JPS63196805A - Surface internal measuring method - Google Patents

Surface internal measuring method

Info

Publication number
JPS63196805A
JPS63196805A JP2871387A JP2871387A JPS63196805A JP S63196805 A JPS63196805 A JP S63196805A JP 2871387 A JP2871387 A JP 2871387A JP 2871387 A JP2871387 A JP 2871387A JP S63196805 A JPS63196805 A JP S63196805A
Authority
JP
Japan
Prior art keywords
frequency
data
distribution
interference fringe
luminous intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2871387A
Other languages
Japanese (ja)
Inventor
Kenji Sugishima
賢次 杉島
Hironobu Kitajima
弘伸 北島
Shigeru Maruyama
繁 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2871387A priority Critical patent/JPS63196805A/en
Publication of JPS63196805A publication Critical patent/JPS63196805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by a method wherein beam is allowed to irradiate two surfaces having an interval therebetween and the luminous intensity distribution of the interference fringe formed on the beam receiving surface of the reflected beams from said surfaces is subjected to Fourier transformation and the frequency corresponding to the frequency length of the interference fringe is detected from the Fourier transformation data. CONSTITUTION:Laser beam is allowed to obliquely irradiate two surfaces overlapping so as to have an interval therebetween and the beams reflected from both of two surfaces are received to detect the luminous intensity distribution of the interference fringe formed on the beam receiving surface of said reflected beams and, from this detection signal, luminous intensity is converted to data so as to show luminous intensity (g) as frequency-f distribution. This frequency (f) is the one corresponding to the frequency length of X-direction distribution. Since the obtained data is dispersed in a noise component and frequency f0 to be calculated protrudes clearly as compared with other frequency, said frequency f0 can be easily detected. The interval between two surfaces can be calculated from the detected frequency f0 according to a predetermined formula. By using high speed Fourier transformation as Fourier transformation, all of a series of processings on and after the interference fringe is converted to data can be performed by a computer.

Description

【発明の詳細な説明】 〔概要〕 間隔を有して重なる2面にレーザ光を照射し、両面で反
射した光が形成する干渉縞の周期長に対応する周波数か
ら2面の間隔を算出する面間隔測定において、 干渉縞の光強度分布をフーリエ変換してそのデータから
周波数を検出することにより、正確な周波数の求めを容
易にさせて測定精度の向上を図ったものである。
[Detailed Description of the Invention] [Summary] Laser light is irradiated onto two overlapping surfaces with an interval, and the interval between the two surfaces is calculated from the frequency corresponding to the periodic length of interference fringes formed by the light reflected from both surfaces. In surface spacing measurement, the light intensity distribution of interference fringes is Fourier-transformed and the frequency is detected from that data, making it easier to find accurate frequencies and improving measurement accuracy.

〔産業上の利用分野〕[Industrial application field]

本発明は、間隔を有して重なる2面にレーザ光を照射し
、両面で反射した光が形成する干渉縞の周期長に対応す
る周波数から2面の間隔を算出する面間隔測定の方法に
関す。
The present invention provides a method for measuring the distance between two surfaces in which the distance between the two surfaces is calculated from the frequency corresponding to the periodic length of interference fringes formed by the light reflected from both surfaces by irradiating a laser beam onto two surfaces that overlap with a distance. about.

上記の面間隔測定は、片側から無接触で行うことが出来
る特徴を有し、例えば、半導体装置などの製造において
、ホトリソグラフィ技術における近接露光の際のマスク
とウェーハ間の間隔測定や、透明な被着膜の厚さ測定な
どに利用することが出来る。
The above surface spacing measurement has the feature that it can be performed from one side without contact. For example, in the manufacture of semiconductor devices, it is used to measure the spacing between a mask and a wafer during close exposure in photolithography technology, or to measure the spacing between a mask and a wafer during close exposure in photolithography technology. It can be used to measure the thickness of deposited films.

〔従来の技術〕[Conventional technology]

上記の面間隔測定における干渉縞の形成は、第3図の説
明図に示すが如くにして行う。
The formation of interference fringes in the above surface spacing measurement is performed as shown in the explanatory diagram of FIG.

参考文献:^Precision Wide−rang
e OpticalGap Measurment T
echnique (広範囲な間隔の光学的精密測定法
)”D、C,Flanders & T、M、Lysz
czarz 。
References: ^Precision Wide-rang
e Optical Gap Measurement T
echnique (precision optical measurement over a wide range of distances)” D, C, Flanders & T, M, Lysz
czarz.

J、Vac、Sci、↑echno1.Bl(1983
)PP、1196−1199  。
J, Vac, Sci, ↑echno1. Bl (1983
) PP, 1196-1199.

同図において、1および2は間隔dを有して重なる2面
であり、この2面に対し斜めから単一波長のレーザ光3
を面1に集光するように照射する。
In the figure, 1 and 2 are two overlapping surfaces with an interval d, and a single wavelength laser beam 3 is directed obliquely to these two surfaces.
The light is irradiated so as to be focused on surface 1.

そして面1からの反射光4と面2からの反射光5とを一
緒に受光するように受光面6を配置する。
The light receiving surface 6 is arranged so as to receive both the reflected light 4 from the surface 1 and the reflected light 5 from the surface 2.

さすれば、反射光4と5との干渉により、受光面6上に
図示X方向の周期性を有する干渉縞が形成される。
Then, due to the interference between the reflected lights 4 and 5, interference fringes having periodicity in the X direction shown in the figure are formed on the light receiving surface 6.

この干渉縞の光強度gは、レーザ光3の波長がλ、レー
ザ光3の入射角が45度、面1の反射率がRI、面2の
反射率がR2、面1の透過率がTI、受光面6が反射光
4の中心を通る線に対して直角、面1の反射点から受光
面6までの距離がl、受光面6上のX方向の距離がxl
であって、d/Itおよびx / lが極めて小さいと
すれば、g=RI +R2(TI  )2 +2   (R,R2)”2T。
The light intensity g of this interference fringe is such that the wavelength of the laser beam 3 is λ, the angle of incidence of the laser beam 3 is 45 degrees, the reflectance of surface 1 is RI, the reflectance of surface 2 is R2, and the transmittance of surface 1 is TI. , the light-receiving surface 6 is perpendicular to the line passing through the center of the reflected light 4, the distance from the reflection point of surface 1 to the light-receiving surface 6 is l, and the distance in the X direction on the light-receiving surface 6 is xl
If d/It and x/l are extremely small, then g=RI +R2(TI)2+2(R,R2)''2T.

Xcos(2ff  (2”d  (1+  (x/j
’)(x2/212)))/λ) なる式で与えられ、干渉縞の光強度分布即ち光強度のX
方向分布く光強度gのXに対する分布)は、4図に示す
如く一定の周期長X6を有するものとなる。
X cos(2ff (2”d (1+ (x/j
')(x2/212)))/λ) is given by the formula, and the light intensity distribution of the interference fringe, that is, the light intensity
The directional distribution (the distribution of the light intensity g with respect to X) has a constant period length X6 as shown in FIG.

そこで、f6−1/Xoとすれば、間隔dは、d−(λ
i!/(2”))f。
Therefore, if f6-1/Xo, the interval d is d-(λ
i! /(2”)f.

によってfoに比例した形で与えられる。is given in a form proportional to fo.

従って間隔dは、foまたは周期長p0を求めることに
よって算出可能となる。
Therefore, the interval d can be calculated by finding fo or the period length p0.

ここで、foは、(1/長さ)をディメンジョンにして
周期長XQに対応する周波数であり、周期長xoはその
波長に相当する。
Here, fo is a frequency corresponding to period length XQ with (1/length) as a dimension, and period length xo corresponds to its wavelength.

以上のことから間隔dの測定は、受光面6に干渉縞の光
強度分布を検知することの出来る例えばCODラインセ
ンサなどの光検知器を用い、その出力信号を処理するこ
とによって行うことが出来る。
From the above, the distance d can be measured by using a photodetector such as a COD line sensor that can detect the light intensity distribution of interference fringes on the light receiving surface 6, and by processing its output signal. .

そして従来の方法は、第5図のフローチャートに示すが
如くである。即ち、 ■ 上述の方法により干渉縞を形成し、それを光検知器
6により検知する。
The conventional method is as shown in the flowchart of FIG. That is, (1) interference fringes are formed by the method described above and detected by the photodetector 6;

■ 検知信号から干渉縞の光強度分布を第4図の如くに
表せるようにデータ化する。
(2) Convert the detection signal into data such that the light intensity distribution of interference fringes can be expressed as shown in FIG.

■ そのデータから突出部の頂点を求め周期長x□を検
出する。
■ Find the apex of the protrusion from the data and detect the period length x□.

■ 検出した周期長xOから間隔dを算出して、測定を
完了する。
■ Calculate the interval d from the detected period length xO and complete the measurement.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この方法による場合、光検知器6の検知
信号をデータ化した際のデータが第4図の如くになれば
周期長XQを正確に検出することが容易であるが、現実
には、ノイズの混入によりそのデータが例えば第6図の
光強度分布図に示すが如くに乱れて、検出した周期長x
、)が不正確になったり、甚だしくは周期長X6の検出
が困難になったりするので、正確な周波数f0の求めを
困難にする問題がある。
However, with this method, it is easy to accurately detect the period length XQ if the data obtained when the detection signal of the photodetector 6 is converted into data as shown in FIG. Due to the contamination of
, ) may become inaccurate, or worse, it may become difficult to detect the period length X6, making it difficult to accurately determine the frequency f0.

そしてこのことは、間隔dの測定精度を低下させたり測
定不能を起こさせたりする。
This reduces the accuracy of measuring the distance d or makes it impossible to measure it.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、間隔を有して重なる2面に単一波長のレ
ーザ光を斜めから照射し、該2面の両面で反射した光を
受光してその受光面に形成される干渉縞の光強度分布を
検知し、該光強度分布をフーリエ変換してそのデータか
ら該干渉縞の周期長に対応する周波数を検出し、該周波
数から該2面の間隔を算出する本発明の面間隔測定方法
によって解決される。
The above problem is solved by irradiating a laser beam of a single wavelength obliquely onto two overlapping surfaces with a gap between them, and receiving the light reflected from both surfaces, resulting in the formation of interference fringes on the receiving surface. The surface spacing measuring method of the present invention detects an intensity distribution, performs Fourier transform on the light intensity distribution, detects a frequency corresponding to the periodic length of the interference fringes from the data, and calculates the spacing between the two surfaces from the frequency. solved by.

〔作用〕[Effect]

本方法では、上記光強度分布の検知までは従来方法と同
様であるが、その光強度分布をフーリエ変換するので、
先に周波数foで説明した周波数に対する光強度の分布
が得られ、そのデータから周波数f。fc検出している
In this method, the detection of the light intensity distribution is the same as the conventional method, but since the light intensity distribution is Fourier transformed,
The distribution of light intensity with respect to the frequency explained above with respect to the frequency fo is obtained, and from that data, the frequency f. fc is being detected.

一方、従来方法において周期長x0の正確な検出を困難
にさせたノイズは、周波数が一定せずしてレベルが干渉
縞のレベルより低いのが一般である。
On the other hand, the noise that makes it difficult to accurately detect the period length x0 in the conventional method generally does not have a constant frequency and has a level lower than the level of interference fringes.

このため、上記の周波数に対する光強度の分布における
データでは、ノイズ成分が分散して求める周波数r0が
他より明瞭に突出するので、その突出を検出することに
より正確な周波数foを容易に検出することが出来る。
Therefore, in the data on the distribution of light intensity with respect to the above-mentioned frequencies, the frequency r0, which is determined by the dispersion of noise components, stands out more clearly than the others, so by detecting this protrusion, it is easy to detect the accurate frequency fo. I can do it.

かくして本方法によれば、上記2面の間隔(先に述べた
d)の測定精度を従来方法の場合より向上させることが
可能になる。
Thus, according to the present method, it is possible to improve the measurement accuracy of the distance between the two surfaces (d mentioned above) compared to the conventional method.

〔実施例〕〔Example〕

以下本発明方法による面間隔測定の実施例について第1
図、第2図により説明する。
The following is a first example of surface distance measurement using the method of the present invention.
This will be explained with reference to FIG.

第1図は本発明方法実施例のフローチャート、第2図は
フーリエ変換された光強度の周波数分布図である。
FIG. 1 is a flowchart of an embodiment of the method of the present invention, and FIG. 2 is a frequency distribution diagram of the Fourier-transformed light intensity.

第1図に示す実施例のフローは以下の如くである。即ち
、 ■ 従来方法と同様に、干渉縞を形成してそれを光検知
器6により検知する。その内容は、第3図を用いて説明
した通りである。
The flow of the embodiment shown in FIG. 1 is as follows. That is, (1) similar to the conventional method, interference fringes are formed and detected by the photodetector 6; The contents are as explained using FIG.

■ 従来方法と同様に、検知信号から干渉縞の光強度を
X方向分布で表せるようにデータ化する。
(2) Similar to the conventional method, convert the detection signal into data so that the light intensity of the interference fringes can be expressed as an X-direction distribution.

そのデータは、先に説明したように、図に表すと第4図
の如(になることを期待するもノイズの混入により第6
図の如くになる。
As explained earlier, the data is expected to be as shown in Figure 4 when expressed in a diagram, but due to the inclusion of noise,
It will look like the figure.

■ 上記データをフーリエ変換して光強度を周波数分布
で表せるようなデータにする。この周波数は先に周波数
f0で説明した周波数である。そして、得られたデータ
は、上記周波数をfとして図に表すと例えば第2図に示
すが如くになり、先に説明した理由により周波数foが
他より明瞭に突出している。
■ Fourier transform the above data to create data that can represent the light intensity as a frequency distribution. This frequency is the frequency previously explained as frequency f0. When the obtained data is expressed in a diagram with the frequency f as shown in FIG. 2, for example, the frequency fo clearly stands out from the others for the reason explained above.

■ ■で得られたデータから周波数foを検出する。こ
の検出は、第2図における突出部の頂点の検出となるの
で極めて容易であり、この検出により得られた周波数f
oは、従来方法の場合の周期長xOより遥かに正確であ
る。
(2) Detect the frequency fo from the data obtained in (2). This detection is extremely easy as it is the detection of the apex of the protrusion in FIG. 2, and the frequency f obtained by this detection is
o is much more accurate than the period length xO in the conventional method.

■ 検出した周波数foから間隔dを算出して、測定を
完了する。
■ Calculate the interval d from the detected frequency fo and complete the measurement.

かくして本方法によれば、■において正確な周波数fo
を求めることが出来るので、間隔dの測定精度を従来方
法の場合より向上させることが可能になる。
Thus, according to the present method, the accurate frequency fo at
Since it is possible to obtain the distance d, it is possible to improve the measurement accuracy of the distance d compared to the conventional method.

そして本方法による場合は、上述のフローから判るよう
に、■のフーリエ変換に高速フーリエ変換(FFT)を
用いることにより、■以降の一連の処理の全てを電算機
によって行うことが可能である。
In the case of this method, as can be seen from the above-mentioned flow, by using fast Fourier transform (FFT) for the Fourier transform in step (2), it is possible to perform all of the series of processing from step (1) onward by a computer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、間隔を有し
て重なる2面にレーザ光を照射し、両面で反射した光が
形成する干渉縞の周期長に対応する周波数から2面の間
隔を算出する面間隔測定において、正確な周波数の求め
を容易にさせることが出来て、測定精度の向上を可能に
させる効果がある。
As explained above, according to the configuration of the present invention, a laser beam is irradiated onto two overlapping surfaces with an interval, and the interval between the two surfaces is adjusted from a frequency corresponding to the periodic length of interference fringes formed by the light reflected from both surfaces. In surface spacing measurement for calculating , it is possible to easily obtain an accurate frequency, which has the effect of making it possible to improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法実施例のフローチャート、第2図は
フーリエ変換された光強度の周波数分布図、 第3図は干渉縞形成の説明図、 第4図は式による光強度のX方向分布図、第5図は従来
方法のフローチャート、 第6図は実際の光強度のX方向分布図、である。 図において、 1.2は重なる2面、 3はレーザ光、 4.5は反射光、 6は光検知器(受光面)、 dは1と2の間隔、 Xは干渉縞の周期の方向、 x(1は干渉縞の周期長、 foはpoに対応する周波数、 gは光強度、 である。 、277図
Figure 1 is a flowchart of an embodiment of the method of the present invention, Figure 2 is a frequency distribution diagram of Fourier-transformed light intensity, Figure 3 is an explanatory diagram of interference fringe formation, and Figure 4 is the X-direction distribution of light intensity according to the formula. 5 is a flowchart of the conventional method, and FIG. 6 is an actual light intensity distribution diagram in the X direction. In the figure, 1.2 is the two overlapping surfaces, 3 is the laser beam, 4.5 is the reflected light, 6 is the photodetector (light receiving surface), d is the distance between 1 and 2, X is the direction of the period of the interference fringe, x (1 is the periodic length of the interference fringe, fo is the frequency corresponding to po, g is the light intensity. , 277

Claims (1)

【特許請求の範囲】[Claims] 間隔を有して重なる2面に単一波長のレーザ光を斜めか
ら照射し、該2面の両面で反射した光を受光してその受
光面に形成される干渉縞の光強度分布を検知し、該光強
度分布をフーリエ変換してそのデータから該干渉縞の周
期長に対応する周波数を検出し、該周波数から該2面の
間隔を算出することを特徴とする面間隔測定方法。
A laser beam of a single wavelength is irradiated diagonally onto two overlapping surfaces with a gap between them, and the light reflected from both surfaces is received, and the light intensity distribution of interference fringes formed on the receiving surface is detected. A surface spacing measuring method comprising: Fourier transforming the light intensity distribution, detecting a frequency corresponding to the periodic length of the interference fringes from the data, and calculating the spacing between the two surfaces from the frequency.
JP2871387A 1987-02-10 1987-02-10 Surface internal measuring method Pending JPS63196805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2871387A JPS63196805A (en) 1987-02-10 1987-02-10 Surface internal measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2871387A JPS63196805A (en) 1987-02-10 1987-02-10 Surface internal measuring method

Publications (1)

Publication Number Publication Date
JPS63196805A true JPS63196805A (en) 1988-08-15

Family

ID=12256089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2871387A Pending JPS63196805A (en) 1987-02-10 1987-02-10 Surface internal measuring method

Country Status (1)

Country Link
JP (1) JPS63196805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308184A (en) * 2001-04-09 2002-10-23 Soqi Inc Tilt device for outboard motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308184A (en) * 2001-04-09 2002-10-23 Soqi Inc Tilt device for outboard motor

Similar Documents

Publication Publication Date Title
US5164790A (en) Simple CD measurement of periodic structures on photomasks
JPH06229922A (en) Very accurate air refractometer
EP0407454A1 (en) Optical measuring apparatus.
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
US11885608B2 (en) Ellipsometer and inspection device for inspecting semiconductor device having the same
JPS63196805A (en) Surface internal measuring method
JPH0652162B2 (en) Interferometry method
US7551292B2 (en) Interferometric Height Measurement
JPS60243583A (en) Laser doppler speedometer
CN109539998A (en) A kind of nanometer gap measuring device and method based on light-intensity test
KR102305193B1 (en) Method of measuring refractive of transparent film index using white light scanning interferometer
JP3417834B2 (en) Method and apparatus for measuring phase shift amount for processing phase shift mask
JP3508988B2 (en) Measurement method of phase shift amount for processing phase shift mask
Gurov et al. Automatic inspection of nonsmooth surface displacements by interferometer with low-coherent illumination
JPH01189506A (en) Method for measuring thickness of film
JP2656333B2 (en) Gap setting method and apparatus
CN113820024A (en) Laser listener wavelength measurement experimental device and experimental method thereof
JPH0660814B2 (en) High-precision laser measuring method and device for solid surface
JPH0232204A (en) Measuring method for registration pattern dimension
JPH0416896Y2 (en)
JPS5922907B2 (en) Laser speed measuring device
JPH0435682B2 (en)
JPH03216504A (en) Laser type line width measuring instrument and method
JPS58225305A (en) Optical shape measuring apparatus
JPH0726811B2 (en) Optical precision measuring method