JPS60223119A - Noncontacting driving type precise moving base - Google Patents

Noncontacting driving type precise moving base

Info

Publication number
JPS60223119A
JPS60223119A JP59078434A JP7843484A JPS60223119A JP S60223119 A JPS60223119 A JP S60223119A JP 59078434 A JP59078434 A JP 59078434A JP 7843484 A JP7843484 A JP 7843484A JP S60223119 A JPS60223119 A JP S60223119A
Authority
JP
Japan
Prior art keywords
moving table
magnet
noncontacting
moving
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59078434A
Other languages
Japanese (ja)
Other versions
JPH0516167B2 (en
Inventor
Motoya Taniguchi
素也 谷口
Ryuichi Funatsu
隆一 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078434A priority Critical patent/JPS60223119A/en
Publication of JPS60223119A publication Critical patent/JPS60223119A/en
Publication of JPH0516167B2 publication Critical patent/JPH0516167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Machine Tool Units (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)

Abstract

PURPOSE:To obtain a moving base having ultra-high accuracy not affected by the vibration and heat of a driving section by transmitting the power of a power source over a moving table through a noncontacting joint, forming a predetermined clearance between a sliding shaft and the moving table and sliding the moving table in a noncontacting manner. CONSTITUTION:A magnet 17 is moved rectilinearly by flowing currents through a linear coil 16. Several dozen kg sucking force works between the linear coil 16 and the magnet 17 at all time in case of said rectilinear movement. The sucking force is supported by a rectilinear bearing 24 while the pulsation displacement of the magnet 17 is constrained, thus resulting in rectilinear movement with high accuracy. The transfer (driving force) of the magnet 17 is transmitted over a moving table 14 by a noncontacting joint 20, and the moving table 14 is shifted slowly under the state in which a clearance (g) is maintained along a sliding shaft 12. With the transmission of power over the moving table 14 by said noncontacting joint 20, the vibration of the magnet 17 is absorbed by a clearance (h) while the clearance (h) conducts a kind of heat-insulating action, and heat transfer is relaxed. The moving base is used for the production of a semiconductor, the production of a machine for superfine machining or superfine measurement.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超精密加工或は測定を行なうための移動台の
改良に係ル、外的な振動動や熱的な影響をなくシ、よル
精度を向上した移動台に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the improvement of a moving table for performing ultra-precision machining or measurement. This invention relates to a moving platform with improved accuracy.

〔発明の背景〕[Background of the invention]

例えば、半導体用露光装置、超精密加工用工作機械或は
精密測定器などには、それぞれの精度に応じた超精密な
試料(ワーク)#動台が使用される。
For example, ultra-precise sample (work) moving tables are used in semiconductor exposure apparatuses, ultra-precision machining machine tools, precision measuring instruments, etc., depending on the accuracy of each.

その内最も使用されている移動台車を第1図に示し説明
する。
The most commonly used mobile cart is shown in FIG. 1 and will be described below.

図にお−て、この移動台送シネジ1とモータ2を用いた
ものである。即ち、モータ2の回転が。
In the figure, this movable table feed screw 1 and motor 2 are used. That is, the rotation of the motor 2.

送りネジ1に螺合しているナツト5によシ直線運動に変
換され、スライド軸6に嵌合したスライダ4を高精度に
移動するようにしたものである。
The nut 5 screwed into the feed screw 1 converts the motion into linear motion, and the slider 4 fitted onto the slide shaft 6 is moved with high precision.

然しなから、現在においては、半導体露光装置における
ウェハ移動台とか、超精密研削盤や旋盤などの加工物又
は工具の移動台とか、真直度測定器をはじめとする精密
測定器の移動台等にfi>Lnては、0.05μm以下
の精度が要求され、駆動系からの熱や振動或は被駆動物
の移動誤差が大きく影響し、0.05μm以下の精度を
出すには、送シネジ方式ではとうてb達成し得ないのが
実情である。
However, at present, it is used as a wafer moving table in semiconductor exposure equipment, a moving table for workpieces or tools such as ultra-precision grinders and lathes, and a moving table for precision measuring instruments such as straightness measuring instruments. fi>Ln, accuracy of 0.05 μm or less is required, and heat and vibration from the drive system or movement error of the driven object have a large effect. The reality is that it is impossible to achieve b.

第1図に示した送シネジ方式につbて更に詳しく説明す
ると、ナツト3がスライダ4に一体的に取付けられてい
るために、モータ2の振動や熱がスライダ4に伝わル、
スライダ4を振動させたシ熱変形をさせることになる。
To explain in more detail the feed screw system shown in FIG.
The slider 4 is vibrated and thermally deformed.

又送シネジ1を軸支している軸受5のガタや、スライダ
4の移動方向と送シネジ1との間の平行度の誤差にょル
、スライダ4がスライド軸6に倣って移動する際、常に
外的な変動を受け、高精度の移動が不可能である。
In addition, when the slider 4 moves along the slide shaft 6 due to play in the bearing 5 that pivotally supports the feed screw 1 and errors in parallelism between the moving direction of the slider 4 and the feed screw 1, High precision movement is not possible due to external fluctuations.

又送シネジ方式は、構成する機械要素及び接続用加工部
品が多込ため、駆動系としての剛性が低下し、又精密送
シのための防塵対策などが不可欠であシ保守の面でも問
題がある。
In addition, the feeding screw method has many mechanical elements and connection processing parts, which reduces the rigidity of the drive system, and requires dust-proof measures for precision feeding, which also poses problems in terms of maintenance. be.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に鑑みなされたものであシ、駆動部の
振動や熱に影響されない超高精度の移動台を提供せんと
するものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide an ultra-high precision moving table that is not affected by vibrations or heat of the drive unit.

〔発明の概要〕[Summary of the invention]

即ち本発明は、振動の伝達や熱の伝導を避けるために、
駆動源からの駆動力を非接触形の継手を介して移動テー
ブルに伝えるようにすると共に、移動テーブルとガイド
軸との間においても非接触形にして更忙振動や熱の影響
を少なくすると共に機構上派生する外的な変動をなくす
ようにしたものであって、内面に静圧軸受パッドを有す
る移動テーブルとし、この移動テーブルの静圧軸受パッ
ド内に一定の間隙をもってスライド軸を挿通することに
よシ移動テーブルを非接触の状態でスライド可能にし、
直進変位を発生させる駆動源の駆動力を非接触形の継手
を介して上記移動テーブルに伝達するよう釦したことを
特徴とする。
That is, in order to avoid transmission of vibration and conduction of heat, the present invention
The driving force from the drive source is transmitted to the moving table via a non-contact joint, and the moving table and guide shaft are also non-contact to reduce the effects of vibration and heat. A movable table designed to eliminate mechanically derived external fluctuations, with a hydrostatic bearing pad on its inner surface, and a slide shaft inserted through the hydrostatic bearing pad of the movable table with a certain gap. The movable table can be slid in a non-contact manner,
The present invention is characterized by a button that transmits the driving force of a driving source that generates linear displacement to the movable table via a non-contact type joint.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例につbて詳細に説明する。 An embodiment of the present invention will be described in detail below.

#!2図及び第3図におりて、移動テーブル14の内面
には、多数の給気孔又は給気溝13′を有する静圧軸受
パッド13が形成されてbる。12は中空の四角柱から
成るスライド軸であシ、静止軸受パッド13内に一足間
隙gをもって挿通されて因る。19はスライドパッドで
あ)、静圧軸受パッド13に結合るるいは一体的に形成
されてbる。
#! 2 and 3, a hydrostatic bearing pad 13 having a large number of air supply holes or air supply grooves 13' is formed on the inner surface of the movable table 14. Reference numeral 12 denotes a slide shaft made of a hollow rectangular prism, which is inserted into the stationary bearing pad 13 with a one-leg gap g. Reference numeral 19 denotes a slide pad), which is coupled to or integrally formed with the hydrostatic bearing pad 13.

このスライドパッド19にも給気孔又は給気溝19′が
設けられている。21は、スライドパッド19を逃げる
ために設けられた逃げ溝であ勺、この逃げ溝によって、
スライド軸12にそって移動テーブル14が移動可能と
なって因る。
This slide pad 19 is also provided with an air supply hole or air supply groove 19'. Reference numeral 21 denotes an escape groove provided to allow the slide pad 19 to escape.
This is because the movable table 14 is movable along the slide shaft 12.

16は、ケーシング22に固定されたリニアコイル、1
7は、直進軸受24を介して・・ウジング23に懸吊さ
れたマグネットである。このリニアコイル16とマグネ
ット17[エルスライド軸12の中空部にリニアモータ
15を形成する。18は。
16 is a linear coil fixed to the casing 22;
7 is a magnet suspended from the housing 23 via a linear bearing 24. This linear coil 16 and magnet 17 [A linear motor 15 is formed in the hollow part of the L slide shaft 12. 18 is.

−足間l!Jhをもってスライドパッド19を挾むよう
にマグネット19に立設された対向プレートであル、マ
グネット17の駆動力が、これによってスライドパッド
’19に伝えられる。即ち、スライドパッド19と対向
グレート18によって、非接触形継手20を形成する。
- Between the legs! The opposing plate is erected on the magnet 19 so as to sandwich the slide pad 19 with Jh, and the driving force of the magnet 17 is thereby transmitted to the slide pad '19. That is, the slide pad 19 and the opposing grate 18 form a non-contact type joint 20.

25は緩衝材であり、マグネット17の移動方向に剛性
が高く且つ移動方向に直角な方向に剛性が低い構成にな
ってbる。
Reference numeral 25 denotes a cushioning material, which has high rigidity in the moving direction of the magnet 17 and low rigidity in the direction perpendicular to the moving direction.

なお11は、スライド軸12を支持するためのベースブ
ロックである。
Note that 11 is a base block for supporting the slide shaft 12.

以上のように構成した本実施例の作用について以下説明
する。矢印(イ)よシ例えば空気を圧送することによっ
て、移動テーブル14は、スライド軸12に対し間隙g
をもって非接触の状態で保持される。同様にスライドパ
ッド19と対向グレート18との間に間1!Jhを保っ
た状態で非接触継手20が形成される。この場合、給気
孔又は給気溝13′又は19′(空気絞シ方式)には、
自成絞シ方式、オリフィス絞シ方式及び面絞シ方式があ
るが。
The operation of this embodiment configured as above will be explained below. For example, by force-feeding air in the direction of arrow (a), the movable table 14 can be moved to a gap g relative to the slide shaft 12.
held in a non-contact state. Similarly, there is a gap of 1! between the slide pad 19 and the opposing grate 18! The non-contact joint 20 is formed with Jh maintained. In this case, in the air supply hole or air supply groove 13' or 19' (air throttling method),
There are self-drawing methods, orifice drawing methods, and surface drawing methods.

この場合静圧軸受パッド13及びスライドパッド19の
剛性を高く保ち、負荷容量が高く且つ空気消費量の少な
い面絞ル方式を用するのが得策である。 ゛ 次に移動テーブル14は1次のようKして行なわれる。
In this case, it is advisable to keep the rigidity of the hydrostatic bearing pad 13 and the slide pad 19 high, and to use a surface constriction system that has a high load capacity and low air consumption. ``Next, the moving table 14 is moved in a linear manner.

リニアコイル16に電流を流すことにょシ、マグネット
17は、直進移動する。この場合。
When current is applied to the linear coil 16, the magnet 17 moves straight. in this case.

リニアコイル16とマグネット17との間には。between the linear coil 16 and the magnet 17.

常時数10kgの吸引力が働く。この吸引力は、直進軸
受24によって支持されると共に、マグネット17の脈
動変位が拘束され、高精度の直進移動となる。このマグ
ネット17の移動(駆動力)は、上記非接触継手20に
よシ移動テーブル14に伝えられ、移動テーブル14は
、スライド軸12に沿って間@gを保った状態で静かに
移動する。
Suction power of several 10 kg is always working. This attractive force is supported by the linear bearing 24, and the pulsating displacement of the magnet 17 is restrained, resulting in highly accurate linear movement. This movement (driving force) of the magnet 17 is transmitted to the moving table 14 by the non-contact joint 20, and the moving table 14 moves quietly along the slide shaft 12 while maintaining the distance @g.

上記非接触継手20による移動テーブル14への動力の
伝達は、間ihによってマグネット17の振動が吸収さ
れると共に間i*hは一種の断熱作用をし、熱の伝導が
緩和される。又一定の間隙gを保ってスライド軸12上
をスライド°する移動テーブル14の場合も同様に1間
隙gによって振動の発失がなく且つ熱の伝導もなく、そ
れ以外にスティックスリラグのなしなめらかな走行が得
られる。
In the transmission of power to the movable table 14 by the non-contact joint 20, the vibration of the magnet 17 is absorbed by the gap ih, and the gap i*h acts as a kind of heat insulation, thereby relaxing heat conduction. Similarly, in the case of the movable table 14 that slides on the slide shaft 12 while maintaining a constant gap g, there is no loss of vibration and no heat conduction due to one gap g, and there is no stick-slip lag. You can get a good driving experience.

又移動テーブル14とスライド軸12に、セラミックス
材料を周込た場合、次の利点がある。
Furthermore, when the moving table 14 and the slide shaft 12 are made of ceramic material, there are the following advantages.

例えばアルミナセラミックス材料は、他の金属に比べて
比重が6.5以下と軽量であシ、熱膨張率も低く、且つ
硬度も高b0 又脆性材であるので、研削、ラップによシ軸受面の加工
精度が出し易いという長所を有する。
For example, alumina ceramic material is lightweight with a specific gravity of 6.5 or less compared to other metals, has a low coefficient of thermal expansion, and has a high hardness. It has the advantage of being easy to achieve machining accuracy.

従って、移動テーブル14及びスライド軸12をアルミ
ナセラミックスで作った場合は、間11gを工9小さく
高精度に加工することができ、且つ軽量で高剛性にして
、高精度の走行性が可能である。
Therefore, when the movable table 14 and the slide shaft 12 are made of alumina ceramics, they can be processed with high accuracy by reducing the gap (11g) by 9cm, and are lightweight and highly rigid, allowing for highly accurate running performance. .

第4図はX−Yステージに適用したものであ)。Fig. 4 shows an example applied to an X-Y stage).

65は、X移動テーブル、54はそのスライド軸。65 is an X-movement table, and 54 is its slide axis.

31はX移動テーブル、32はそのガイド軸である。又
37はリニアモータ、58は非接触継手である。なお、
30はX−Yステージ、35はペース、36は試料台で
ある。
31 is an X-movement table, and 32 is its guide shaft. Further, 37 is a linear motor, and 58 is a non-contact joint. In addition,
30 is an XY stage, 35 is a pace, and 36 is a sample stage.

第5図は、三次元測定機4aに適用したものである。図
において、31はX移動テーブル、32はそのスライド
軸である。33はX移動テーブル。
FIG. 5 shows an example applied to a three-dimensional measuring machine 4a. In the figure, 31 is an X-movement table, and 32 is its slide axis. 33 is an X movement table.

54dそのスライド軸である。43は2移動テーブル4
2はそのスライド軸である。なお図中37はりニアモー
タ、41は試料である。
54d is its slide shaft. 43 is 2 moving table 4
2 is its slide axis. In the figure, 37 is a near motor, and 41 is a sample.

C発明あ効果ノ 以上詳述した通ル本発明による移動台によれば。C invention ah effect no According to the moving table according to the present invention, which has been described in detail above.

動力源の動力を非接触継手を介して移動テーブルに伝達
し、且つスライド軸と移動テーブルとの間に一定の間隙
をもたせて非接触のスライドをさせるようにしたので、
駆動源の振動が断絶されると共に、熱の伝導も緩和され
、高精度の移動台を得ることができた。
The power of the power source is transmitted to the moving table via a non-contact joint, and a certain gap is provided between the slide shaft and the moving table to allow non-contact sliding.
The vibration of the drive source was cut off, and the conduction of heat was also alleviated, making it possible to obtain a highly accurate moving platform.

父上起振動と熱の問題の解消と共に、移動テーブルの走
行がスムーズに行なえ、更に高精度の移動台とすること
ができた。
In addition to solving the problems of vibration and heat, the movable table can now run smoothly and has even higher precision.

このようにして、高精度の移動台を得ることにより、例
えば半導体の生産や超精密加工用機械の生産或は超精密
測定の実現等が可能になシ、産業発展に多大な効果を奏
する。
In this way, by obtaining a highly accurate moving table, it becomes possible to produce semiconductors, produce ultra-precision processing machines, realize ultra-precision measurement, etc., and has a great effect on industrial development.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の代表的な移動台である送シネジ方式の
移動台の斜視である。第2図乃至第5図は本発明の一実
施例であシ、第2図は移動台の縦断面図、第3図は、第
2図のA−Alilで断面した横断面図である。第4図
#′i1本実施例をX−Yステージに適用した場合の斜
視図s’igs図は三次元ステージに適用した場合の斜
視図である。 12・・・スライド軸、13・・・静圧軸受パッド。 14・・・移動テーブル、15・・・リニアモータ、1
6・・・リニアコイル、17・・・マグネット、18・
・・対向グレート、19・・・スライドパッド、20・
・・非接触継手、21・・・逃げ溝、22・・・ケーシ
ング、23・・・ハウジング、24・・・直進軸受、2
5・・緩衝材。 才1図 第2図 才4図 才5図
FIG. 1 is a perspective view of a moving table using a feed screw type, which is a typical conventional moving table. 2 to 5 show one embodiment of the present invention, in which FIG. 2 is a longitudinal cross-sectional view of the moving platform, and FIG. 3 is a cross-sectional view taken along line A-Alil in FIG. 2. FIG. 4 #'i1 A perspective view when this embodiment is applied to an XY stage The s'igs diagram is a perspective view when the present embodiment is applied to a three-dimensional stage. 12...Slide shaft, 13...Static pressure bearing pad. 14...Moving table, 15...Linear motor, 1
6... Linear coil, 17... Magnet, 18.
・・Opposing grate, 19・・Slide pad, 20・
...Non-contact joint, 21... Relief groove, 22... Casing, 23... Housing, 24... Linear bearing, 2
5. Cushioning material. Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 (1)内面に静圧軸受パッドを有する移動テーブルと、
該移動テーブルの静圧軸受パッド内に一定の間隙をもっ
て挿通され、移動テーブルを非接触にしてスライドさせ
るスライド軸と、直進変位を発住させる駆動源の駆動力
を上記移動テーブルに伝達するための非接触形の継手と
から成る非接触部動形精密移動台。 (2、特許請求の範曲第1項記載の静圧軸受パッド及び
非接触形の継手をそれぞれ、静圧空気軸受パッド及び非
接触形の空気継手としたことを特徴とする非接触部動形
精密移動台。 ・ (3)特許請求の範囲第1項記載の駆動源にIj=
アモータを使用し、該リニアモータを中空にしたスライ
ド軸に内蔵したことを特徴とす・る非接触部動形移動台
。 (4)特許請求の範囲第1項記載の移動テーブル及びス
ライド軸をセラミックス材料で形成したことな特徴とす
る非接触部動形移動台。
[Claims] (1) A moving table having a hydrostatic bearing pad on its inner surface;
A slide shaft that is inserted into the hydrostatic bearing pad of the movable table with a certain gap and slides the movable table without contact, and a slide shaft for transmitting the driving force of the drive source that generates linear displacement to the movable table. A non-contact type precision moving table consisting of a non-contact type joint. (2. Non-contact part moving type, characterized in that the hydrostatic pressure bearing pad and the non-contact type joint described in claim 1 are respectively a hydrostatic pressure air bearing pad and a non-contact type air joint) Precision moving table. (3) Ij=
A non-contact movable platform that uses an amotor and is characterized in that the linear motor is built into a hollow slide shaft. (4) A non-contact movable moving table characterized in that the moving table and slide shaft according to claim 1 are made of a ceramic material.
JP59078434A 1984-04-20 1984-04-20 Noncontacting driving type precise moving base Granted JPS60223119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078434A JPS60223119A (en) 1984-04-20 1984-04-20 Noncontacting driving type precise moving base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078434A JPS60223119A (en) 1984-04-20 1984-04-20 Noncontacting driving type precise moving base

Publications (2)

Publication Number Publication Date
JPS60223119A true JPS60223119A (en) 1985-11-07
JPH0516167B2 JPH0516167B2 (en) 1993-03-03

Family

ID=13661933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078434A Granted JPS60223119A (en) 1984-04-20 1984-04-20 Noncontacting driving type precise moving base

Country Status (1)

Country Link
JP (1) JPS60223119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278913A (en) * 1985-06-04 1986-12-09 Ntn Toyo Bearing Co Ltd Magnetic floating-type positioning device
JPS63283835A (en) * 1987-05-13 1988-11-21 Yaskawa Electric Mfg Co Ltd Linear moving device
JP2010046725A (en) * 2008-08-19 2010-03-04 Fanuc Ltd Reciprocating linear driver
CN102887341A (en) * 2011-07-22 2013-01-23 大银微系统股份有限公司 Crossbeam pre-tensioning module of cantilever type platform
CN104370061A (en) * 2014-11-12 2015-02-25 深圳博美柯自动化设备有限公司 Plane circulation device with tooth type belt driving
CN106670955A (en) * 2016-12-21 2017-05-17 上海集成电路研发中心有限公司 Chemical mechanical polishing device without rotation end point

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617341A (en) * 1979-07-23 1981-02-19 Nippon Telegr & Teleph Corp <Ntt> Alignment stage for step and repeat exposure
JPS56114012A (en) * 1980-02-13 1981-09-08 Telmec Co Ltd Precise positioning device
JPS57206926A (en) * 1981-06-16 1982-12-18 Nippon Telegr & Teleph Corp <Ntt> Positioning method for stage
JPS607725A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic positioning device
JPS607724A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic arranging device
JPS607727A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic aligning device
JPS607726A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic aligning device
JPS609726A (en) * 1983-06-29 1985-01-18 Masahiko Kamimori Manufacture of flexible tubular body and device therefor
JPS609727A (en) * 1983-06-29 1985-01-18 Japan Steel Works Ltd:The Improved twin-screw kneading extruder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617341A (en) * 1979-07-23 1981-02-19 Nippon Telegr & Teleph Corp <Ntt> Alignment stage for step and repeat exposure
JPS56114012A (en) * 1980-02-13 1981-09-08 Telmec Co Ltd Precise positioning device
JPS57206926A (en) * 1981-06-16 1982-12-18 Nippon Telegr & Teleph Corp <Ntt> Positioning method for stage
JPS607725A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic positioning device
JPS607724A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic arranging device
JPS607727A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic aligning device
JPS607726A (en) * 1983-06-10 1985-01-16 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Electromagnetic aligning device
JPS609726A (en) * 1983-06-29 1985-01-18 Masahiko Kamimori Manufacture of flexible tubular body and device therefor
JPS609727A (en) * 1983-06-29 1985-01-18 Japan Steel Works Ltd:The Improved twin-screw kneading extruder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278913A (en) * 1985-06-04 1986-12-09 Ntn Toyo Bearing Co Ltd Magnetic floating-type positioning device
JPS63283835A (en) * 1987-05-13 1988-11-21 Yaskawa Electric Mfg Co Ltd Linear moving device
JP2010046725A (en) * 2008-08-19 2010-03-04 Fanuc Ltd Reciprocating linear driver
JP4586088B2 (en) * 2008-08-19 2010-11-24 ファナック株式会社 Reciprocating linear drive device
US8097989B2 (en) 2008-08-19 2012-01-17 Fanuc Ltd Reciprocating linear actuator
CN102887341A (en) * 2011-07-22 2013-01-23 大银微系统股份有限公司 Crossbeam pre-tensioning module of cantilever type platform
CN104370061A (en) * 2014-11-12 2015-02-25 深圳博美柯自动化设备有限公司 Plane circulation device with tooth type belt driving
CN104370061B (en) * 2014-11-12 2017-04-05 深圳博美柯自动化设备有限公司 A kind of plane circulation device of flute profile V belt translation
CN106670955A (en) * 2016-12-21 2017-05-17 上海集成电路研发中心有限公司 Chemical mechanical polishing device without rotation end point

Also Published As

Publication number Publication date
JPH0516167B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
JP4715081B2 (en) Processing machine
JP5329349B2 (en) Ultra-precision machine tool
US5228358A (en) Motion guiding device
Shinno et al. XY-θ nano-positioning table system for a mother machine
US20070170140A1 (en) Gantry positioning system
GB2133930A (en) Workpiece carriages
US6870286B2 (en) Moving body drive unit
CN104400763B (en) Gas lubrication and frictional damping combined type high rigidity high stability two-dimension adjustment workbench
JPS60223119A (en) Noncontacting driving type precise moving base
JP2000155186A (en) X-y stage device
US4157818A (en) X-Y Movable work holder
US11143529B2 (en) Cantilever linear motion reference device employing two-layer air suspension
JPS61112216A (en) Noncontacting drive type planar shift stage
US5064318A (en) Precision guidance apparatus
CN109465651B (en) Friction type rigidity switching device, rigid-flexible coupling motion platform using same and method
JP4811780B2 (en) Linear motor, machine tool and measuring instrument
Yoshioka et al. Design Concept and Structural Configuration of Advanced Nano-Pattern Generator with Large Work Area" ANGEL".
US8561508B2 (en) Hard turning micro-machine tool
JP2647542B2 (en) Heat equalizer
JPH066248B2 (en) XY stage
JPH02225857A (en) Ball screw device
Vermeulen et al. An advanced ceramic optical diamond turning machine design and prototype development
Yoshioka et al. Structural design of a newly developed ultraprecision machine tool “ANGEL”
CN104440809B (en) Planar adjusting device is used in the assembling of restoring force constant type aero-engine
JP3088833U (en) Moving table device and machine tool using the same