JPS6320014B2 - - Google Patents

Info

Publication number
JPS6320014B2
JPS6320014B2 JP54092625A JP9262579A JPS6320014B2 JP S6320014 B2 JPS6320014 B2 JP S6320014B2 JP 54092625 A JP54092625 A JP 54092625A JP 9262579 A JP9262579 A JP 9262579A JP S6320014 B2 JPS6320014 B2 JP S6320014B2
Authority
JP
Japan
Prior art keywords
fine movement
movement mechanism
wafer
moving
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54092625A
Other languages
Japanese (ja)
Other versions
JPS5617341A (en
Inventor
Hiroo Kinoshita
Munenori Kanai
Tadao Saito
Kazue Yoshida
Shinichi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9262579A priority Critical patent/JPS5617341A/en
Publication of JPS5617341A publication Critical patent/JPS5617341A/en
Publication of JPS6320014B2 publication Critical patent/JPS6320014B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Machine Tool Units (AREA)

Description

【発明の詳細な説明】 本発明はTr,IC等の半導体装置製造工程にお
いて、比較的小面積のマスクパタンを大口径ウエ
ハ上にステツプアンドレピート方式によつて露光
転写するために必要とされるウエハの高速移動な
らびにマスク・ウエハ相互位置の高精度位置合わ
せを行なうアライメントステージに関するもので
ある。
[Detailed description of the invention] The present invention is used in the manufacturing process of semiconductor devices such as transistors and ICs, which is necessary for exposing and transferring a relatively small-area mask pattern onto a large-diameter wafer by a step-and-repeat method. This invention relates to an alignment stage that moves a wafer at high speed and performs high-precision mutual alignment of the mask and wafer.

現在の半導体装置製造工程においてはウエハよ
りも大面積のマスクによつて多数の同一パタンを
一括して露光転写する方法が用いられているが、
転写すべきパタンの微細化とウエハの大口径化と
によつて、製造工程途中でのウエハ変形がもたら
す転写パタンの局所的な位置ずれが問題となりつ
つあり、これに対処するためのステツプアンドレ
ピート方式による露光転写が研究され始めた。こ
の方式ではウエハを高速・高精度にステツプ移動
させるX・Yステージとマスクパタンをウエハの
局部変形に応じて位置合わせする微動アライメン
ト機構が必要である。X・Yステージは露光装置
以外にも多く用いられる機構であるが、その多く
は鋼球又はローラなどの摩擦を減少した接触式案
内による1軸ステージの上にこれと直交する他の
1軸ステージを重ねたもので、各軸の駆動にはボ
ールねじなどの機械的駆動機構が用いられてい
る。このため、高速移動時には移動に伴なうステ
ージの上下変動や首振りなどが相加され、高精度
化が達せられず、加うるに機械的駆動による高速
化の限界、駆動時の振動、潤滑油によるウエハや
マスクの汚染、ステイツクスリツプ現象による停
止精度の低下などをまぬがれることが困難であつ
た。また、接触式案内の欠点を除くものとして知
られる空気などによる静圧軸受などの非接触式案
内でも1軸ステージを積重ねた方式では上側ステ
ージの移動による重心変動の影響が精度低下をも
たらすので下側ステージは接触式案内を用いるし
かなかつた。更にこれらのステージは、その上部
に載置すべきウエハとそれに対向して別に保持さ
れるべきマスクの位置合わせについて考慮されて
おらず、ステツプアンドレピート露光用アライメ
ントステージとして満足すべきものは未だ発表さ
れていなかつた。
In the current semiconductor device manufacturing process, a method is used in which a large number of identical patterns are exposed and transferred all at once using a mask with a larger area than the wafer.
As the pattern to be transferred becomes finer and the diameter of the wafer becomes larger, local misalignment of the transferred pattern caused by deformation of the wafer during the manufacturing process is becoming a problem, and step-and-repeat technology is being developed to deal with this problem. Research began on exposure transfer using this method. This method requires an X/Y stage that moves the wafer step by step at high speed and high precision, and a fine alignment mechanism that aligns the mask pattern according to local deformation of the wafer. The X/Y stage is a mechanism that is often used in addition to exposure equipment, but most of them are mounted on a 1-axis stage using contact guides that reduce friction, such as steel balls or rollers, with another 1-axis stage perpendicular to it. A mechanical drive mechanism such as a ball screw is used to drive each axis. For this reason, when moving at high speeds, vertical fluctuations and swings of the stage are added to the movement, making it impossible to achieve high precision.In addition, there are limits to high speeds due to mechanical drive, vibration during drive, and lubrication. It has been difficult to avoid contamination of wafers and masks with oil and a decrease in stopping accuracy due to the stick slip phenomenon. In addition, even with non-contact guides such as hydrostatic bearings using air, which are known to eliminate the drawbacks of contact guides, in a system in which single-axis stages are stacked, the influence of center of gravity fluctuation due to the movement of the upper stage causes a decrease in accuracy, so The only option for the side stage was to use a contact type guide. Furthermore, these stages do not take into account the alignment of the wafer to be placed on top of the wafer and the mask to be held separately in opposition to it, and a satisfactory alignment stage for step-and-repeat exposure has not yet been announced. I wasn't there.

本発明はこれらの問題点を解決するために、ウ
エハを載置する移動台をX、Y、Z3方向の静圧
気体軸受により夫々独立に案内するとともに駆動
源およびその案内をも非接触としたものであり、
更にアライメントの目的に用いる各軸方向の微動
機構を配置し、ステツプアンドレピート露光に適
したアライメントステージを提供するものであつ
て、以下図面について詳細に説明する。
In order to solve these problems, the present invention independently guides the movable table on which the wafer is placed using static pressure gas bearings in the X, Y, and Z directions, and also makes the drive source and its guide non-contact. It is a thing,
Furthermore, fine movement mechanisms in each axis direction used for the purpose of alignment are arranged to provide an alignment stage suitable for step-and-repeat exposure, which will be described in detail with reference to the drawings below.

第1図は本発明アライメントステージの一実施
例の概要を示す一部切欠正面図で、1は上面を精
度良く平面に仕上げられた定盤、2はウエハ3を
載置した移動台で、その下面に配置された図示し
ない小穴から吹き出す圧力を制御された空気など
による静圧気体軸受によつて、定盤1に非接触で
保持されている。
FIG. 1 is a partially cutaway front view showing an outline of an embodiment of the alignment stage of the present invention, in which 1 is a surface plate whose upper surface is precisely finished to a flat surface, 2 is a movable table on which a wafer 3 is placed; It is held in a non-contact manner on the surface plate 1 by a static pressure gas bearing using air whose pressure is controlled and which is blown out from a small hole (not shown) arranged on the lower surface.

4は一方向(図では左右方向)に移動台2を移
動させる移動体で、互に平行な対向する2平面か
らなる案内部(図では断面で示される)を有し、
移動台2との間隙は移動台2の図示しない小穴か
ら吹き出す気体により定盤1と移動台2との間隙
と同様に保持されている。5は他の一方向の移動
体で、図において紙面に、垂直方向に移動台2を
移動させる。また移動体5の案内部(図示されな
い)と移動台2の間隙も静圧気体軸受を構成して
いる。6は移動体5を案内するガイドで、移動体
5との間隙は円筒静圧気体軸受を構成している。
7は移動台5の駆動用リニアモータの移動ヨーク
で、コイル板により構成される。8は同じくリニ
アモータの固定ヨークで、磁気回路により構成さ
れる。そして各案内部を井桁状に交差させ、その
井桁状中央部に前記移動台2を案内部に近接して
保持し、コイル板(移動ヨーク)7のガイド6を
上記円筒静圧気体軸受と共通にしたリニアモータ
により非接触に駆動せしめる送り機構によつて移
動体4及び5は定盤1上を直交する2方向に移動
する。
Reference numeral 4 denotes a movable body that moves the movable table 2 in one direction (left-right direction in the figure), and has a guide portion (shown in cross section in the figure) consisting of two mutually parallel opposing planes.
The gap between the movable base 2 and the movable base 2 is maintained in the same way as the gap between the surface plate 1 and the movable base 2 by gas blown out from small holes (not shown) in the movable base 2. Reference numeral 5 denotes another one-directional moving body, which moves the moving table 2 in a direction perpendicular to the paper surface in the figure. Further, the gap between the guide portion (not shown) of the movable body 5 and the movable table 2 also constitutes a static pressure gas bearing. Reference numeral 6 denotes a guide for guiding the movable body 5, and the gap between the guide and the movable body 5 constitutes a cylindrical static pressure gas bearing.
Reference numeral 7 denotes a moving yoke of a linear motor for driving the moving table 5, which is composed of a coil plate. Reference numeral 8 denotes a fixed yoke of the linear motor, which is composed of a magnetic circuit. The respective guide parts are crossed in a parallel cross shape, and the movable table 2 is held in the center of the parallel cross shape in close proximity to the guide parts, and the guide 6 of the coil plate (movable yoke) 7 is shared with the cylindrical hydrostatic gas bearing. The movable bodies 4 and 5 are moved in two orthogonal directions on the surface plate 1 by a feeding mechanism that is driven in a non-contact manner by a linear motor.

このような構成であるため、移動台2の上下方
向は定盤1のみによつて規定され、移動体4又は
5に上下方向の変位が生じても影響されることは
ない。9はマスク、10はマスクホルダであり、
マスクホルダ10は図示しない支持機構で定盤1
との相対位置が変らないように支持され、また、
その内部に設けられた後述するX・Y微動機構、
Z微動機構、θ微動機構によりマスク9の位置な
らびに方向を微調整することができるものであ
る。マスク9の下面とウエハ3の上面は数μm乃
至十数μmのあらかじめ設定された距離に保持さ
れることが必要であり、移動台2の上下変動の少
ない本機構は有効である。第2図は第1図におい
て概要を説明したウエハ移動機構の更に詳細な一
部切欠斜視図である。移動台2と移動体4および
5との夫々の間隙は静圧気体軸受によつて支えら
れ摩擦は全く無いので、移動台2の移動は直交す
る各方向について全く独立であり相互干渉はな
い。本図の実施例におけるリニヤモータは、移動
ヨーク(コイル板)7として平板状に導線を矩形
に巻き回したコイル、固定ヨーク8として夫々2
板の対向した平板上の磁石8aおよび8bを用い
ている。移動ヨーク7のコイルの両端は夫々磁石
8aと8bの磁界の内に入つておりコイル電流を
制御することにより任意の駆動を行ない得る。電
流の制御は、L形ミラー11を図示しないレーザ
インタフエロメータにより位置計測し、この計測
値と所要の位置との誤差から演算によつて求める
ことができ、レーザインタフエロメータの高精度
と、近年の高速演算回路(特にマイクロコンピユ
ータなどによる回路)の高精度から十分精度の高
い制御が可能である。
With such a configuration, the vertical direction of the movable table 2 is defined only by the surface plate 1, and is not affected even if the movable body 4 or 5 is displaced in the vertical direction. 9 is a mask, 10 is a mask holder,
The mask holder 10 is attached to the surface plate 1 by a support mechanism (not shown).
It is supported so that the relative position with respect to it does not change, and
The X/Y fine movement mechanism, which will be described later, is provided inside the
The position and direction of the mask 9 can be finely adjusted using the Z fine movement mechanism and the θ fine movement mechanism. It is necessary that the lower surface of the mask 9 and the upper surface of the wafer 3 be maintained at a preset distance of several μm to more than ten μm, and this mechanism in which the vertical movement of the moving table 2 is small is effective. FIG. 2 is a more detailed partially cutaway perspective view of the wafer moving mechanism outlined in FIG. 1. The respective gaps between the movable table 2 and the movable bodies 4 and 5 are supported by static pressure gas bearings and there is no friction at all, so the movement of the movable table 2 is completely independent in each orthogonal direction and there is no mutual interference. The linear motor in the embodiment shown in this figure has a rectangular coil wound around a flat plate as a moving yoke (coil plate) 7, and two coils as a fixed yoke 8.
Magnets 8a and 8b on opposite flat plates are used. Both ends of the coil of the moving yoke 7 are within the magnetic fields of magnets 8a and 8b, respectively, and arbitrary driving can be performed by controlling the coil current. The current can be controlled by measuring the position of the L-shaped mirror 11 with a laser interferometer (not shown) and calculating the error between this measured value and the desired position. Sufficiently precise control is possible due to the high precision of recent high-speed arithmetic circuits (particularly circuits using microcomputers, etc.).

第3図はリニアモータとしてリニアパルスモー
タを用いたときの実施例を示すものであるが、リ
ニアパルスモータは公知の技術であるので説明を
省略する。この場合には位置精度は低下するが制
御が容易となる効果がある。位置精度は本発明に
よるウエハ移動機構には機械的摩擦が全くないの
で、リニアパルスモータを使用したときの位置精
度はリニアパルスモータの誤差のみとなるもので
ある。
FIG. 3 shows an embodiment in which a linear pulse motor is used as the linear motor, but since the linear pulse motor is a well-known technique, a description thereof will be omitted. In this case, the positional accuracy decreases, but the effect is that control becomes easier. Since the wafer moving mechanism according to the present invention has no mechanical friction, the positional accuracy when a linear pulse motor is used is only due to the error of the linear pulse motor.

第4図は第1図で説明を省略したX・Y微動機
構、Z微動機構、θ微動機構の実施例の概要を示
す分解斜視図、第5図は同じくその断面図、第6
図は同じくX・Y微動機構、θ微動機構の動作を
説明するための第5図におけるA−A断面図であ
る。これらの図において、12は永久磁石13
(第5図参照)を含む磁気回路、14は導線を巻
き回したコイルボビン、15はコイルボビン14
を支える環状振動板、16はコイルボビンと同様
に環状振動板の内周で支えられる剛体で作られた
中空の円筒、17はマスク9を例えば真空吸着で
保持するマスク保持部、18は縦方向の伸縮が少
なく、横方向には自由に撓み得る細い金属のワイ
ヤ、19はワイヤ18を支え、コイルボビン14
の下部に固着された剛性の高い支持板、20,2
1,22は例えば円筒形の電歪素子で電圧を印加
することにより円筒の軸方向に微少量伸縮できる
ものである。電歪素子20,21,22の各一端
は円筒16の下部に固着され、他の各一端は剛体
球23,24,25を介してマスク保持部17接
し、電歪素子20,21,22に対応するバネ2
6,27,28の弾力によつて押しつけられてい
る。このような構造となつているため、図示しな
い電源装置から精度良く制御された電流がコイル
ボビン14の導線に印加されると動電力によつて
コイルボビンがZ方向に微少量動き、環状振動板
15の弾性力と釣合つた位置で停止する。これに
よつてマスク9のZ微動機能が達せられることは
明らかである。このときX・Y方向には環状振動
板15の剛性により動くことがない。つぎに電歪
素子20に図示しない別な電源から電圧が印加さ
れるとマスク9はX方向に微動が与えられる。ま
た電歪素子21,22に相互に等しい電圧が印加
されるとマスク9はY方向に微動が与えられ、電
歪素子21,22に大きさが相等しく極性の逆な
電圧が印加されるとマスク9にはθ微動が与えら
れる。なお、θ微動に伴ないX方向の動きも生ず
るが、θの位置合わせをX・Yの位置合わせに先
立つて行なうように動作させることによつて全体
の動作に支障を与えることはない。これらの微動
機構は高々2〜3μmのストロークで十分であり、
通常良く知られている機械的な微動機構“例えば
ネジ送り”によることも出来る。また、これらの
微動機構は先に述べた移動台2の上部に載置し
て、ウエハ3に微動を与えても位置合わせの目的
が達せられることは明らかである。
FIG. 4 is an exploded perspective view showing an outline of an embodiment of the X/Y fine movement mechanism, Z fine movement mechanism, and θ fine movement mechanism whose explanations are omitted in FIG. 1, FIG. 5 is a sectional view thereof, and
The figure is also a sectional view taken along the line AA in FIG. 5 for explaining the operations of the X/Y fine movement mechanism and the θ fine movement mechanism. In these figures, 12 is a permanent magnet 13
(see Figure 5); 14 is a coil bobbin around which a conducting wire is wound; 15 is a coil bobbin 14;
16 is a hollow cylinder made of a rigid body that is supported by the inner periphery of the annular diaphragm like a coil bobbin. 17 is a mask holding part that holds the mask 9 by vacuum suction, for example. 18 is a vertical diaphragm. A thin metal wire 19 that has little expansion and contraction and can be freely bent in the lateral direction supports the wire 18 and is attached to the coil bobbin 14.
a highly rigid support plate fixed to the lower part of the
Numerals 1 and 22 are, for example, cylindrical electrostrictive elements that can be expanded and contracted by a minute amount in the axial direction of the cylinder by applying a voltage. One end of each of the electrostrictive elements 20 , 21 , 22 is fixed to the lower part of the cylinder 16 , and the other ends of each of the electrostrictive elements 20 , 21 , 22 are in contact with the mask holding part 17 via rigid balls 23 , 24 , 25 . Corresponding spring 2
6, 27, and 28. With this structure, when a precisely controlled current is applied to the conductor of the coil bobbin 14 from a power supply device (not shown), the coil bobbin moves a small amount in the Z direction due to the electromotive force, causing the annular diaphragm 15 to move by a small amount. It stops at a position that balances the elastic force. It is clear that the Z fine movement function of the mask 9 is achieved by this. At this time, the annular diaphragm 15 does not move in the X and Y directions due to its rigidity. Next, when a voltage is applied to the electrostrictive element 20 from another power source (not shown), the mask 9 is given a slight movement in the X direction. Further, when equal voltages are applied to the electrostrictive elements 21 and 22, the mask 9 is slightly moved in the Y direction, and when voltages of equal magnitude and opposite polarity are applied to the electrostrictive elements 21 and 22, The mask 9 is given a θ fine movement. Although movement in the X direction occurs along with the θ fine movement, the overall operation is not hindered by performing the θ positioning prior to the X and Y positioning. For these fine movement mechanisms, a stroke of at most 2 to 3 μm is sufficient;
It is also possible to use a well-known mechanical fine movement mechanism such as screw feeding. Furthermore, it is clear that the purpose of positioning can be achieved even if these fine movement mechanisms are placed on the upper part of the above-mentioned moving table 2 and give fine movement to the wafer 3.

つぎに第7図はZ微動機構の他の実施例の概要
を示す分解斜視図、第8図は同じくその断面図
で、コイルボビン29を図に示すように3組の
別々な巻線30,31,32で構成し、永久磁石
33を含む磁気回路34の内に設置したものであ
る。また35は環状振動板である。ここで巻線3
0,31,32は夫々同一の電流を印加すれば第
5図において説明したコイルボビン14と磁気回
路12の動作と全く同様にZ微動が得られる。ま
た巻線30,31,32の各々に別々な電流を印
加すればコイルボビン29はZ軸に対して微少傾
斜が与えられ、マスク9にも微少傾斜を与えるこ
とができる。この動作はマスク9に対向するウエ
ハ3が局部的な変形などによつて、その上面に微
少傾斜が生じている場合に、マスク9をウエハ3
の表面と平行に設置するのに有効である。
Next, FIG. 7 is an exploded perspective view showing the outline of another embodiment of the Z fine movement mechanism, and FIG. , 32, and is installed in a magnetic circuit 34 including a permanent magnet 33. Further, 35 is an annular diaphragm. Here winding 3
If the same current is applied to the coils 0, 31, and 32, a Z fine movement can be obtained in exactly the same manner as the operation of the coil bobbin 14 and magnetic circuit 12 explained in FIG. Further, by applying separate currents to each of the windings 30, 31, and 32, the coil bobbin 29 is given a slight inclination with respect to the Z axis, and the mask 9 can also be given a slight inclination. This operation is performed when the upper surface of the wafer 3 facing the mask 9 has a slight inclination due to local deformation or the like.
It is effective when installed parallel to the surface of the

以上説明したX・Y微動、θ微動、Z微動およ
びZ方向の傾斜角微動は、位置合わせ検出顕微鏡
が非接触ギヤツプ検出器によつてマスクとそれに
対向するウエハの部分的な表面の空間的位置誤差
検出信号によつて最適に調整されるものであり、
これらの検出器は既に公知であるので説明は省略
する。
The X/Y fine movement, θ fine movement, Z fine movement, and tilt angle fine movement in the Z direction explained above are detected by the positioning detection microscope using a non-contact gap detector to detect the spatial position of the partial surface of the mask and the wafer facing it. It is optimally adjusted by the error detection signal,
Since these detectors are already known, their explanation will be omitted.

以上説明したように、本発明によれば、ウエハ
を高速、高精度に移動させることが可能であり、
しかもマスクをウエハの対向する部分に高精度に
空間的位置合わせを行なうことが可能となり、例
えウエハに部分的な変形があつても、ウエハの各
部分部分については高精度に位置合わせが可能で
ある。このため大口径のウエハにも微細なパター
ンの露光転写を行なうことができる。しかもウエ
ハ移動時間、位置合わせ時間の短かい優れたステ
ツプアンドレピート露光装置を実現できるもので
ある。
As explained above, according to the present invention, it is possible to move a wafer at high speed and with high precision.
Moreover, it is now possible to spatially align the mask with the opposing parts of the wafer with high precision, and even if the wafer is partially deformed, each part of the wafer can be aligned with high precision. be. Therefore, exposure and transfer of fine patterns can be performed even on large-diameter wafers. Moreover, it is possible to realize an excellent step-and-repeat exposure apparatus with short wafer movement time and short alignment time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明アライメントステージの一実施
例の概要を示す一部切欠正面図、第2図は第1図
のウエハ移動機構の詳細な一部切欠斜視図、第3
図は第2図のリニアモータを別な形式とした一部
切欠斜視図、第4図は第1図のマスクホルダに組
込まれる微動機構を示す分解斜視図、第5図は第
4図の機構断面図、第6図は第5図のA−A断面
図、第7図は第4図のZ微動機構の他の実施例を
示す分解斜視図、第8図は第7図の機構断面図で
ある。 1……定盤、2……移動台、3……ウエハ、
4,5……移動体、6……ガイド、7……リニア
モータの移動ヨーク、8……リニアモータの固定
ヨーク、9……マスク、10……マスクホルダ、
11……L形ミラー、12……磁気回路、13…
…永久磁石、14……コイルボビン、15……環
状振動板、16……中空円筒、17……マスク保
持部、18……ワイヤ、19……支持板、20,
21,22……電歪素子、23,24,25……
剛体球、26,27,28……バネ、29……コ
イルボビン、30,31,32……巻線、33…
…永久磁石、34……磁気回路、35……環状振
動板。
FIG. 1 is a partially cutaway front view showing an outline of an embodiment of the alignment stage of the present invention, FIG. 2 is a detailed partially cutaway perspective view of the wafer moving mechanism shown in FIG. 1, and FIG.
The figure is a partially cutaway perspective view of a different type of linear motor in Figure 2, Figure 4 is an exploded perspective view showing the fine movement mechanism incorporated in the mask holder in Figure 1, and Figure 5 is the mechanism in Figure 4. 6 is a sectional view taken along the line AA in FIG. 5, FIG. 7 is an exploded perspective view showing another embodiment of the Z fine movement mechanism shown in FIG. 4, and FIG. 8 is a sectional view of the mechanism shown in FIG. 7. It is. 1... surface plate, 2... moving table, 3... wafer,
4, 5... Moving body, 6... Guide, 7... Moving yoke of linear motor, 8... Fixed yoke of linear motor, 9... Mask, 10... Mask holder,
11... L-shaped mirror, 12... Magnetic circuit, 13...
... Permanent magnet, 14 ... Coil bobbin, 15 ... Annular diaphragm, 16 ... Hollow cylinder, 17 ... Mask holding part, 18 ... Wire, 19 ... Support plate, 20,
21, 22... Electrostrictive element, 23, 24, 25...
Rigid sphere, 26, 27, 28... Spring, 29... Coil bobbin, 30, 31, 32... Winding wire, 33...
...Permanent magnet, 34... Magnetic circuit, 35... Annular diaphragm.

Claims (1)

【特許請求の範囲】 1 互に平行な対向する2平面からなる案内部を
有し、1対の平行な円筒ガイドからなる静圧気体
軸受に案内された移動体を、移動ヨークのガイド
を上記円筒静圧気体軸受と共通にしたリニヤモー
タにより非接触に駆動する送り機構と、該送り機
構に直交する他の同一構造の送り機構を、各案内
部を井桁状に交差させ、その井桁状中央部に、こ
れとは別に加工精度の良い定盤上を矩形平面形の
静圧気体軸受によつて浮上しているウエハを搭載
する移動台を載置し、該移動台の側面に設けられ
た矩形平面形の静圧気体軸受によつて、案内部に
近接して保持し、上記送り機構の移動に伴つて定
盤上を直交する2方向に移動するウエハ移動機構
と、該ウエハ移動機構の上部に対向近接して置か
れ、ウエハ移動機構の2つの移動方向と夫々同じ
方向に微少距離移動するX・Y微動機構と、これ
に直交するZ微動機構と、X・Y微動方向の平面
内で微少角回転するθ微動機構を有するマスクホ
ルダとから構成されることを特徴とするステツプ
アンドレピート露光用アライメントステージ。 2 X・Y微動機構、Z微動機構、θ微動機構の
全部又は1部をウエハ移動機構の移動台側にもう
け、マスクホルダ側の微動機構の全部又は1部を
とり除いた特許請求の範囲第1項記載のステツプ
アンドレピート露光用アライメントステージ。 3 X・Y微動機構として、その一方向には1個
の電歪素子を、他の一方向には平行する2個の電
歪素子を配置し、該平行する2個の電歪素子に互
に異なる電圧を印加することにより、θ微動を可
能ならしめθ微動機構をとり除いた特許請求の範
囲第1項または第2項記載のステツプアンドレピ
ート露光用アライメントステージ。 4 Z微動機構として、Z微動方向に垂直な平面
に外周を固定した環状振動板を配置し、該環状振
動板の内周には3個の分離された板状駆動コイル
をもうけたボビンを取付け、別に固定された環状
磁気回路と該3個の駆動コイルに流れる電流の動
電力によつてボビンをZ方向に微動させるととも
に、その傾斜角をも微小変させることを可能とし
た特許請求の範囲第1項または第2項記載のステ
ツプアンドレピート露光用アライメントステー
ジ。
[Claims] 1. A movable body having a guide portion consisting of two mutually parallel opposing planes and guided by a hydrostatic gas bearing consisting of a pair of parallel cylindrical guides, with the guide of the movable yoke above the A feed mechanism that is driven non-contact by a linear motor that is common to a cylindrical static pressure gas bearing, and another feed mechanism of the same structure that is orthogonal to the feed mechanism, are arranged so that each guide part intersects in a parallel cross shape, and the central part of the cross cross shaped Separately, a moving table on which a wafer is mounted, which is floating on a rectangular planar static pressure gas bearing, is mounted on a surface plate with good processing accuracy, and a rectangular plate provided on the side of the moving table is installed. a wafer moving mechanism that is held close to the guide section by a planar static pressure gas bearing and moves in two orthogonal directions on the surface plate as the feeding mechanism moves; and an upper part of the wafer moving mechanism. An X/Y fine movement mechanism that is placed opposite to and close to the wafer movement mechanism and moves a minute distance in the same direction as the two movement directions of the wafer movement mechanism, and a Z fine movement mechanism that is orthogonal to this, and An alignment stage for step-and-repeat exposure, comprising a mask holder having a θ fine movement mechanism that rotates by a minute angle. 2. Claim No. 2 in which all or part of the X/Y fine movement mechanism, Z fine movement mechanism, and θ fine movement mechanism are provided on the moving stage side of the wafer movement mechanism, and all or part of the fine movement mechanism on the mask holder side is removed. The step-and-repeat exposure alignment stage described in item 1. 3 As an X/Y fine movement mechanism, one electrostrictive element is arranged in one direction and two parallel electrostrictive elements are arranged in the other direction, and the two parallel electrostrictive elements are 3. The step repeat exposure alignment stage according to claim 1, wherein the θ fine movement mechanism is eliminated by applying different voltages to the θ fine movement mechanism. 4 As the Z fine movement mechanism, an annular diaphragm whose outer periphery is fixed on a plane perpendicular to the Z fine movement direction is arranged, and a bobbin with three separate plate-shaped drive coils is attached to the inner periphery of the annular diaphragm. , a separately fixed annular magnetic circuit and the motive force of the current flowing through the three drive coils to slightly move the bobbin in the Z direction, and also make it possible to slightly change the inclination angle. The alignment stage for step-and-repeat exposure according to item 1 or 2.
JP9262579A 1979-07-23 1979-07-23 Alignment stage for step and repeat exposure Granted JPS5617341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262579A JPS5617341A (en) 1979-07-23 1979-07-23 Alignment stage for step and repeat exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262579A JPS5617341A (en) 1979-07-23 1979-07-23 Alignment stage for step and repeat exposure

Publications (2)

Publication Number Publication Date
JPS5617341A JPS5617341A (en) 1981-02-19
JPS6320014B2 true JPS6320014B2 (en) 1988-04-26

Family

ID=14059617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262579A Granted JPS5617341A (en) 1979-07-23 1979-07-23 Alignment stage for step and repeat exposure

Country Status (1)

Country Link
JP (1) JPS5617341A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950538A (en) * 1982-09-17 1984-03-23 Hitachi Ltd Wafer carrier
US4588288A (en) * 1983-07-01 1986-05-13 Canon Kabushiki Kaisha Static pressure bearing and transport device utilizing the same
JPS60218650A (en) * 1984-04-16 1985-11-01 Canon Inc Pattern exposure method
JPS60223119A (en) * 1984-04-20 1985-11-07 Hitachi Ltd Noncontacting driving type precise moving base
JPS615545U (en) * 1984-06-14 1986-01-14 宏臣 小笠原 Straight moving table
JPS6130345A (en) * 1984-07-20 1986-02-12 Omron Tateisi Electronics Co Floating stage utilizing air with static-pressure
JPS6131171A (en) * 1984-07-24 1986-02-13 菊地 眞 Warming apparatus for hyperthermia
JPS61125749A (en) * 1984-11-21 1986-06-13 Disco Abrasive Sys Ltd Composite table
JPS6276644A (en) * 1985-09-30 1987-04-08 Toshiba Corp Longitudinal moving table
JPS62156425U (en) * 1986-03-27 1987-10-05
JP2714502B2 (en) 1991-09-18 1998-02-16 キヤノン株式会社 Moving stage device
JP2899250B2 (en) * 1996-07-29 1999-06-02 キヤノン株式会社 Semiconductor manufacturing equipment
JP2002252166A (en) * 2001-02-27 2002-09-06 Canon Inc Stage device, aligner, device manufacturing method and movement guide method
JP2002365026A (en) * 2001-06-07 2002-12-18 Sigma Technos Kk Substrate inspection apparatus
US8102505B2 (en) * 2007-03-20 2012-01-24 Asml Netherlands B.V. Lithographic apparatus comprising a vibration isolation support device
JP2009258195A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Proximity exposure device, substrate moving method for proximity exposure device, and method of manufacturing display panel
JP5047040B2 (en) * 2008-04-14 2012-10-10 株式会社日立ハイテクノロジーズ Proximity exposure apparatus, substrate moving method of proximity exposure apparatus, and display panel substrate manufacturing method
JP5406507B2 (en) * 2008-11-06 2014-02-05 オイレス工業株式会社 Planar moving stage device
DE102010061167B3 (en) * 2010-12-10 2012-05-31 Leica Microsystems Cms Gmbh microscope stage
CN117826546A (en) * 2024-02-28 2024-04-05 无锡迪思微电子有限公司 Mask plate bearing mechanism and mask plate measuring machine

Also Published As

Publication number Publication date
JPS5617341A (en) 1981-02-19

Similar Documents

Publication Publication Date Title
JPS6320014B2 (en)
US6353271B1 (en) Extreme-UV scanning wafer and reticle stages
US5864389A (en) Stage apparatus and exposure apparatus and device producing method using the same
US8212435B2 (en) High efficiency voice coil motor
KR100283784B1 (en) Wafer stage with reference surface
US6724466B2 (en) Stage assembly including a damping assembly
US6888620B2 (en) System and method for holding a device with minimal deformation
JPH083756B2 (en) Positioning device
US6603531B1 (en) Stage assembly including a reaction assembly that is connected by actuators
US6486941B1 (en) Guideless stage
US20030173833A1 (en) Wafer stage with magnetic bearings
JPH06201012A (en) Transfer mechanism, aligner with transfer mechanism and lithographic device with aligner
US6794660B2 (en) Long stroke mover for a stage assembly
US7282819B2 (en) Stage apparatus, exposure apparatus, and device manufacturing method
US6593997B1 (en) Stage assembly including a reaction assembly
US20040080730A1 (en) System and method for clamping a device holder with reduced deformation
US6882126B2 (en) Holder mover for a stage assembly
US20040004703A1 (en) Method and apparatus for reducing rotary stiffness in a support mechanism
US20020137358A1 (en) Multiple point support assembly for a stage
JPH0557550A (en) Precision one-step, six-degree-of-freedom stage
JP2780837B2 (en) Movable stage device
JP2001102279A (en) Stage device and aligner
US6515381B1 (en) Cantilever stage
JPH09320955A (en) Drive unit and stage device
US6648509B2 (en) Friction-drive stage