JPS5922907B2 - Laser speed measuring device - Google Patents

Laser speed measuring device

Info

Publication number
JPS5922907B2
JPS5922907B2 JP15203577A JP15203577A JPS5922907B2 JP S5922907 B2 JPS5922907 B2 JP S5922907B2 JP 15203577 A JP15203577 A JP 15203577A JP 15203577 A JP15203577 A JP 15203577A JP S5922907 B2 JPS5922907 B2 JP S5922907B2
Authority
JP
Japan
Prior art keywords
light
laser
sample
measured
reference beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15203577A
Other languages
Japanese (ja)
Other versions
JPS5483872A (en
Inventor
誠 菊池
賢男 大道
賢司 城下
寛 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15203577A priority Critical patent/JPS5922907B2/en
Publication of JPS5483872A publication Critical patent/JPS5483872A/en
Publication of JPS5922907B2 publication Critical patent/JPS5922907B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明は、鉄鋼・非鉄工業等における各種鋼板および
鋼管、ステンレス板およびステンレス管、アルミ板およ
びアルミ管、銅板および銅管等の製造ラインで必要とさ
れている、非接触、高精度なレーザ速度測定装置に関す
るものである。
[Detailed Description of the Invention] This invention is a non-ferrous material that is required in manufacturing lines for various steel plates and pipes, stainless steel plates and pipes, aluminum plates and pipes, copper plates and copper pipes, etc. in the steel and non-ferrous industries. This invention relates to a contact, high-precision laser speed measuring device.

従来、上記の各製造ラインにおける被測定物の速度は接
触式のメジヤリング・ロールによつて測定されている。
Conventionally, the speed of the object to be measured in each of the above production lines has been measured using a contact type measuring roll.

この方式は、原理上0.1%以上の測定精度が得られろ
高精度なも咲あるが、接触式であるため、高速時のスリ
ップによる誤差、ローラの摩耗による誤差、高温雰囲気
で使用不可等の問題がある。これらの問題点を解決する
手段として、レーザ光の回折現象で被測定物面上で生ず
るスペックル・パターン(SpecklePatter
nル空間フィルター( 一定のピッチをもつ格子状スリ
ット等)で処理することによつて、被測定物の速度に比
例した周波数を測定し、上記の速度を測定する非接触式
のレーザ速度測定装置が開発されている。この方式によ
り、スリップによる誤差、ローラ摩耗による誤差は解決
できたが、上記スペックル・パターンがランダムな性状
をもつために、信号の信号対雑音比S/N およびQ値
は必ずしも良好とはいえず、特に被測定物の低速度領域
で測定精度(分解能)が低下し、メジヤリング・ロール
相当の精度を実現するのとは非常に困難と考えられてい
る。一方、レーザ光のコヒーレンシーを利用したドプラ
ー効果により、気体、液体中の粒子の運動等を非接触で
高精度に測定する方式が開発されており、各研究機関等
で利用されている。この方式は(イ)非接触である、(
ロ)絶対測定で直線性がよい、(ハ)応答が速い、(ニ
)測定対象が局部的で空間分解能が高い、((ホ)速度
の測定範囲が大きく、特に低速域で有利である、等の特
長をもつている。ところがjこの方式を上述した鋼板等
の速度測定に適用しようとすると、一般にライン変動(
鋼板等の位置変動)が+5詣〜±50mmと大きいため
、この方式の大きな特長の一つであつた空間分解能が高
いことにより、逆に大きな測定誤差を生ずるか、あるい
は測定不能になる難点があり、その用途は気体,液体中
の粒子の運動測定等に限定されていた。そこで、この発
明は、上述1−2たライン変動の影響を実用上除去した
ドプラ一効果による高精度なレーザ速度測定装置を提供
するものである。
In principle, this method can provide a measurement accuracy of 0.1% or higher and is highly accurate, but because it is a contact type, there are errors due to slipping at high speeds, errors due to roller wear, and it cannot be used in high-temperature environments. There are other problems. As a means to solve these problems, we have developed a speckle pattern that is generated on the surface of the object to be measured due to the diffraction phenomenon of laser light.
A non-contact laser speed measurement device that measures the frequency proportional to the speed of the object to be measured by processing it with a spatial filter (grid slits with a constant pitch, etc.). is being developed. With this method, errors due to slipping and roller wear could be resolved; however, due to the random nature of the speckle pattern, the signal-to-noise ratio (S/N) and Q value of the signal may not necessarily be good. First, the measurement accuracy (resolution) decreases, especially in the low speed region of the object to be measured, and it is considered extremely difficult to achieve accuracy equivalent to that of a measuring roll. On the other hand, a method has been developed that uses the Doppler effect, which utilizes the coherency of laser light, to measure the movement of particles in gases and liquids with high precision in a non-contact manner, and is used by various research institutions. This method is (a) non-contact;
(b) Good linearity in absolute measurement, (c) Fast response, (d) Measurement target is local and has high spatial resolution, (e) Speed measurement range is large, especially advantageous in low speed range. However, when trying to apply this method to the speed measurement of steel plates, etc., as described above, line fluctuations (
The positional fluctuation of the steel plate, etc.) is large, ranging from +5 mm to ±50 mm, so the high spatial resolution, which was one of the major features of this method, has the disadvantage of causing large measurement errors or making measurements impossible. However, its use was limited to measuring the movement of particles in gases and liquids. Therefore, the present invention provides a highly accurate laser velocity measuring device using the Doppler effect, which practically eliminates the influence of line fluctuations mentioned in 1-2 above.

以下、図面によりこの発明について説明する〇第1図は
、従来のドプラ一効果を用いたレーザ速度測定装置のう
ち、最も優れた方式であるフリンジ・モード(Frin
geMOdO)の概略構成図を示したものである。図に
おいて1はレーザ発振器、2は半透鏡、3は全反射鏡、
4は集束用レンズ、5は被測定物、6は受光用レンズ、
7は光検知器、8は信号処理部、Rは参照光、Sは試料
光である。いまレーザ発振器1からのレーザ・ビームを
半透鏡2で参照光(以下R光という)、試料光(以下S
という)の2本のビームに分割し、集束用レンズ4で上
記2本のビームを交叉させると、この交差部にフリンジ
(Fringe)が生じ、被測定物5(粒子,鋼板等)
がこのフリンジを通過する場合に、被測定物5がフリン
ジの明部にあれば散乱光の強度が強く、フリンジの暗部
にあれば散乱光の強度は弱い。受光用レンズ6卦よび光
検知器7は上記の散乱光を集めて光電変換する。信号処
理部8は後述する関係式によるドプラ一周波数を測定し
て、被測定物5の速度を算出する。今、簡単化のために
、被測定物5は速度vで上記フリンジに垂直な方向に運
動しているとすると、散乱光の強さの単位時間当りの変
化Fdは、7をフリンジの間隔として、と与えられる。
This invention will be explained below with reference to the drawings. Figure 1 shows the fringe mode (Fringe mode) which is the most excellent method among the conventional laser velocity measurement devices using the Doppler effect.
geMOdO). In the figure, 1 is a laser oscillator, 2 is a semi-transparent mirror, 3 is a total reflection mirror,
4 is a focusing lens, 5 is an object to be measured, 6 is a light receiving lens,
7 is a photodetector, 8 is a signal processing section, R is a reference light, and S is a sample light. Now, the laser beam from the laser oscillator 1 is converted into a reference beam (hereinafter referred to as R light) and a sample beam (hereinafter referred to as S light) by a semi-transparent mirror 2.
When the beams are divided into two beams (referred to as "particles, steel plates, etc.") and the two beams are crossed by the focusing lens 4, a fringe is generated at the intersection, and the object to be measured 5 (particles, steel plate, etc.)
When passing through this fringe, if the object to be measured 5 is in the bright part of the fringe, the intensity of the scattered light is strong, and if it is in the dark part of the fringe, the intensity of the scattered light is weak. The light receiving lens 6 and the photodetector 7 collect the above scattered light and photoelectrically convert it. The signal processing unit 8 measures the Doppler frequency according to a relational expression described later, and calculates the velocity of the object to be measured 5. Now, for the sake of simplicity, suppose that the object to be measured 5 is moving at a speed v in the direction perpendicular to the above fringe, then the change Fd in the intensity of the scattered light per unit time is 7, where 7 is the spacing between the fringes. , is given.

一方、2本のレーザ・ビームの交叉角をθ、レーザ光の
波長をλとすれば、2本ビームの等傾角の干渉から、1
は次式で与えられる。(1)式,(2)式から、光検知
器7の出力信号Fdは次のように表わされる。こ\で、
λ=0.6328μm(He−+Jeガスレーザ)、θ
−106、V−6m/分の数値を(3)式に代入すると
、の周波数となり、数m/分の低速度域に卦いても、十
分な精度で周波数処理ができ、高精度な測定が可能であ
ることがわかる。
On the other hand, if the intersection angle of the two laser beams is θ and the wavelength of the laser beam is λ, then from the interference of the two beams at equal inclination angles, 1
is given by the following equation. From equations (1) and (2), the output signal Fd of the photodetector 7 is expressed as follows. Here,
λ=0.6328μm (He-+Je gas laser), θ
Substituting the values of -106 and V-6 m/min into equation (3) yields the frequency, which allows frequency processing with sufficient accuracy and high-precision measurement even at low speeds of several m/min. It turns out that it is possible.

第2図は第1図に卦けるビームの交又部分を拡大し、交
又部分の幾何学的な寸法を算出するための図である。こ
の図で、が成り立つ。こ\に、Dm:ビームの最小径(
レンズ焦点に訃けるビーム径)f:レンズの焦点距離 △θ:ビームの集束角 Db:レーザビームの径 である。
FIG. 2 is a diagram for enlarging the intersection of the beams in FIG. 1 and calculating the geometric dimensions of the intersection. In this diagram, holds true. Here, Dm: Minimum diameter of the beam (
Beam diameter at the lens focal point) f: Focal length of the lens Δθ: Beam convergence angle Db: Diameter of the laser beam.

Db=0.5mm,λ=0.6328μM,f−300
m』θ−100として(4),(6),(7),(8)
式を計算すると、〜0.12mm Dm− ゜ Wm=0.085mm 〜 Hm=0.085mm tm=0.980mm が得られる。
Db=0.5mm, λ=0.6328μM, f-300
m' θ-100 (4), (6), (7), (8)
Calculating the formula yields ~0.12mm Dm-°Wm=0.085mm ~ Hm=0.085mm tm=0.980mm.

つまり、幅0.085詣,高さ0.085w!m長さ0
.980mmという非常に小さな交又部分にのみフリン
ジが生じ、この部分からの散乱光のみが有効な信号であ
ることが判る。したがつて、気体,液体等に卦ける層流
測定等に卦いて、空間的な分解能を高める必要がある分
野に対しては有用であるが、前述したライン変動がある
鋼板等の速度測定には適用できない。第3図は、この発
明の一実施例の概略構成図を示したもので、9はビーム
拡大器である。
In other words, the width is 0.085m and the height is 0.085w! m length 0
.. It can be seen that fringes occur only in a very small intersection of 980 mm, and that only the scattered light from this part is an effective signal. Therefore, it is useful for fields that require increased spatial resolution, such as laminar flow measurement for gases and liquids, but it is useful for measuring speeds of steel plates etc. that have line fluctuations as described above. is not applicable. FIG. 3 shows a schematic diagram of an embodiment of the present invention, in which 9 is a beam expander.

図中、この発明に関係しない部分は省略してある0ビー
ム拡大器9は、例えば倍率nの逆望遠鏡であり、レーザ
発振器1からのレーザ・ビーム径DbをNDbの径の平
行光とする。半透鏡2で分割されたR光はそのま\被測
定物5へ照射され、S光は全反射鏡3によつて上記R光
の光軸とθの角度を有しかつ被測定物面上でR光と交又
するように照射される。また、上記の拡大されたレーザ
・ビーム径ND.R光とS光の交角θ、R光とS光を外
部へ送出する部分の光学部品(半透鏡2,全反射鏡3)
の中心間の距離a、被測定物5迄の距離1、R光とS光
が交又する部分の長さ2△!との間に、受信される信号
のS//N}よびQが最適になる関係をもたせている。
つまり(9)式,(10)式,(自)式より が得られる。
The zero beam expander 9, in which parts not related to the present invention are omitted in the figure, is, for example, an inverted telescope with a magnification of n, and converts the laser beam diameter Db from the laser oscillator 1 into parallel light having a diameter NDb. The R light divided by the semi-transparent mirror 2 is directly irradiated onto the object to be measured 5, and the S light is irradiated by the total reflection mirror 3 at an angle of θ with the optical axis of the R light and on the surface of the object to be measured. It is irradiated so as to intersect with the R light. In addition, the enlarged laser beam diameter ND. Intersection angle θ of R light and S light, optical components for sending R light and S light to the outside (semi-transparent mirror 2, total reflection mirror 3)
distance a between the centers of A relationship is established between the two to optimize the S//N} and Q of the received signal.
In other words, equations (9), (10), and (self) are obtained.

(12)式,03)式を数値計算した一例を第4図に示
す。R光とS光は交又部分においても平行光であるから
、例えば第4図でθ−19.50,nDb=7mm,a
=350mm,t=1.000mmとすればδ=0.0
2が得られ、信号のS/N訃よびQを所要値以上に維持
した状態で、被測定物5の変動が+20湘以内でその変
動の影響を全く受けないレーザ速度計が実現されたこと
になる。第5図はこの発明の他の実施例の概略構成図を
示したもので、10は全反射鏡である。図でR光とS光
は受光用レンズ6の光軸に対して夫々の今で被測定物5
に照射されている0一般に、レーザ・ビームの断面に卦
ける強度分布がガウス分布をとるため、2本のビームを
交又させた場合に生ずるフリンジについても強度分布が
生じ、交又部分全てからの散乱光を受光すると信号のS
/Nが低下することが知られている。そこで、第5図で
は、このS/Nが所要値以上になるように受光用レンズ
6の有効口径を決定し、受光立体角αを決定している。
以上の説明から明らかなように、この発明によれば、極
めて簡単な構成で従来困難視されていた、ライン変動の
大きい鋼板等の速度を、非接触かつ高精度に測定するこ
とが可能となり、同時に需要の多い、これらラインに訃
ける長さ計としても実用することができ、その効果は極
めて大きいと考えられる。
An example of numerically calculating equations (12) and 03) is shown in FIG. Since the R light and the S light are parallel lights even at the intersection, for example, in Fig. 4, θ-19.50, nDb=7mm, a
=350mm, t=1.000mm then δ=0.0
A laser velocimeter has been realized that is completely unaffected by fluctuations of the object to be measured 5 within +20 degrees while maintaining the signal S/N ratio and Q above the required values. become. FIG. 5 shows a schematic configuration diagram of another embodiment of the present invention, in which 10 is a total reflection mirror. In the figure, the R light and the S light are respectively positioned at the object to be measured 5 with respect to the optical axis of the light receiving lens 6.
In general, the intensity distribution in the cross section of a laser beam takes a Gaussian distribution, so the fringes that occur when two beams intersect also have an intensity distribution, and from all the intersection parts When the scattered light of
/N is known to decrease. Therefore, in FIG. 5, the effective aperture of the light-receiving lens 6 is determined so that the S/N is greater than the required value, and the light-receiving solid angle α is determined.
As is clear from the above description, according to the present invention, it is possible to non-contact and highly accurately measure the speed of steel plates, etc., which have large line fluctuations, which has been considered difficult in the past, with an extremely simple configuration. At the same time, it can also be used as a length gauge for these lines, which is in high demand, and its effects are thought to be extremely large.

又、この発明は速度を時間積分して長さを測定する長さ
計にも適用できることはいうまでもない。
It goes without saying that the present invention can also be applied to a length meter that measures length by integrating velocity over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のドプラ一効果(フリンジ・モード)を用
いたレーザ速度計の概略構成図、第2図は第1図のビー
ム交又部分を拡大した図、第3図はこの発明の一実施例
を示す概略構成図、第4図は第3図に卦いて信号の信号
対雑音比$/NおよびQ値を最適にするための各パラメ
ータの選定条件を示す計算例の図、第5図はこの発明の
他の一実施例を示す概略構成図である。 図に}いて1はレーザ発振器、2は半透鏡、3は全反射
鏡、4は集光用レンズ、5は被測定物、6は受光用レン
ズ、7は光検知器、8は信号処理部、9はビーム拡大器
、10は全反射鏡である。
Fig. 1 is a schematic diagram of a laser velocimeter using the conventional Doppler effect (fringe mode), Fig. 2 is an enlarged view of the beam intersection part in Fig. 1, and Fig. 3 is a diagram showing one example of the present invention. FIG. 4 is a schematic configuration diagram showing the embodiment; FIG. 4 is a calculation example showing conditions for selecting each parameter for optimizing the signal-to-noise ratio $/N and Q value of the signal; FIG. The figure is a schematic configuration diagram showing another embodiment of the present invention. In the figure, 1 is a laser oscillator, 2 is a semi-transparent mirror, 3 is a total reflection mirror, 4 is a condensing lens, 5 is an object to be measured, 6 is a light receiving lens, 7 is a photodetector, and 8 is a signal processing unit. , 9 is a beam expander, and 10 is a total reflection mirror.

Claims (1)

【特許請求の範囲】[Claims] 1 コヒーレントな光を発するレーザ装置と、上記レー
ザ装置からのレーザビームを平行かつ所要の倍率で拡大
する手段と、上記の拡大された平行のレーザビームを参
照光と試料光に分割する手段と、上記分割された参照光
と試料光の二つの平行光を被測定物面上に交叉するよう
に照射する手段と、上記参照光と試料光の光軸を所要の
角度に設定する手段と、上記参照光と試料光とが被測定
物で散乱されたときの散乱光を所要の開口径で受光する
受光手段と、上記受光手段により、受光された信号を光
電変換する手段とを備え、上記の拡大されたレーザビー
ム径と参照光の光軸と試料光の光軸とのなす角度と、上
記分割手段と照射手段の中心間距離と、参照光と試料光
が交叉する部分の長さとの間に受信される信号の信号対
雑音比S/NおよびQ値が最適となる固有の関係を持た
せることを特徴とするレーザ速度測定装置。
1 a laser device that emits coherent light, a means for expanding the laser beam from the laser device in parallel and at a required magnification, and a means for dividing the expanded parallel laser beam into a reference beam and a sample beam; means for irradiating the divided two parallel beams, the reference beam and the sample beam, onto the surface of the object to be measured so as to intersect with each other; means for setting the optical axes of the reference beam and the sample beam at a required angle; The light receiving means for receiving scattered light when the reference light and the sample light are scattered by the object to be measured with a required aperture diameter, and means for photoelectrically converting the signal received by the light receiving means, The angle between the enlarged laser beam diameter, the optical axis of the reference beam and the optical axis of the sample beam, the distance between the centers of the dividing means and the irradiation means, and the length of the part where the reference beam and sample beam intersect. 1. A laser speed measuring device characterized in that a signal-to-noise ratio S/N and a Q value of a signal received by the laser are set to have a unique relationship that is optimal.
JP15203577A 1977-12-17 1977-12-17 Laser speed measuring device Expired JPS5922907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15203577A JPS5922907B2 (en) 1977-12-17 1977-12-17 Laser speed measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15203577A JPS5922907B2 (en) 1977-12-17 1977-12-17 Laser speed measuring device

Publications (2)

Publication Number Publication Date
JPS5483872A JPS5483872A (en) 1979-07-04
JPS5922907B2 true JPS5922907B2 (en) 1984-05-29

Family

ID=15531621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15203577A Expired JPS5922907B2 (en) 1977-12-17 1977-12-17 Laser speed measuring device

Country Status (1)

Country Link
JP (1) JPS5922907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585728B2 (en) * 1984-12-07 1993-12-08 Toyota Motor Co Ltd

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235067A (en) * 1984-05-08 1985-11-21 Mitsubishi Electric Corp Laser doppler speedometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585728B2 (en) * 1984-12-07 1993-12-08 Toyota Motor Co Ltd

Also Published As

Publication number Publication date
JPS5483872A (en) 1979-07-04

Similar Documents

Publication Publication Date Title
US4540283A (en) Apparatus and method for determining the size and velocity of particles, droplets, bubbles or the like using laser light scattering
EP0279347B1 (en) Optical axis displacement sensor
US4311383A (en) Method for determination of velocity and direction of motion of moving object by speckle patterns and apparatus therefor
CN102072710B (en) Optical angle measuring device and angle measuring method
US4969744A (en) Optical angle-measuring device
US3548655A (en) Measurement of fluid or surface velocities
US3680961A (en) Measurement of particle sizes
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
US4395123A (en) Interferometric angle monitor
JPS5922907B2 (en) Laser speed measuring device
US4725146A (en) Method and apparatus for sensing position
JP3564569B2 (en) Real-time surface shape measurement method and device
CN109668525B (en) High-precision three-dimensional angle measuring method and device based on reflection grating
JPH0756471B2 (en) Simultaneous measurement of particle velocity, diameter and refractive index by laser multifocal method
JPH0226164B2 (en)
JPS60243583A (en) Laser doppler speedometer
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
Wang Long-range optical triangulation utilising collimated probe beam
JPS5922906B2 (en) Laser speed measuring device
Wang et al. New principle formula of optical triangulation displacement measurement based on light scattering from rough surface
JPS62115315A (en) Laser displacement gauge
Kir’yanov et al. Invariance of measurement results to the nonideal nature of transparent media when the accuracy of angle-measuring structures is being monitored
JPH0447266B2 (en)
JPS5844216B2 (en) speed measuring device
Malacara-Hernández et al. Optical Methods in Metrology: Point Methods