JPS61112216A - Noncontacting drive type planar shift stage - Google Patents

Noncontacting drive type planar shift stage

Info

Publication number
JPS61112216A
JPS61112216A JP59233259A JP23325984A JPS61112216A JP S61112216 A JPS61112216 A JP S61112216A JP 59233259 A JP59233259 A JP 59233259A JP 23325984 A JP23325984 A JP 23325984A JP S61112216 A JPS61112216 A JP S61112216A
Authority
JP
Japan
Prior art keywords
static pressure
moving table
planar moving
guide
guide shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59233259A
Other languages
Japanese (ja)
Other versions
JPH0618007B2 (en
Inventor
Motoya Taniguchi
素也 谷口
Ryuichi Funatsu
隆一 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59233259A priority Critical patent/JPH0618007B2/en
Publication of JPS61112216A publication Critical patent/JPS61112216A/en
Publication of JPH0618007B2 publication Critical patent/JPH0618007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/38Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Abstract

PURPOSE:To attain a planar shift and positioning of a sample with high accuracy by transmitting the straight advance drive to a mobile table from a drive source via a noncontacting joint and sliding both the drive table and a guide under noncontacting state. CONSTITUTION:An X table 10 has a static pressure air pad which restricts a guide shaft 11 in the up-down and front-back directions. A sample stage 16 is put on the table 10. Then the table 10 is driven forward straight by transmitting the straight advance displacement of a linear motor 19 fixed to a base to the table 10 under noncontacting state by a static pressure joint provided to said air pad. The table 10 is driven in the Y direction by linear motors 33 and 34 and static pressure joints 35 and 36 together with a Y slider having the static pressure air pads at both ends of the shaft 11 to restrice the up-down and right-left directions. The Y slider is slid within a slide guide.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、非接触駆動による精密平面移動台に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a precision plane moving table driven by non-contact driving.

特に、半導体の微細パターンの露光などの超精密加工装
置において試料を精密に平面移動するのに用い得て、外
的振動や熱的影響をなくし、より精度を向上する上で好
適に利用できる非接触駆動形平面移動台に関する。
In particular, it can be used to precisely move a sample in a plane in ultra-precision processing equipment such as exposure of fine patterns on semiconductors, and it can be used to eliminate external vibrations and thermal effects, thereby improving accuracy. This invention relates to a contact-driven planar moving table.

〔発明の背景〕[Background of the invention]

従来より、半遮体露光装置のウェハ移動台、三次元座標
測定器などのプローフ移動台または試料移動台、また、
精密加工用工作機械のワーク台やツール(工具)台など
、高い真直走行精度、位置決め精度、剛性が求められる
機構として、様々な方式が用いられてきた。現在、最も
一般的であり、かつ、実績の高い駆動機構は、第1図に
示すような、送りネジ1とモータ2を用いたものである
Conventionally, wafer moving tables of semi-shield exposure equipment, probe moving tables or sample moving tables of three-dimensional coordinate measuring instruments, etc.
Various methods have been used for mechanisms that require high straight running accuracy, positioning accuracy, and rigidity, such as work stands and tool stands for precision processing machine tools. Currently, the most common and proven drive mechanism uses a feed screw 1 and a motor 2, as shown in FIG.

これは、モータ2の回転変位を送りネジ2とナツト3と
を介して直線変位とし、これを被駆動テーブルに伝える
もので、最近では、モータの性能の向上や送りネジ精度
の向上により、精密送り機構として最も多く用いられて
いる。
This converts the rotational displacement of the motor 2 into a linear displacement via the feed screw 2 and nut 3, and transmits this to the driven table.Recently, with improvements in motor performance and feed screw accuracy, precision Most commonly used as a feeding mechanism.

しかし、半導体露光装置におけるウェハ移動台。However, the wafer moving table in semiconductor exposure equipment.

超精密研削盤、旋盤などの加工物または工具の移動台、
さらに真直度測定器をはじめとする精密測定機の移動台
などにおいては、 0.05μm以下の駆動系からの熱
や振動、被駆動物の走行時の姿勢誤差が、加工精度や測
定精度に大きく影響するため。
A moving table for workpieces or tools such as ultra-precision grinders and lathes,
Furthermore, in the moving tables of precision measuring instruments such as straightness measuring instruments, heat and vibration from the drive system of 0.05 μm or less, as well as posture errors during movement of the driven object, can significantly affect machining accuracy and measurement accuracy. To influence.

このような従来の送りネジとモータによる駆動方式では
対応できなくなってきている。
This conventional drive system using a feed screw and motor is no longer applicable.

すなわち、第1図に示す送りネジ方式又は、ナツト3が
スライダ4に直結されているため、そ−タ2の振動成分
、及び熱がスライダ4に伝わり、また、送りネジ1を支
持する軸受5のガタや、スライダ4の走行方向と送りネ
ジ1の取付平行度の誤差により、スライダ4はスライド
軸6を走行する際、常に外的な変動を受けることになる
That is, since the feed screw method shown in FIG. The slider 4 is always subject to external fluctuations when traveling on the slide shaft 6 due to play in the slider 4 and errors in the running direction of the slider 4 and the mounting parallelism of the feed screw 1.

また、送りネジ駆動方式は、機械要素や接続用加工部品
が多いため、駆動系としての剛性が低く。
In addition, the feed screw drive system has many mechanical elements and connecting parts, so the rigidity of the drive system is low.

また、精度送りのための防じん対策などが不可欠である
など、超精密送り機構として最適とは言えない。
In addition, dust prevention measures are essential for accurate feeding, so it cannot be said to be optimal as an ultra-precision feeding mechanism.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題点を解決して、駆動部
からの振動や熱に影響されずに、高精度に、試料を平面
送り及び位置決めできるような非接触駆動形の平面移動
台を提供することにある。
An object of the present invention is to provide a non-contact drive type planar moving table that solves the above-mentioned conventional problems and allows for highly accurate planar feeding and positioning of a sample without being affected by vibration or heat from the drive unit. Our goal is to provide the following.

〔発明の概要〕                  
   1上記の目的を達成する為、本発明では、振動の
伝達や熱の伝導をさけるため、駆動源からの直進駆動力
を非接触の継手を介して移動テーブルに伝えると共に、
移動テーブルとがガイドとの間においても静圧案内によ
り非接触でスライドする構造とした。
[Summary of the invention]
1 In order to achieve the above object, the present invention transmits the linear driving force from the drive source to the moving table via a non-contact joint in order to avoid vibration transmission and heat conduction, and
The structure is such that the movable table slides between the guide and the guide without contact using static pressure guidance.

一方、移動テーブルを一定量ステップ移動させた後、そ
の位置を一定時間保持するため、静圧案内のエアパット
のうち、上又は下のエアパットのいずれかの空気供給を
止めることにより、他方のエアパット圧により移動テー
ブルをガイドに押しつけて固定するようにした。
On the other hand, after moving the moving table by a certain amount of steps, in order to maintain that position for a certain period of time, by stopping the air supply to either the upper or lower air pad of the static pressure guide, the air pad pressure of the other air pad is The movable table is pressed against the guide and fixed.

この移動テーブルは、平面移動できるように、前記ガイ
ドの両端に、静圧軸受パットを設け、前記ガイドと直交
する方向に、直進移動する構造とする。なおこの時の非
接触駆動方法及び移動後の位置決め固定方法などについ
ては、従来の一般的な手法を用いることができる。
This movable table has a structure in which hydrostatic bearing pads are provided at both ends of the guide so that the table can move linearly in a direction orthogonal to the guide. Note that conventional general methods can be used for the non-contact driving method and the positioning and fixing method after movement at this time.

また、移動テーブルをガイドに沿って移動する直進駆動
源は、ベースに固定し、ガイドに直交する移動が生ずる
時は、移動テーブルが前記静圧継手のエアパット面に平
行に走るように構成することができる。
Further, the linear drive source for moving the moving table along the guide is fixed to the base, and when movement perpendicular to the guide occurs, the moving table is configured to run parallel to the air pad surface of the static pressure joint. I can do it.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第2図は本実施例の平面移動台の構成を示す平面図、第
3図は、第2図のA−A断面図である。
FIG. 2 is a plan view showing the configuration of the plane moving table of this embodiment, and FIG. 3 is a cross-sectional view taken along the line AA in FIG.

本平面移動台は、矢印X方向に直進スライドするXテー
ブル10と、これを案内するガイド軸11と、さらにX
方向を直交するY方向に直進スライドするためにガイド
軸11の両端をガイドするスライドガイド12とから構
成される。
This plane moving table includes an X table 10 that slides straight in the direction of arrow X, a guide shaft 11 that guides the table, and
It is composed of a slide guide 12 that guides both ends of a guide shaft 11 in order to slide straight in the Y direction orthogonal to the direction.

各部の構造の詳細は以下のようになっている。The details of the structure of each part are as follows.

Xテーブル10は、ガイド軸11を上下前後の4方向か
ら拘束するように構成した静圧エアパット。
The X table 10 is a static pressure air pad configured to restrain the guide shaft 11 from four directions: top, bottom, front and back.

各々X上パット2.X下パット13.X前パット14゜
X後パット15をもつ箱型構造で、この上に半導体ウェ
ハ等の試料を載せる試料台16と、Xテーブル10の位
置を測定する基準となるレーザミラー17を載置してい
る。XテーブルIOの直進駆動は、ベース18に固定し
たリニアモータ19の直進変位を、機動方向に直角に両
面にエアパット20を設けた静圧継手21により非接触
にXテーブル10に伝達するようになっている。リニア
モータ19としては、DCまたはACサーボモータを用
いることができ、本実施例では、リニアコイル22を固
定し、これに電流を加え磁界を発生させることによりマ
グネット23を移動するムービマグネット式リニアモー
タを使っている。ただし、マグネット23を固定し、コ
イル22を移動するムービングコイル式のりニアモータ
としてもよいし、その他適宜の駆動源を使用することが
できる。
Each X upper putt 2. X lower pad 13. It has a box-shaped structure with an X front pad 14° and an X rear pad 15, on which a sample stage 16 on which a sample such as a semiconductor wafer is placed, and a laser mirror 17 that serves as a reference for measuring the position of the X table 10 are placed. There is. The linear drive of the X-table IO is such that the linear displacement of the linear motor 19 fixed to the base 18 is transmitted to the X-table 10 in a non-contact manner by a static pressure joint 21 provided with air pads 20 on both sides perpendicular to the direction of movement. ing. A DC or AC servo motor can be used as the linear motor 19, and in this embodiment, a movie magnet type linear motor is used in which the linear coil 22 is fixed and the magnet 23 is moved by applying a current to it and generating a magnetic field. is using. However, a moving coil type linear motor that fixes the magnet 23 and moves the coil 22 may be used, or any other suitable drive source may be used.

静圧継手21は第3図り示す如くxテーブルIOの下面
に位置しており、この静圧継手は、Xテーブル10の移
動方向を直角に互いに平行に固定された2つの軸受プレ
ート24と、両軸受プレート24の間に微小ギャップを
隔てて配置した前記エアパット20とから構成される。
As shown in the third diagram, the static pressure joint 21 is located on the lower surface of the The air pad 20 is arranged between the bearing plates 24 with a small gap therebetween.

このエアパット20は、リニアモータ19のマグネット
23に固定されている。
This air pad 20 is fixed to a magnet 23 of the linear motor 19.

第2図に示すように、Xテーブル10をガイド軸11と
ともにY方向へスライドするため、ガイド軸11の両端
に、上下、左右方向を拘束する静圧エアパットをもつY
スライダ2aを設ける。静圧エアパットは各々Y上パッ
ト25、Y下パット26、Y左パット27、Y右パット
28から成る(第3図)。このYエアスライダ29がス
ライドガイド12内をスライドする構造となっている。
As shown in FIG. 2, in order to slide the X table 10 together with the guide shaft 11 in the Y direction, a Y
A slider 2a is provided. The static pressure air pads each consist of a Y upper pad 25, a Y lower pad 26, a Y left pad 27, and a Y right pad 28 (FIG. 3). This Y air slider 29 is structured to slide within the slide guide 12.

なお、スライドガイド29′は、上プレート30、側面
プレート31.ベースプレート32から構成されるが、
一体加工で製作しでもよい。
Note that the slide guide 29' includes an upper plate 30, a side plate 31. It is composed of a base plate 32,
It may be manufactured by integral processing.

Y方向への駆動は、X方向と同様リニアモータ33、3
4と、静圧継手35.36で行なう。静圧継手35゜3
6は、エアパット37.38とその面対向面に微小ギャ
ップを隔ててガイド軸11に固定した2つの軸受ブロッ
ク39.40.41.42から構成されている(第2図
)。また、エアパット37.38は、各マグネット43
.44に固定され、リニアコイル45.46により直進
移動する。なお、リニアモータ19.33.34は、常
時、マグネットとコイルとの間の一定の吸引力(数〜数
10kgf)が発生しているため、これを支持    
  )1し、かつ、マグネットとコイルと間隙を一定に
保っために、マグネット23.43.46をころがり案
内リイアガイド47.48.49で直進案内する(第3
図)、この場合、マグネット23.43.46は、ころ
がり案内リイアガイド47.48.49からの機械的な
微小振動(0,1〜1.2μl11)を得る可能性があ
るが、静圧継手21.33.34により、振動は大幅(
175〜1/10)に低減される。
Drive in the Y direction is driven by linear motors 33, 3 as in the X direction.
4 and static pressure joints 35 and 36. Static pressure joint 35°3
6 is composed of an air pad 37, 38 and two bearing blocks 39, 40, 41, 42 fixed to the guide shaft 11 with a small gap between the surfaces opposite the air pads 37, 38 (FIG. 2). In addition, the air pads 37 and 38 are attached to each magnet 43.
.. 44, and is moved straight by linear coils 45 and 46. In addition, the linear motor 19, 33, 34 always generates a constant attraction force (several to several tens of kgf) between the magnet and the coil, so it is necessary to support it.
) 1, and in order to keep the gap between the magnet and the coil constant, the magnet 23, 43, 46 is guided in a straight line by the rolling guide rear guide 47, 48, 49 (the third
), in this case the magnet 23.43.46 may receive mechanical micro-vibrations (0.1-1.2 μl 11) from the rolling guide rear guide 47.48.49, but the static pressure joint 21 Due to .33.34, the vibration is significantly (
175 to 1/10).

次に、各静圧空気軸受に供給されるエア配管経路及び平
面移動台の制御方法につき、第3図及び第4図を参照し
て述べる。第4図は第3図のB−B断面図であるが、第
4図の4■部で位置決め前の、同じ<4II部で位置決
め後の状態を示す。
Next, the air piping route supplied to each static pressure air bearing and the method of controlling the plane moving table will be described with reference to FIGS. 3 and 4. FIG. 4 is a sectional view taken along the line BB in FIG. 3, and shows the state before positioning at section 4■ in FIG. 4 and after positioning at the same section <4II.

各エア配管経路は、第3図及び第4図に示す如く、X後
15.X前パット14.X下パツト12. Y左パット
27.Y右パット28.Y上パット25.静圧継手用エ
アパット20.37.38は、同一経路でソレノイドバ
ルブ50を介して圧縮ドライエア52が供給されている
。一方、X下パット13. Y下パット26は、同一経
路でソレノイドバルブ51を介して圧縮エアが供給され
ている。
As shown in FIGS. 3 and 4, each air piping route is 15. Putt before X 14. X lower part 12. Y left putt 27. Y right putt 28. Y upper putt 25. The static pressure joint air pads 20, 37, and 38 are supplied with compressed dry air 52 via a solenoid valve 50 through the same route. On the other hand, X lower pad 13. Compressed air is supplied to the Y lower pad 26 via the solenoid valve 51 through the same route.

第4図は、各エアパットにエアが供給されている状態を
示す。このときXテーブルlOは、ガイド軸11と、微
小すきまgを隔てて、フロートしている。
FIG. 4 shows a state in which air is supplied to each air pad. At this time, the X table IO is floating with a minute gap g between it and the guide shaft 11.

また、Yエアスライダ29は、Yスライドガイド12と
微小スキマgをへだててフロートしている。
Further, the Y air slider 29 is floating apart from the Y slide guide 12 with a small gap g.

この微小すきまgは、使用する静圧空気軸受の絞り方式
や軸受性能により異なるが、本実施例では、軸受剛性が
高く、空気消費量が少ない表面絞り形静圧軸受を用いて
おり、各軸がフローティング状態で、最大軸受剛性の得
られる軸受すきまgが得られるようになっている。なお
、以後の説明のため、本実施例で用いた軸受すきまgは
、5±0.5μmとする。
This minute clearance g varies depending on the throttle system and bearing performance of the hydrostatic air bearing used, but in this example, a surface-drawn type hydrostatic bearing with high bearing rigidity and low air consumption is used. is in a floating state, and a bearing clearance g that provides maximum bearing rigidity is obtained. Note that for the sake of the following explanation, the bearing clearance g used in this example is 5±0.5 μm.

次に、本移動台の精密位置決め制御方法を以下に説明す
る。本実施例ではXテーブルIOのx、Y方向の位置を
レーザ干渉測長器53を用いて、レーザミラー17の移
動量として約0.01μmの分解能で測定し、CPU5
4から指令した移動量になるように制御する。このため
リニアモータコントローラ56とレーザコントローラと
の間で形成された閉ル−プサーボにより、高速、高精度
位置決めするシステムを構成している。
Next, a precise positioning control method of the present moving table will be explained below. In this embodiment, the position of the X table IO in the x and Y directions is measured using a laser interferometer 53 with a resolution of approximately 0.01 μm as the amount of movement of the laser mirror 17, and the CPU 5
Control is performed so that the amount of movement commanded from step 4 is achieved. Therefore, a closed loop servo formed between the linear motor controller 56 and the laser controller constitutes a system for high-speed, high-precision positioning.

本移動台で、半導体ウェハ等の試料を精密に位置決めし
た後、例えばX線より露光する場合を考えると、露光中
、試料を安定して静止させることが重要であり1位置決
めサーボ状態における試料台16の微小振動をなくすこ
とが不可欠である。
For example, when exposing a sample such as a semiconductor wafer to X-rays after precisely positioning it on this moving table, it is important to keep the sample stably stationary during the exposure. It is essential to eliminate 16 minute vibrations.

そこで、本実施例では、目標位置gで試料台16をリニ
アモータで位置決めした後、第4図4■部に示す如く、
ソレノイドバルブ52を切り換える。
Therefore, in this embodiment, after positioning the sample stage 16 at the target position g using the linear motor, as shown in part 4 of FIG.
Switch the solenoid valve 52.

すなわち、X下パツト13及びY下パット26へのエア
の供給を止め、大気へ開放することにより、Xテーブル
lOは、X上パツト12のエア圧により、ガイド軸11
に押しあてられ固定され、かつYエアスライダ29は、
Y上パット25のエア圧力によりベースプレート32に
押しあてられて固定される。すなわち、Xテーブル10
上の試料台16は以上の動作により、ベース18に固定
された状態となる。ここで注目すべきことは、Xテーブ
ル10とガイド軸11とのすきまは2gとなり、Xテー
ブル10がgだけ上がるが、一方Yエアスライダ26が
ベースプレート32に対して、gだけ下がるため、試料
台16の平面移動時と、以上のべた位置決めクランプ後
の高さの変動はない。同様の理由で、静圧継手21.3
5゜36におけるエアパットと軸受プレート24及び軸
受ブロック39〜41との高さ方向の相対位置変化も生
しない。
That is, by stopping the supply of air to the X lower part 13 and the Y lower part 26 and opening them to the atmosphere, the X table IO is moved by the guide shaft 11 due to the air pressure of the
The Y air slider 29 is pressed against and fixed, and the Y air slider 29 is
The upper Y pad 25 is pressed against the base plate 32 by air pressure and fixed. That is, X table 10
The upper sample stage 16 is fixed to the base 18 by the above operation. What should be noted here is that the clearance between the X table 10 and the guide shaft 11 is 2 g, and the X table 10 is raised by g, but on the other hand, the Y air slider 26 is lowered by g with respect to the base plate 32, so the sample table There is no change in height during the plane movement of step 16 and after the above solid positioning clamp. For similar reasons, static pressure joints 21.3
There is also no change in relative position in the height direction between the air pad and the bearing plate 24 and bearing blocks 39 to 41 at 5°36.

なお、本実施例で用いた静圧空気等内の軸受の材質をす
べてセラミックス環とすると、以上の効果を一層向上で
きる。
Note that the above effects can be further improved by using ceramic rings as the material of all the bearings in the static air, etc. used in this embodiment.

〔発明の効果〕     5 本発明によれば、駆動源の直進変位を非接触継手を介し
て移動テーブルに伝えかつ、目標位置においてテーブル
をベースに固定することにより。
[Effects of the Invention] 5. According to the present invention, the linear displacement of the drive source is transmitted to the movable table via the non-contact joint, and the table is fixed to the base at the target position.

走行時には、駆動系からの振動の影響をうけずに高精度
な平面移動をなし得、かつ、停止位置において、位置決
めサーボ状態における微小振動等をうけずに、静止安定
性を得ることができる。       1なお、実施例
に示した如く、ベース上に直交する方向にリニアモータ
を固定し、非接触式の静圧継手を介して、静圧空気案内
されたテーブルを平面移動する構造とすると、より高精
度な走行精度及び高速化が図れる。
When traveling, highly accurate plane movement can be achieved without being affected by vibrations from the drive system, and static stability can be achieved at the stop position without being affected by minute vibrations in the positioning servo state. 1. As shown in the example, if the linear motor is fixed on the base in a direction perpendicular to the base and the table is moved in a plane by static pressure air guided through a non-contact static pressure joint, the result will be even better. High running accuracy and high speed can be achieved.

但し当然のことではあるが1本発明は図示の実施例にの
み限られるものではない。
However, it goes without saying that the present invention is not limited to the illustrated embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の移動台を示す斜視図である。 第2図は、本発明の一実施例に係る平面移動台を示す平
面図であり、第3図は、第2図のA−A断面図、第4図
は、第3図のB−B断面図である。 10・・・Xテーブル、11・・ガイド軸、29′・・
スライドガイド、19.33.34・・・リニアモータ
、29・・・リニアスライダ+ 21.35.36・・
・静圧継手、16・・・試料台。
FIG. 1 is a perspective view showing a conventional moving table. FIG. 2 is a plan view showing a plane moving table according to an embodiment of the present invention, FIG. 3 is a cross-sectional view taken along line A-A in FIG. 2, and FIG. 4 is a cross-sectional view taken along line B-B in FIG. FIG. 10...X table, 11...guide shaft, 29'...
Slide guide, 19.33.34... Linear motor, 29... Linear slider + 21.35.36...
- Static pressure joint, 16...sample stand.

Claims (1)

【特許請求の範囲】 1、試料台を載置したテーブルと、これを静圧気体軸受
案内で直進スライドさせるガイド軸と、ガイド軸両端に
設けた静圧気体軸受パットを前記ガイド軸と直交した方
向にスライドするための案内ガイドとから構成する平面
移動台において、ベースに固定した直交する2つ以上の
直進駆動源の直進変位を、静圧気体軸受を用いた非接触
継手により、各々、テーブルと、ガイド軸に伝達する構
成としたことを特徴とする非接触駆動形平面移動台。 2、特許請求の範囲第1項記載の平面移動台において、
テーブルと、ガイド軸端に設けた静圧気体軸受パットの
各々の一部のパットへの気体供給を止めることにより、
テーブルを各基準ガイド面に固定するクランプ機構を設
けたことを特徴とする非接触駆動形平面移動台。 3、特許請求の範囲第1項記載の平面移動台において、
直進駆動源として、リニアモータを使用することを特徴
とする非接触駆動形平面移動台。 4、特許請求の範囲第1項記載の平面移動台において、
静圧気体軸受の材質として、セラミックスを使用するこ
とを特徴とする非接触駆動形平面移動台。 5、特許請求の範囲第1項記載の平面移動台において、
静圧気体軸受として、表面絞り形静圧空気軸受を使用し
たことを特徴とする非接触駆動形平面移動台。
[Scope of Claims] 1. A table on which a sample stage is placed, a guide shaft that slides the sample table in a straight line using hydrostatic gas bearing guidance, and static pressure gas bearing pads provided at both ends of the guide shaft that are perpendicular to the guide shaft. In a planar moving table consisting of a guide for sliding in the direction, the linear displacement of two or more orthogonal linear drive sources fixed to the base is controlled by non-contact joints using hydrostatic gas bearings, respectively. A non-contact driven planar moving table characterized in that it is configured to transmit information to a guide shaft. 2. In the planar moving table according to claim 1,
By stopping the gas supply to the table and some of the static pressure gas bearing pads provided at the end of the guide shaft,
A non-contact driven planar moving table characterized by being provided with a clamp mechanism for fixing the table to each reference guide surface. 3. In the planar moving table according to claim 1,
A non-contact drive type planar moving table characterized by using a linear motor as a linear drive source. 4. In the planar moving table according to claim 1,
A non-contact drive type planar moving table characterized by using ceramics as the material of the static pressure gas bearing. 5. In the planar moving table according to claim 1,
A non-contact drive type planar moving table characterized by using a surface drawing type static pressure air bearing as the static pressure gas bearing.
JP59233259A 1984-11-07 1984-11-07 Non-contact drive type plane moving table Expired - Lifetime JPH0618007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233259A JPH0618007B2 (en) 1984-11-07 1984-11-07 Non-contact drive type plane moving table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233259A JPH0618007B2 (en) 1984-11-07 1984-11-07 Non-contact drive type plane moving table

Publications (2)

Publication Number Publication Date
JPS61112216A true JPS61112216A (en) 1986-05-30
JPH0618007B2 JPH0618007B2 (en) 1994-03-09

Family

ID=16952271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233259A Expired - Lifetime JPH0618007B2 (en) 1984-11-07 1984-11-07 Non-contact drive type plane moving table

Country Status (1)

Country Link
JP (1) JPH0618007B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040431A (en) * 1988-01-22 1991-08-20 Canon Kabushiki Kaisha Movement guiding mechanism
KR100423984B1 (en) * 2001-09-12 2004-03-22 유니슨 주식회사 Vibration test bed using linear motor
WO2005077592A1 (en) * 2004-02-11 2005-08-25 Siemens Aktiengesellschaft Aerostatic linear guide for a positionable arm comprising a fitting head for electric components
JP2006224039A (en) * 2005-02-21 2006-08-31 Dainippon Printing Co Ltd Pattern forming apparatus, patterning method, apparatus and method for processing substrate
JP2010242953A (en) * 2009-04-10 2010-10-28 Mitsubishi Heavy Ind Ltd Flow amount throttle device
EP2384875A1 (en) * 2009-01-30 2011-11-09 Konica Minolta Opto, Inc. Device of producing wafer lens and method of producing wafer lens
TWI457193B (en) * 2006-03-02 2014-10-21 Sumitomo Heavy Industries Stage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166433A (en) * 1983-03-12 1984-09-19 Omron Tateisi Electronics Co X-y stage
JPS59143634U (en) * 1983-03-12 1984-09-26 オムロン株式会社 XY stage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166433A (en) * 1983-03-12 1984-09-19 Omron Tateisi Electronics Co X-y stage
JPS59143634U (en) * 1983-03-12 1984-09-26 オムロン株式会社 XY stage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040431A (en) * 1988-01-22 1991-08-20 Canon Kabushiki Kaisha Movement guiding mechanism
KR100423984B1 (en) * 2001-09-12 2004-03-22 유니슨 주식회사 Vibration test bed using linear motor
WO2005077592A1 (en) * 2004-02-11 2005-08-25 Siemens Aktiengesellschaft Aerostatic linear guide for a positionable arm comprising a fitting head for electric components
JP2006224039A (en) * 2005-02-21 2006-08-31 Dainippon Printing Co Ltd Pattern forming apparatus, patterning method, apparatus and method for processing substrate
TWI457193B (en) * 2006-03-02 2014-10-21 Sumitomo Heavy Industries Stage device
EP2384875A1 (en) * 2009-01-30 2011-11-09 Konica Minolta Opto, Inc. Device of producing wafer lens and method of producing wafer lens
EP2384875A4 (en) * 2009-01-30 2014-03-12 Konica Minolta Opto Inc Device of producing wafer lens and method of producing wafer lens
JP2010242953A (en) * 2009-04-10 2010-10-28 Mitsubishi Heavy Ind Ltd Flow amount throttle device

Also Published As

Publication number Publication date
JPH0618007B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US5040431A (en) Movement guiding mechanism
US5760564A (en) Dual guide beam stage mechanism with yaw control
US5228358A (en) Motion guiding device
US6363809B1 (en) Precision scanning apparatus and method with fixed and movable guide members
US7271879B2 (en) Decoupled planar positioning system
US9898000B2 (en) Planar positioning system and method of using the same
JP2010058263A (en) Ultra-precise machine tool
JPH0314223B2 (en)
Shinno et al. XY-θ nano-positioning table system for a mother machine
JP2004040979A (en) Movable body drive device
JP2012519078A (en) Flexible guide bearing for short stroke stage
US4739545A (en) Composite movement table apparatus
EP0443831A2 (en) Motion guiding device
CN104400763A (en) Gas lubrication and friction damping composition type high-rigidity and high-stability two-dimensional adjusting workbench
JPS61112216A (en) Noncontacting drive type planar shift stage
KR20040032762A (en) Bearing assembly, stage device using same, and exposure apparatus using same
JP3940277B2 (en) Stage equipment
JPH0420152B2 (en)
JP2004069703A (en) Table for measuring coordinates
Kurisaki et al. A newly developed XY planar nano-motion table system with large travel ranges
JPH0516167B2 (en)
JP3098421B2 (en) Static pressure air bearing type guide device
JP4811780B2 (en) Linear motor, machine tool and measuring instrument
JPH0518498Y2 (en)
JP2008090718A (en) Positioning device