sandwiching the solid phase component with the first piston and the second piston, and can be instantaneously and easily performed. The time required for extrusion can be shortened by increasing the piston pressure and / or increasing the cross-sectional area of the lateral hole. Therefore, the solid phase extraction time can be shortened.

固相分取出し後は、ピストンを移動すれば、前記容器形
成および原料供給を行い得る。このピストン移動も、瞬
時に且つ容易に行い得る。
After taking out the solid phase, the container can be formed and the raw material can be supplied by moving the piston. This piston movement can also be performed instantly and easily.

従って、繰り返し操業サイクルの所要時間を短縮でき、
生産性を向上し得るようになる。
Therefore, the time required for repeated operation cycles can be shortened,
You can improve productivity.

又、上記の如くピストンで固相分を挟持しながら固相分
の移動、押出しができるので、製品への残留液の滴下を
生じることなく固相分取出しができ、製品純度を向上し
得るようになる。
Further, since the solid phase can be moved and extruded while sandwiching the solid phase with the piston as described above, it is possible to take out the solid phase without dropping the residual liquid to the product and improve the product purity. become.

又、上記の如く固相分取出しは、取出孔部への固相分の
移動と、押出しとによりでき、これらの操作性に対して
固相分の高さは影響しない。又、固相分の性状(硬さ
等)は押し出し性に影響を及ぼし、固相分が硬い場合は
押し出し難くなるが、かかる場合にはピストンでの加圧
力を大きくすれば押し出しを容易にし得るようになる。
従って、固液分離後の固相分の高さが低くなる場合や、
固相分が軟質又は半固形状のものになる場合でも固相分
取出しが容易にし得るようになる。
Further, as described above, the solid phase extraction can be performed by moving the solid phase to the extraction hole and extruding, and the height of the solid phase does not affect the operability of these. Also, the properties of the solid phase component (hardness, etc.) affect the extrudability, and it becomes difficult to extrude when the solid phase component is hard, but in such a case, extruding can be facilitated by increasing the pressure applied by the piston. Like
Therefore, when the height of the solid phase after solid-liquid separation becomes low,
Even if the solid phase is soft or semi-solid, the solid phase can be easily taken out.

更に、取出孔部に製品貯蔵庫と直結する固相分取出管を
接続すれば、固相分を大気中の塵などで汚染することな
く回収し得る。又、この貯蔵庫および取出管内の雰囲気
を調整し得るので、大気を嫌う物質(固相分)の場合に
も大気と触れることなく固相分を回収し得るようにな
る。
Furthermore, if a solid phase extraction pipe directly connected to the product storage is connected to the extraction hole, the solid phase can be recovered without being contaminated with dust in the atmosphere. Further, since the atmosphere in the storage and the take-out pipe can be adjusted, even in the case of a substance that dislikes the atmosphere (solid phase content), the solid phase content can be recovered without contact with the air.

本発明に係る圧力晶析方法は、以上の説明の中で述べた
操作と同様の操作で圧力晶析するようにしている。即
ち、筒体内に第1ピストンおよび/または第2ピストン
を挿入して容器を形成し、該容器に原料を供給し、加圧
して固液共存状態の混合物と成し、引き続き加圧下で液
相分を容器外に排出して固液分離した後、該固相分を第
1ピストンおよび第2ピストンにより筒体の取出孔に移
動させ、該孔から押し出すことにより、前記固相分の取
り出しを行うようにしている。従って、前記と同様の作
用効果が得られ、生産性および製品純度の向上が図れる
ようになる。
In the pressure crystallization method according to the present invention, pressure crystallization is performed by the same operation as the operation described in the above description. That is, the container is formed by inserting the first piston and / or the second piston into the cylindrical body, the raw material is supplied to the container, and the mixture is pressurized to form a mixture in a solid-liquid coexisting state. Of the solid phase is discharged to the outside of the container for solid-liquid separation, and then the solid phase is moved by the first piston and the second piston to the take-out hole of the cylindrical body and pushed out from the hole to take out the solid phase. I am trying to do it. Therefore, the same effect as the above can be obtained, and the productivity and the product purity can be improved.

尚、前記取出孔は前述の如く原料供給口としても使用し
得る。該孔の断面積は充分大きくし得る。故に、該孔か
ら原料供給を行う場合は、原料供給時間を短縮でき、
又、原料をスラリ状で供給する場合に従来装置において
度々経験される原料供給管路の閉塞事故を解消できるよ
うになる。
The extraction hole can also be used as a raw material supply port as described above. The cross-sectional area of the holes can be large enough. Therefore, when the raw material is supplied from the hole, the raw material supply time can be shortened,
Further, when the raw material is supplied in the form of a slurry, it becomes possible to eliminate the blockage accident of the raw material supply line which is often experienced in the conventional apparatus.

筒体の内面形状は、耐圧性の点から円形が最も望ましい
が、特に限定されるものではない。
The shape of the inner surface of the cylinder is most preferably circular from the viewpoint of pressure resistance, but is not particularly limited.

筒体を固定し両ピストンを可動としてもよいし、一方の
ピストンを固定し筒体および他方のピストンを可動とし
てもよいし、或いは筒体および両ピストンとも可動とし
てもよい。
The cylinder may be fixed and both pistons may be movable, one piston may be fixed and the cylinder and the other piston may be movable, or both the cylinder and both pistons may be movable.

ピストン、筒体等を進退させる手段は、油圧シリンダ、
その他ソレノイド機構の如き進退手段を採用することが
できる。
The means for moving the piston, cylinder, etc. forward and backward is a hydraulic cylinder,
Other advancing / retreating means such as a solenoid mechanism can be adopted.

(実施例) 実施例1 実施例1に係る圧力晶析装置の要部断面図を第1図に示
す。この装置は縦形である。第1図において、(11)は
筒体であり、その内面側に筒状フィルタ(12)が配設さ
れている。筒体(11)の下部には、筒状フィルタが配設
部から離れた位置に取出孔(13)が設けられ、取出孔
(13)には製品取出し管(14)が接続されている。
(Example) Example 1 FIG. 1 shows a cross-sectional view of a main part of a pressure crystallizer according to Example 1. This device is vertical. In FIG. 1, (11) is a cylindrical body, and a cylindrical filter (12) is arranged on the inner surface side thereof. A take-out hole (13) is provided in the lower portion of the tubular body (11) at a position away from the installation portion, and a product take-out pipe (14) is connected to the take-out hole (13).

筒体(11)の上部及び下部には上側ピストン(10)及び
下側ピストン(15)が配されている。(9),(16)は
上側及び下側ピストンのシリンダである。
An upper piston (10) and a lower piston (15) are arranged on the upper and lower parts of the tubular body (11). (9) and (16) are cylinders of upper and lower pistons.

下側ピストン(15)には、その押圧面にフィルタ(19)
が配され、又、押圧面から外部へ連通する排液通路(2
0)が配されている。(17)は原料供給管路、(18)は
加温ヒータであって筒体(11)および製品取出し管(1
4)の部分に配されている。
The lower piston (15) has a filter (19) on its pressing surface.
And the drainage passage (2
0) is arranged. (17) is a raw material supply pipe, (18) is a heating heater, and is a cylinder (11) and a product take-out pipe (1
It is arranged in part 4).

上記装置を用いて圧力晶析を行った。この圧力晶析の主
要工程を第2〜6図に示す。先ず油圧シリンダ(図示し
ていない)により、筒体(11)内に下側ピストン(15)
をその上面が筒状フィルタ(12)の下端部より高い位置
になるまで進出させ、取出孔(13)を閉鎖し、容器を形
成した。
Pressure crystallization was performed using the above apparatus. The main steps of this pressure crystallization are shown in FIGS. First, the lower piston (15) is placed in the cylinder (11) by a hydraulic cylinder (not shown).
Was advanced until its upper surface was positioned higher than the lower end of the cylindrical filter (12), the extraction hole (13) was closed, and a container was formed.

次に、上側ピストン(10)を筒体(11)から退出させ、
筒体(11)の上部を開口させた後、第2図に示す如く原
料供給管路(17)から原料を前記形成された容器内に供
給した。
Next, withdraw the upper piston (10) from the tubular body (11),
After opening the upper part of the cylindrical body (11), as shown in FIG. 2, the raw material was supplied from the raw material supply pipe (17) into the formed container.

原料供給後、第3〜4図に示す如く、上側ピストン(1
0)を筒体(11)内に挿入し、容器内原料を1400気圧ま
で加圧し5秒間経過後、排液通路(20)の弁を開にして
容器内圧力を1400気圧に保持しながら液相分を容器外に
排出した。続いて容器内の固相分を圧搾して残留液を排
出し、更に固相分精製のために容器内圧力を段階的に低
下させて減圧発汗処理した。
After feeding the raw material, as shown in Figs.
(0) is inserted into the cylinder (11), the raw material in the container is pressurized to 1400 atm, and after 5 seconds, the valve in the drainage passage (20) is opened to maintain the liquid pressure in the container at 1400 atm. The phase components were discharged outside the container. Subsequently, the solid phase component in the container was squeezed to discharge the residual liquid, and the pressure in the container was gradually reduced to purify the solid phase component, and a vacuum perspiration treatment was performed.

上記発汗処理後、上側ピストン(10)と下側ピストン
(15)とで固相分を挟持し且つ固相分の融解圧以上の圧
力を保持しながら固相分を取出孔(13)部に移動させ
た。次いで、第5〜6図に示す如く、下側ピストン(1
5)は停止したままで、上側ピストン(10)を下降さ
せ、取出孔(13)から固相分を押し潰しながら押し出
し、製品取出し管(14)を介して固相分(製品)Cを取
り出した。
After the above sweating treatment, the solid phase component is sandwiched between the upper piston (10) and the lower piston (15), and the solid phase component is extracted into the extraction hole (13) while maintaining a pressure equal to or higher than the melting pressure of the solid phase component. I moved it. Then, as shown in FIGS. 5 and 6, the lower piston (1
While 5) is stopped, lower the upper piston (10), push out while crushing the solid phase component from the extraction hole (13), and extract the solid phase component (product) C through the product extraction pipe (14). It was

上記固相分取出し後、排液通路(20)の弁を閉にし、上
側ピストン(10)を筒体(11)から退出させ、次いで下
側ピストン(15)をその上面が筒状フィルタ(12)の下
端部より高い位置になるまで上昇させ、取出孔(13)を
閉鎖し、容器を形成した。この操作により原料注入前の
状態になるので、続いて前記と同様の手順により、容器
内への原料供給、加圧、固液分離および固相分取出しを
行い、この一連の操作を繰り返した。
After taking out the solid phase, the valve of the drainage passage (20) is closed, the upper piston (10) is withdrawn from the cylindrical body (11), and then the lower piston (15) is fitted with a cylindrical filter (12) having an upper surface. ) To a position higher than the lower end, and the extraction hole (13) was closed to form a container. By this operation, the state before injection of the raw material was obtained, and subsequently, by the same procedure as described above, supply of the raw material into the container, pressurization, solid-liquid separation and solid-phase separation were carried out, and this series of operations was repeated.

その結果、従来の場合に比較して、繰り返し操業サイク
ルの所要時間が大幅に(40〜50%)短縮された。また、
製品純度が向上された。
As a result, compared to the conventional case, the time required for the repeated operation cycle was significantly shortened (40 to 50%). Also,
Product purity has been improved.

尚、前記原料供給・加圧・液相分排出・固相分圧搾の工
程は、これを数回繰返して行うことができ、その後減圧
発汗処理し、製品を取出すようにすると、製品収率が向
上する。特に、この方法は原料中の固相分濃度が低い場
合に有効であり、製品収率が大幅に向上されることが確
認された。
The steps of supplying the raw material, pressurizing, discharging the liquid phase, and compressing the solid phase can be repeated several times. After that, when the product is taken out under reduced pressure perspiration, the product yield is increased. improves. In particular, it was confirmed that this method is effective when the solid phase concentration in the raw material is low, and the product yield is significantly improved.

実施例2 実施例2に係る圧力晶析装置の要部断面図を第7図に示
す。第7図に示す如く上側ピストン(10)にはチェッキ
弁(22)を有する原料供給管(21)がピストン内を通っ
て配されている。この他は実施例1に係る圧力晶析装置
と同様である。
Example 2 FIG. 7 shows a cross-sectional view of a main part of a pressure crystallizer according to Example 2. As shown in FIG. 7, a raw material supply pipe (21) having a check valve (22) is arranged in the upper piston (10) through the inside of the piston. Other than this, the pressure crystallizer according to Example 1 is the same.

筒体(11)内に上側ピストン(10)を挿入したままで、
下側ピストン(15)を進出させ、取出孔(13)を閉鎖
し、容器を形成した後、原料供給管(21)から原料を供
給した。原料供給後、実施例1と同様の加圧、固液分離
および固相分取り出しを行った。
With the upper piston (10) still inserted in the cylinder (11),
The lower piston (15) was advanced, the extraction hole (13) was closed, a container was formed, and then the raw material was supplied from the raw material supply pipe (21). After supplying the raw materials, the same pressurization, solid-liquid separation, and solid-phase component extraction as in Example 1 were performed.

上記固相分取り出し後、上端ピストン(10)及び下側ピ
ストン(15)を移動させ容器を形成し、前記と同様の手
順で原料供給から固相取り出しに到る工程を実施し、こ
の一連の操作を繰り返した。
After the solid phase is taken out, the upper piston (10) and the lower piston (15) are moved to form a container, and the steps from raw material supply to solid phase extraction are carried out in the same procedure as described above. The operation was repeated.

その結果、実施例1の場合に比較し、原料供給の際に筒
体(11)に対する上側ピストン(10)の退出・挿入を要
しないので、その分だけ更に繰り返し操業サイクルの所
要時間が短縮された。
As a result, as compared with the case of the first embodiment, it is not necessary to withdraw and insert the upper piston (10) with respect to the cylindrical body (11) at the time of supplying the raw material, so that the time required for the repeated operation cycle is further shortened. It was

尚、上記原料供給管(21)は、チェッキ弁(22)をピス
トン(10)内の部位に有するものであるが、第8図に示
す如く該弁(22)の代わりに開閉弁(23)を有するもの
も同様の効果が得られる。
The raw material supply pipe (21) has a check valve (22) at a portion inside the piston (10), but as shown in FIG. 8, an on-off valve (23) is used instead of the valve (22). The same effect can be obtained with the above.

又、第9図に示す如く、原料供給管(21)の途中から分
岐するガス送給管(24)を設けたものでは、液相分排出
後に上側ピストン(10)極僅か上昇させると同時に高圧
ガスを容器内にパージするようにすると、残留液の排出
がより確実になされるため、更に製品純度が向上され
る。
Further, as shown in FIG. 9, in the case where the gas supply pipe (24) branched from the middle of the raw material supply pipe (21) is provided, after the liquid phase is discharged, the upper piston (10) is slightly elevated and at the same time the high pressure is increased. By purging the gas into the container, the residual liquid can be discharged more reliably, and the product purity is further improved.

実施例3 実施例3に係る圧力晶析装置の要部断面図を第10図に示
す。この装置は、第10図に示す如く実施例2の装置(第
8図)を横にして設けた横型装置である。但し、製品取
出し管(14)は第8図のものと異なり真直状である。
Example 3 FIG. 10 shows a sectional view of a main part of a pressure crystallizer according to Example 3. This apparatus is a horizontal type apparatus in which the apparatus of Example 2 (FIG. 8) is provided sideways as shown in FIG. However, the product take-out pipe (14) is straight unlike the one shown in FIG.

上記装置により実施例2と同様の原料供給、加圧、固液
分離および固相取り出しを行ったところ、実施例2と同
様の効果が得られた。
When the above-mentioned apparatus was used to perform the same raw material supply, pressurization, solid-liquid separation, and solid-phase extraction as in Example 2, the same effects as in Example 2 were obtained.

(発明の効果) 本発明に係る圧力晶析装置および方法によれば、固相分
取出し時間を短縮化し、繰り返し操業サイクルの所要時
間を短縮でき、また、製品への残留液滴下を防止して製
品純度を向上でき、更に、固液分離後の固相分の高さが
低くなる場合や、固相分が軟質又は半個性状のものにな
る場合でも固相分取出しが容易にし得るようになる。
(Effects of the Invention) According to the pressure crystallization apparatus and method of the present invention, the solid-phase extraction time can be shortened, the time required for repeated operation cycles can be shortened, and residual liquid drops on the product can be prevented. Product purity can be improved, and even if the height of the solid phase after solid-liquid separation becomes low, or even if the solid phase becomes soft or semi-solid, the solid phase extraction can be facilitated. Become.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1に係る圧力晶析装置の要部断面図、第
2〜第6図は実施例1に係る圧力晶析の各工程を示す
図、第7図は実施例2に係る圧力晶析装置の要部断面
図、第8図は第7図のチェッキ弁(22)の代わりに開閉
弁(23)を有する圧力晶析装置を示す図、第9図は原料
供給管(21)の途中から分岐するガス送給管(24)を有
する圧力晶析装置を示す図、第10図は第8図の装置を横
にして設けた横型装置を示す図、第11図は圧力晶析法に
使用されている従来装置の代表例を示す図、第12図は該
従来装置で得られる晶析物を取出すときの状況を示す図
である。 (1)(11)……耐圧性筒体、(2)……筒状フィルタ (3)……蓋体、(4)……ピストン (5)……原料供給管路、(6)……排液通路 (7)……プッシャ、(8)……シュート (9)(16)……シリンダ、(10)……上側ピストン (12)……筒状フィルタ、(13)……取出孔 (14)……製品取出し管、(15)……下側ピストン (16)……油圧シリンダ、(17)……原料供給管路 (18)……加温ヒータ、(19)……フィルタ (20)……排液通路、(21)……原料供給管 (22)……チェッキ弁、(23)……開閉弁 (24)……ガス送給管、V1……給液弁 V2……排液弁、C……ケーキ
FIG. 1 is a cross-sectional view of a main part of a pressure crystallization apparatus according to Example 1, FIGS. 2 to 6 are diagrams showing each step of pressure crystallization according to Example 1, and FIG. 7 is related to Example 2. FIG. 8 is a sectional view of the main part of the pressure crystallizer, FIG. 8 shows a pressure crystallizer having an opening / closing valve (23) instead of the check valve (22) of FIG. 7, and FIG. ) Is a diagram showing a pressure crystallizer having a gas feed pipe (24) branched from the middle, FIG. 10 is a diagram showing a horizontal type device in which the device shown in FIG. 8 is provided horizontally, and FIG. 11 is a pressure crystal. FIG. 12 is a diagram showing a typical example of a conventional apparatus used in the crystallization method, and FIG. 12 is a diagram showing a situation when a crystallized product obtained by the conventional apparatus is taken out. (1) (11) ...... Pressure-proof cylinder, (2) ...... Cylindrical filter (3) ...... Lid, (4) ...... Piston (5) ...... Raw material supply pipe, (6) ...... Drainage passage (7) …… Pusher, (8) …… Chute (9) (16) …… Cylinder, (10) …… Upper piston (12) …… Cylindrical filter, (13) …… Ejection hole ( 14) …… Product ejection pipe, (15) …… Lower piston (16) …… Hydraulic cylinder, (17) …… Raw material supply pipe (18) …… Heating heater, (19) …… Filter (20) ) Drainage passage, (21) …… Raw material supply pipe (22) …… Check valve, (23) …… Open / close valve (24) …… Gas supply pipe, V 1 …… Liquid supply valve V 2 …. … Drainage valve, C… cake

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】耐圧性筒体と、該筒体の一方側開口部から
該筒体内を進退する第1ピストンと、該筒体の他方側開
口部から該筒体内を進退する第2ピストンとを有し、該
筒体内側および/またはピストン押圧面に液相分排出用
フィルタが配設された圧力晶析装置であって、前記耐圧
性筒体に該筒体壁を貫通する固相分取出し用孔が設けら
れていることを特徴とする圧力晶析装置。
1. A pressure-resistant cylindrical body, a first piston that advances and retracts in the cylindrical body from one side opening of the cylindrical body, and a second piston that advances and retracts in the cylindrical body from the other side opening of the cylindrical body. A pressure crystallizer having a filter for discharging a liquid phase component inside the cylinder and / or on the piston pressing surface, wherein the pressure-resistant cylinder has a solid phase component penetrating the cylinder wall. A pressure crystallizer characterized in that a take-out hole is provided.
【請求項2】耐圧性筒体内に第1ピストンおよび/また
は第2ピストンを挿入して容器を形成し、該容器に原料
を供給し、加圧して固液共存状態の混合物と成し、引き
続き加圧下で液相分を容器外に排出して固液分離した
後、固相分を容器外へ取り出す圧力晶析方法であって、
上記固相分を第1ピストンおよび第2ピストンにより耐
圧性筒体の固相分取出し用孔に移動させ、該孔から押し
出すことにより、前記固相分の取り出しを行うことを特
徴とする圧力晶析方法。
2. A container is formed by inserting a first piston and / or a second piston into a pressure resistant cylinder, and a raw material is supplied to the container and pressurized to form a mixture in a solid-liquid coexisting state. A pressure crystallization method in which a liquid phase component is discharged to the outside of a container under pressure and solid-liquid separation is performed, and then a solid phase component is extracted to the outside of the container,
A pressure crystal characterized in that the solid phase component is taken out by moving it to the solid phase part extraction hole of the pressure resistant cylinder by the first piston and the second piston and pushing it out from the hole. Analysis method.
JP32394088A 1988-12-21 1988-12-21 Pressure crystallizer and method Expired - Fee Related JPH0779925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32394088A JPH0779925B2 (en) 1988-12-21 1988-12-21 Pressure crystallizer and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32394088A JPH0779925B2 (en) 1988-12-21 1988-12-21 Pressure crystallizer and method

Publications (2)

Publication Number Publication Date
JPH02169003A JPH02169003A (en) 1990-06-29
JPH0779925B2 true JPH0779925B2 (en) 1995-08-30

Family

ID=18160328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32394088A Expired - Fee Related JPH0779925B2 (en) 1988-12-21 1988-12-21 Pressure crystallizer and method

Country Status (1)

Country Link
JP (1) JPH0779925B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides

Also Published As

Publication number Publication date
JPH02169003A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
TWI414340B (en) High pressure extraction equipment and extracting method therefor
JPH05138677A (en) Method and apparatus for injection molding supported by using gas of injection-molded item
EP0236446A1 (en) Mass transfer extraction of liquids from solids.
JPH0779925B2 (en) Pressure crystallizer and method
US3290891A (en) Batch crystal purification
US5220098A (en) Process for separating 2, 7-dimethylnaphthalene under pressure
JP2515872B2 (en) Pressure crystallizer
JPH0779923B2 (en) Pressure crystallizer
JP2849170B2 (en) Pressure crystallization equipment
JPS56124402A (en) Separating and purifying device for substance
JPH046401B2 (en)
JP2849142B2 (en) Pressure crystallization equipment
JPS63218205A (en) Pressure crystallization method
JPH06102123B2 (en) Pressure crystallization method and device
JPS6231961B2 (en)
JPH02198601A (en) Method for pressure crystallization
JPS6112726B2 (en)
JPH02214505A (en) Pressure crystallizer
JP2964377B2 (en) Garbage processing method and processing device
JPS62176503A (en) Pressure crystallization control method and device therefor
JPH0356761B2 (en)
JPH082403B2 (en) Pressure crystallization method
JPH0412161B2 (en)
JPH0587065B2 (en)
JPH02139001A (en) Pressure crystallization method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees