JPH0435682B2 - - Google Patents

Info

Publication number
JPH0435682B2
JPH0435682B2 JP22752686A JP22752686A JPH0435682B2 JP H0435682 B2 JPH0435682 B2 JP H0435682B2 JP 22752686 A JP22752686 A JP 22752686A JP 22752686 A JP22752686 A JP 22752686A JP H0435682 B2 JPH0435682 B2 JP H0435682B2
Authority
JP
Japan
Prior art keywords
measured
film
light
rotation
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22752686A
Other languages
Japanese (ja)
Other versions
JPS6382306A (en
Inventor
Joji Matsuda
Yasutaka Kikuchi
Michio Namiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22752686A priority Critical patent/JPS6382306A/en
Publication of JPS6382306A publication Critical patent/JPS6382306A/en
Publication of JPH0435682B2 publication Critical patent/JPH0435682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (イ) 発明の目的 [産業上の利用分野] この発明は干渉法を利用して薄膜の膜厚を測定
するための膜厚測定装置に関するものである。
[Detailed Description of the Invention] (a) Object of the Invention [Field of Industrial Application] The present invention relates to a film thickness measuring device for measuring the thickness of a thin film using interferometry.

光学部品がLSI等の基板上に付いた薄膜や高分
子膜等の膜厚を測定する技術は近年より一層重要
性が高まつている。
Technology for measuring the thickness of thin films, polymer films, etc. on which optical components are attached to substrates such as LSIs has become increasingly important in recent years.

[従来の技術] 薄膜、例えばクロム(Cr)のマスクブランク
スの表面にレジストを塗布し、この薄膜を測定す
る場合には、従来は、例えば第4図に示すよう
な、触針を使用した表面粗さ測定器を使用し、第
4図aに示すようなダイヤモンド触針201とス
キツド202の先端を、第4図bに示すようなク
ロム面203に接触させ、これを移動して膜20
4上を横断させ、変化を電気的に増幅して検出す
るものであり、例えば、試料上の膜直径をl0とす
ると第4図cのように測定結果を得るものであ
る。
[Prior Art] When measuring a thin film such as a resist coated on the surface of a chromium (Cr) mask blank, conventional techniques have been used to measure the surface using a stylus as shown in Fig. 4. Using a roughness measuring device, bring the tips of the diamond stylus 201 and skid 202 as shown in FIG. 4a into contact with the chrome surface 203 as shown in FIG.
4 and detects the change by electrically amplifying it. For example, if the diameter of the film on the sample is l 0 , the measurement result is obtained as shown in FIG. 4c.

しかしながら、このような機械電気的方法は必
ずしも高精度の測定が容易ではなく、また、クロ
ム面203と膜204との間に段差がとれないよ
うな場合、すなわち、クロム面の全面に膜204
が形成されているような場合には、上記の測定手
段では、膜厚の測定が不可能であり、この様なこ
とから薄膜の膜厚測定技術の開発が望まれてい
る。
However, such a mechanical and electrical method does not necessarily make it easy to measure with high precision, and in cases where a step cannot be taken between the chromium surface 203 and the film 204, in other words, the film 204 is formed on the entire surface of the chromium surface.
If a thin film is formed, it is impossible to measure the film thickness using the above-mentioned measuring means, and for this reason, it is desired to develop a technique for measuring the film thickness of a thin film.

そこで、この発明の発明者は先に薄膜の膜厚の
測定を高精度にかつ非接触で容易に測定すること
ができる膜厚測定装置を提案した(昭和60年特許
出願第040467号参照)。また、薄膜の屈折率測定
を高精度にかつ非接触で容易に測定することがで
きる膜屈折率測定装置も提案した(昭和60年特許
出願第135756号参照)。
Therefore, the inventor of the present invention previously proposed a film thickness measuring device that can easily measure the film thickness of a thin film with high precision and in a non-contact manner (see Patent Application No. 040467 of 1985). We also proposed a film refractive index measurement device that can easily measure the refractive index of thin films with high precision and without contact (see Patent Application No. 135756 of 1985).

この新たに提案された干渉法膜厚測定装置、干
渉法膜屈折率測定装置は、第5図に示すように、
レーザ光をミラー103,104にて光路変更し
た後、ピンホール105を通過後被測定膜110
を照明し、被測定膜110の表面からの反射光IA
(第2図参照)、被測定膜110の裏面若しくは基
板113の反射面112での反射光IB(第2図参
照)の2光は光路長に差があるので干渉し、レン
ズ106の焦点位置にて受光器107にて干渉光
を検出して光電変換し、被測定膜110を回転装
置114にて回転させた時の干渉光の強度変化を
測定するように構成したものである。
The newly proposed interferometric film thickness measuring device and interferometric film refractive index measuring device are as shown in Figure 5.
After changing the optical path of the laser beam with mirrors 103 and 104, it passes through the pinhole 105 and then passes through the film to be measured 110.
reflected light I A from the surface of the film to be measured 110
(See FIG. 2) and the reflected light I B (See FIG. 2) on the back surface of the film to be measured 110 or the reflective surface 112 of the substrate 113 interfere with each other due to their optical path lengths, and the focal point of the lens 106 The interference light is detected by a light receiver 107 at the position, photoelectrically converted, and the intensity change of the interference light when the film to be measured 110 is rotated by a rotation device 114 is measured.

[発明が解決しようとする問題点] この新たに提案された干渉法膜厚測定装置、干
渉法膜屈折率測定装置は、薄膜の膜厚、屈折率の
測定を高精度にかつ非接触で容易に測定すること
ができる顕著な特徴を有するが、測定においては
被測定膜を回転させる必要があり、この被測定膜
の回転に応じてレンズ106、受光器107を回
転させる必要があり、これが測定装置の構造を複
雑にする原因になつている。
[Problems to be solved by the invention] The newly proposed interferometric film thickness measuring device and interferometric film refractive index measuring device can easily measure the film thickness and refractive index of thin films with high precision and without contact. However, during measurement, it is necessary to rotate the film to be measured, and it is necessary to rotate the lens 106 and the light receiver 107 in accordance with the rotation of the film to be measured. This causes the structure of the device to become complicated.

この発明は上記の如き事情に鑑みてなされたも
のであつて、薄膜の膜厚の測定を高精度にかつ非
接触で容易に測定することができ構造が簡単な膜
厚測定装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a film thickness measuring device with a simple structure that can easily measure the film thickness of a thin film with high precision and without contact. The purpose is to

(ロ) 発明の構成 [問題点を解決するための手段] この目的に対応して、この発明の試料回転型干
渉法膜厚測定装置は、被測定体である膜体にレー
ザ光を照明し得るレーザ光源と、前記被測定体に
入射点で入射した入射光のうち前記被測定体の表
面で反射した光と前記被測定体を透過し裏面で反
射した光を前記入射点を通して前記入射光の光路
の方向に戻す反射装置と、前記反射装置によつて
戻された前記被測定体の表面で反射した光と前記
被測定体を透過し裏面で反射した光を干渉させて
干渉縞を形成する干渉計と、前記干渉縞の強度を
測定する光強度測定装置と、及び前記被測定体へ
の前記レーザ光の入射角を変化させる被測定回転
装置とを備ることを特徴としている。
(B) Structure of the Invention [Means for Solving the Problems] In order to achieve this purpose, the sample rotation type interferometry film thickness measuring device of the present invention illuminates a film body, which is an object to be measured, with a laser beam. A laser light source is used to obtain a laser light source, and among the incident light that is incident on the object to be measured at an incident point, the light reflected on the surface of the object to be measured and the light that is transmitted through the object to be measured and reflected at the back surface are passed through the incident point to the incident light. a reflection device that returns the light in the direction of the optical path of the object, and the light reflected by the surface of the object to be measured that is returned by the reflection device and the light that is transmitted through the object to be measured and reflected by the back surface to interfere with each other to form interference fringes. The present invention is characterized by comprising an interferometer that measures the intensity of the interference fringes, a light intensity measuring device that measures the intensity of the interference fringes, and a measurement rotation device that changes the angle of incidence of the laser beam on the object to be measured.

以下、この発明の詳細を一実施例について説明
する。
Hereinafter, the details of this invention will be explained with reference to one embodiment.

第1図において、1は膜厚測定装置である。膜
厚測定装置1はレーザ光源2、反射装置20、干
渉計30、光強度測定装置40及び回転装置50
を備えている。
In FIG. 1, 1 is a film thickness measuring device. The film thickness measurement device 1 includes a laser light source 2, a reflection device 20, an interferometer 30, a light intensity measurement device 40, and a rotation device 50.
It is equipped with

レーザ光源2としてはヘリウムネオンレーザ、
アルゴンレーザ、クリプトンレーザ、ヘリウムカ
ドニウムレーザ、ルビーレーザ等を使用すること
ができる。
As the laser light source 2, a helium neon laser,
Argon laser, krypton laser, helium cadmium laser, ruby laser, etc. can be used.

干渉計30はレンズ3、ビームスプリツタ4、
ビームスプリツタ5、ピンホール6、レンズ7、
スクリーン8を有している。
The interferometer 30 includes a lens 3, a beam splitter 4,
Beam splitter 5, pinhole 6, lens 7,
It has a screen 8.

反射装置20は被測定膜10の入射側にシリン
ドリカルレンズ11を備え、かつ被測定膜10の
反射側にシリンドリカルミラー12を備えてい
る。シリンドリカルミラー12は被測定膜10の
反射側にあつて、被測定膜10に向けて被測定膜
10の回転軸を中心とする鏡面を備えている。
The reflection device 20 includes a cylindrical lens 11 on the incident side of the film to be measured 10, and a cylindrical mirror 12 on the reflection side of the film to be measured 10. The cylindrical mirror 12 is located on the reflective side of the film to be measured 10 and has a mirror surface centered on the rotation axis of the film to be measured 10 facing toward the film to be measured 10 .

被測定膜10はレンズやガラス板等の反射面1
3をもつ基板14の上に密着して形成されるもの
である。被測定膜10及び基板14(第2図)は
回転装置50によつて回転される。
The film to be measured 10 is a reflective surface 1 such as a lens or a glass plate.
3, and is formed in close contact with the substrate 14 having the structure No. 3. The film to be measured 10 and the substrate 14 (FIG. 2) are rotated by a rotation device 50.

回転装置50はパルス回転ステージ15とパル
ス回転ステージ15の回転を制御するコントロー
ラ16とを備えている。
The rotation device 50 includes a pulse rotation stage 15 and a controller 16 that controls the rotation of the pulse rotation stage 15.

光強度測定装置40は光検出器17、増幅器1
8、データ解析装置21、処理装置22、プリン
ター23、モニタTV24を備えている。
The light intensity measuring device 40 includes a photodetector 17 and an amplifier 1.
8, a data analysis device 21, a processing device 22, a printer 23, and a monitor TV 24.

[作用] このように構成された膜厚測定装置において、
被測定膜10の膜厚を測定する場合の作用は次の
通りである。
[Function] In the film thickness measuring device configured as described above,
The operation when measuring the film thickness of the film to be measured 10 is as follows.

レーザ光源2からのビームはレンズ3、ビーム
スプリツタ4、ビームスプリツタ5を通過後シリ
ンドリカルレンズ11を通してパルス回転ステー
ジ15の上被測定膜10を照射する。被測定膜1
0の表面と裏面13で反射した光は干渉し、この
干渉光はシリンドリカルミラー12で反射されて
元の入射方向に戻り、被測定膜10の同一点を通
り、反射して入射光路を辿り、ビームスプリツタ
5で反射してレンズ7にて光検出器17上に集光
し検出される。光検出器17にて光電交換された
信号は増幅器18を通して増幅されたのち、デー
タ解析装置21に入力され、データ処理、波形観
測される。
A beam from a laser light source 2 passes through a lens 3, a beam splitter 4, and a beam splitter 5, and then passes through a cylindrical lens 11 and irradiates the film to be measured 10 on a pulse rotation stage 15. Measuring film 1
The light reflected from the front surface and back surface 13 of 0 interferes, and this interference light is reflected by the cylindrical mirror 12 and returns to the original direction of incidence, passes through the same point on the film to be measured 10, is reflected, and follows the incident optical path. The light is reflected by the beam splitter 5, focused by the lens 7 onto the photodetector 17, and detected. The signal photoelectrically exchanged by the photodetector 17 is amplified through the amplifier 18 and then input to the data analysis device 21, where the data is processed and the waveform is observed.

パルスステージコントローラ16にて回転パル
スステージ15に1パルス送るごとに光強度信号
を検出してデータ処理を行う。
Each time a pulse stage controller 16 sends one pulse to the rotating pulse stage 15, a light intensity signal is detected and data processing is performed.

次に被測定膜10の膜厚を求める原理について
説明する。
Next, the principle of determining the film thickness of the film to be measured 10 will be explained.

[A]まず、入射角θ1における入射光と入射角θ2
における入射光との波長が共にλである場合は次
の通りである。
[A] First, the incident light at the incident angle θ 1 and the incident angle θ 2
When both the wavelengths of the incident light and the wavelength of the incident light are λ, the following is true.

第2図のような屈折率n、厚さhの被測定膜1
0にレーザ光が角度θで入射した場合を考える。
Film 1 to be measured with refractive index n and thickness h as shown in Fig. 2
Consider the case where a laser beam is incident at an angle θ.

被測定膜10の表面からの反射光をIA、裏面か
らの反射光をIBとするとIA,IBの光路差dは −=d ……(1) とすると d=2h√22 ……(2) で表わされる。
If the light reflected from the front surface of the film to be measured 10 is I A and the light reflected from the back surface is I B , then the optical path difference d between I A and I B is -=d...(1) If d=2h√ 2 - 2 ...It is expressed as (2).

この場合の干渉光の強度は I=A+Bcos(2πd/λ) I=A+Bcos{(4π/λ)h ×(√22)} ……(3) で表わされる。 The intensity of the interference light in this case is expressed as I=A+Bcos(2πd/λ) I=A+Bcos{(4π/λ)h×(√ 22 )} (3).

入射角度θ1の場合の光路差をd1、角度θ2の場合
の光路差をd2と干渉縞の強度がma×及びminに
なる位置は d1−d2=(1/2)mλ(mは整数) ……(4) 従つて 2h(√22 1−√22 2) =(1/2)mλB ……(5) 厚さhは h=mλ/{4(√22 1 −√22 2)} ……(6) で表わすことができる。
The optical path difference when the incident angle is θ 1 is d 1 , the optical path difference when the angle is θ 2 is d 2 , and the position where the intensity of the interference fringe is max and min is d 1 − d 2 = (1/2) mλ (m is an integer) ……(4) Therefore, 2h(√ 22 1 −√ 22 2 ) = (1/2) mλB ……(5) The thickness h is h=mλ/{4(√ 22 1 −√ 22 2 )} ...(6)

よつて被測定膜の屈折率n及び入射光の波長λ
が与えられており、かつ(3)式で与えられる干渉光
の強度の変化の極値からを与えるθから入射角
θ1,θ2を求めれば被測定膜10の厚さhを求める
ことができる。
Therefore, the refractive index n of the film to be measured and the wavelength λ of the incident light
is given, and the thickness h of the film to be measured 10 can be found by finding the incident angles θ 1 and θ 2 from the extreme value of the change in the intensity of the interference light given by equation (3). can.

[B]次に入射角θ1における入射光の波長がλ1
入射角θ2における入射光の波長がλ2の場合は次の
通りである。
[B] Next, the wavelength of the incident light at the incident angle θ 1 is λ 1 ,
When the wavelength of the incident light at the incident angle θ 2 is λ 2 , the equation is as follows.

波長λ1、角度θ1、波長λ2、角度θ2における位相
は (4π/λ+h√22 1=mπ ……(7) (4π/λ2)h√22 2=(m+1)π……(
8) と表わされる。これにより膜厚hは h=1/〔4{(√22 2/π2) −(√22 1/λ1)}〕 ……(9) よつて被測定膜の屈折率n及び入射光の波長
λ1,λ2が与えられており、かつ(3)式で与えられる
干渉光の強度の変化の極値から入射角θ1,θ2を分
れば被測定膜10の厚さhを求めることができ
る。
The phase at wavelength λ 1 , angle θ 1 , wavelength λ 2 , and angle θ 2 is (4π/λ + h√ 22 1 = mπ ...(7) (4π/λ 2 ) h√ 22 2 = ( m+1)π……(
8). As a result, the film thickness h is h=1/[4{(√ 22 22 ) −(√ 22 11 )}] …(9) Therefore, the refractive index n of the film to be measured If the wavelengths λ 1 and λ 2 of the incident light are given, and the angles of incidence θ 1 and θ 2 are determined from the extreme value of the change in the intensity of the interference light given by equation (3), the measurement target film 10 can be determined. The thickness h can be determined.

[C] また[A]及び[B]において屈折率の未知の
場合でも次のようにして膜厚が求められる。この
場合には、まず被測定膜の屈折率を求める必要が
あるので、その屈折率を求める原理について説明
する。
[C] Also, in [A] and [B], even if the refractive index is unknown, the film thickness can be determined as follows. In this case, it is first necessary to find the refractive index of the film to be measured, so the principle of finding the refractive index will be explained.

(A)まず、入射角θ1における入射光と入射角θ2
おける入射光との波長が共に入である場合は次の
通りである。
(A) First, when the wavelengths of the incident light at the incident angle θ 1 and the incident light at the incident angle θ 2 are both incident, the following is true.

干渉縞の隣接する極値における角度θ1,θ2,θ3
とすると位相は (4π/λB)h√22 1=mπ……(10) (4π/λ)h√22 2 =(m+1)π ……(11) (4π/λ)h√22 3 =(m+2)π ……(12) 以上のように表わされる。この3式より各々の
差の比をとり展開して解くと屈折率nは n=√(−4 1−164 24 3+82 12 2 +82 22 3 +22 32 1) {8(2 1−22 22 3)} ……(13) 以上のように表わされる。
Angle θ 1 , θ 2 , θ 3 at adjacent extreme values of interference fringes
Then, the phase is (4π/λB) h√ 22 1 = mπ……(10) (4π/λ) h√ 22 2 = (m+1)π …(11) (4π/λ) h√ 22 3 = (m+2)π ...(12) It is expressed as above. Taking the ratio of each difference from these three equations and expanding and solving, the refractive index n is n=√(− 4 1 −16 4 24 3 +8 2 12 2 +8 2 22 3 +2 2 32 1 ) {8( 2 1 −2 2 2 + 2 3 )} ...(13) It is expressed as above.

よつて干渉光の強度の変化の極値から入射角
θ1,θ2・θ3が分れば被測定膜の屈折率nを求める
ことができ、このnを(6)式または(9)式に代入て膜
厚が求められる。
Therefore, if the incident angles θ 1 , θ 2 and θ 3 are known from the extreme value of the change in the intensity of the interference light, the refractive index n of the film to be measured can be determined, and this n can be calculated using equation (6) or (9). The film thickness can be determined by substituting it into the formula.

(B)次に入射角θ1における入射光の波長がλ1、入
射角θ2おける入射光の波長がλ2、入射角θ3におけ
る入射光の波長がλ3の場合は次の通りである。
(B) Next, if the wavelength of the incident light at the incident angle θ 1 is λ 1 , the wavelength of the incident light at the incident angle θ 2 is λ 2 , and the wavelength of the incident light at the incident angle θ 3 is λ 3 , then the following is true. be.

干渉縞の極値における波長λ1,角度θ1,波長
λ2,角度θ2,波長λ3,角度θ3における位相は (4π/λ1A)h√22 1=mπ ……(14) (4π/λ2)h√22 2 =(m+1)π ……(15) (4π/λ3)h√22 3 =(m+2)π ……(16) と表わされる。この3式より各々の差の比をとり
展開して解くと屈折率nは a=(4λ2 3・λ2 1−λ2 1・λ2 2 −λB2 2・λ2 3C)2 −4λ2 1・λ2 2・λ2 3 b=2(4λ2 3・λ2 1−λ2 1・λ2 2 λ2 2・λ2 3) ×(λ2 2・λ2 3・sin2θ1 −4λ2 3・λ2 1・sin2θ2 +λ2 1・λ2 2・sin2θ3) +4λ2 1・λ2 2・λ2 3 ×(sin2θ1+sin2θ3) C=(λ2 2・λ2 3・sin2θ1 −4λ2 3・λ2 1・sin2θ2 +λ2 1・λ2 2・sin2θ32 −4λ2 1・λ2 2・λ2 3 ×sin2θ1・sin2θ3 上式のように表わされる。
The wavelength λ 1 , angle θ 1 , wavelength λ 2 , angle θ 2 , wavelength λ 3 , and phase at angle θ 3 at the extreme values of the interference fringe are (4π/λ 1 A) h√ 22 1 = mπ ……( 14) (4π/λ 2 )h√ 22 2 = (m+1)π (15) (4π/λ 3 )h√ 22 3 = (m+2)π (16) From these three equations, taking the ratio of each difference and expanding and solving, the refractive index n is a=(4λ 2 3・λ 2 1 −λ 2 1・λ 2 2 −λB 2 2・λ 2 3 C) 2 −4λ 2 1・λ 2 2・λ 2 3 b=2(4λ 2 3・λ 2 1 −λ 2 1・λ 2 2 λ 2 2・λ 2 3 ) × (λ 2 2・λ 2 3・sin 2 θ 1 −4λ 2 3・λ 2 1・sin 2 θ 22 1・λ 2 2・sin 2 θ 3 ) +4λ 2 1・λ 2 2・λ 2 3 × (sin 2 θ 1 + sin 2 θ 3 ) C=(λ 2 2・λ 2 3・sin 2 θ 1 −4λ 2 3・λ 2 1・sin 2 θ 22 1・λ 2 2・sin 2 θ 3 ) 2 −4λ 2 1・λ 2 2・λ 2 3 ×sin 2 θ 1・sin 2 θ 3Expressed as in the above equation It will be done.

よつて、被測定膜の入射光の波長λ1,λ2,λ3
与えられており、かつ干渉光の強度の変化の極値
から入射角θ1,θ2,θ3分れば、被測定膜の屈折率
nを求めることができる。このnを(6)式または(9)
式に代入して膜厚hが求められる。
Therefore, if the wavelengths λ 1 , λ 2 , λ 3 of the incident light on the film to be measured are given, and the incident angles θ 1 , θ 2 , θ 3 are divided from the extreme values of the change in the intensity of the interference light, then The refractive index n of the film to be measured can be determined. This n can be expressed as (6) or (9)
The film thickness h can be determined by substituting into the equation.

[実験例] 試料としては、ガラス基板上にクロム(Cr)
をコートして反射面を持つ基板を構成し、その反
射面の上にフツ化マグネシウム(MgF2)をコー
トして被測定膜とした。He−Neレーザを用いて
被測定膜の厚さを測定したところ、 d=1.24μmの値が得られた。同じ試料を触針式
表面粗さ測定装置で測定したところ厚さ約
1.25μmの値が得られた。両方法によつて得られ
た値は良く一致していることが分る。
[Experiment example] As a sample, chromium (Cr) was placed on a glass substrate.
was coated to form a substrate with a reflective surface, and magnesium fluoride (MgF 2 ) was coated on the reflective surface to form a film to be measured. When the thickness of the film to be measured was measured using a He-Ne laser, a value of d = 1.24 μm was obtained. When the same sample was measured using a stylus type surface roughness measuring device, the thickness was approx.
A value of 1.25 μm was obtained. It can be seen that the values obtained by both methods are in good agreement.

[他の方法] 以上説明した実施例では、反射装置としてシリ
ンドリカルミラー12を使用しているが、これは
第3図に示すように、被測定膜10の回転とあわ
せて回転する平面ミラー25で代替することもで
きる。
[Other methods] In the embodiments described above, the cylindrical mirror 12 is used as a reflection device, but as shown in FIG. It can also be substituted.

(ハ) 発明の効果 このようにこの発明の干渉を利用した膜厚測定
装置によれば、薄膜の膜厚の測定を高精度にかつ
非接触で容易に測定することができる。しかも基
板と被測定膜との間に段差がとれないような場合
でも膜厚α測定が可能である。
(c) Effects of the Invention As described above, according to the film thickness measuring device using interference of the present invention, the film thickness of a thin film can be easily measured with high accuracy and in a non-contact manner. Furthermore, the film thickness α can be measured even when there is no level difference between the substrate and the film to be measured.

しかも、被測定膜10の回転にあわせて光検出
器17等を回転させる必要がないので装置の構成
が簡単である。
Furthermore, since there is no need to rotate the photodetector 17 and the like in accordance with the rotation of the film to be measured 10, the configuration of the apparatus is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる膜厚測定
装置を示す構成説明図、第2図は被測定膜におけ
る光路を示す拡大説明図、第3図はこの発明の他
の実施例に係わる膜厚測定装置を示す構成説明
図、第4図は触針式膜厚測定装置を示す説明図、
及び第5図は従来の干渉法膜厚測定装置を示す構
成説明図である。 1……膜厚測定装置、2……レーザ光源、3…
…レンズ、4……ビームスプリツタ、5……ビー
ムスプリツタ、6……ピンホール、7……レン
ズ、8……スクリーン、10……被測定膜、11
……シリンドリカルレンズ、12……シリンドリ
カルミラー、13……裏面、14……基板、15
……パルス回転ステージ、16……コントロー
ラ、17……光検出器、18……増幅器、20…
…反射装置、21……データ解析装置、22……
処理装置、23……プリンタ、24……モニタ
TV、25……平面ミラー、30……干渉計、4
0……光強度測定装置、50……回転装置。
FIG. 1 is an explanatory diagram of the configuration of a film thickness measuring device according to an embodiment of the present invention, FIG. 2 is an enlarged explanatory diagram showing an optical path in a film to be measured, and FIG. 3 is an explanatory diagram of another embodiment of the invention. A configuration explanatory diagram showing a film thickness measuring device, FIG. 4 is an explanatory diagram showing a stylus type film thickness measuring device,
and FIG. 5 are configuration explanatory diagrams showing a conventional interferometric film thickness measuring device. 1...Film thickness measuring device, 2...Laser light source, 3...
... Lens, 4 ... Beam splitter, 5 ... Beam splitter, 6 ... Pinhole, 7 ... Lens, 8 ... Screen, 10 ... Film to be measured, 11
... Cylindrical lens, 12 ... Cylindrical mirror, 13 ... Back surface, 14 ... Substrate, 15
...Pulse rotation stage, 16...Controller, 17...Photodetector, 18...Amplifier, 20...
... Reflection device, 21 ... Data analysis device, 22 ...
Processing device, 23... printer, 24... monitor
TV, 25...plane mirror, 30...interferometer, 4
0... Light intensity measuring device, 50... Rotating device.

Claims (1)

【特許請求の範囲】 1 被測定体である膜体にレーザ光を照明し得る
レーザ光源と、前記被測定体に入射点で入射した
入射光のうち前記被測定体の表面で反射した光と
前記被測定体を透過し裏面で反射した光を前記入
射点を通して前記入射光の光路の方向に戻す反射
装置と、前記反射装置によつて戻された前記被測
定体の表面で反射した光と前記被測定体を透過し
裏面で反射した光を干渉させて干渉縞を形成する
干渉計と、前記干渉縞の強度を測定する光強度測
定装置と、及び前記被測定体への前記レーザ光の
入射角を変化させる被測定体回転装置とを備るこ
とを特徴とする試料回転型干渉法膜厚測定装置。 2 前記反射装置は前記被測定体の近傍に配設さ
れた前記被測定体の回転軸を中心とするシリンド
リカルミラーを備えることを特徴とする特許請求
の範囲第1項記載の回転型干渉法膜厚測定装置。 3 前記反射装置は前記被測定体の回転軸と共通
の回転軸に関して前記被測定体の回転量と同じ回
転量だけ回転する平面鏡を備えることを特徴とす
る特許請求の範囲第1項記載の回転型干渉法膜厚
測定装置。
[Scope of Claims] 1. A laser light source capable of illuminating a film body, which is an object to be measured, with a laser beam; and a laser beam source that is capable of illuminating a film body that is an object to be measured; a reflection device that returns the light transmitted through the object to be measured and reflected on the back surface through the incident point in the direction of the optical path of the incident light; and the light reflected on the surface of the object to be measured that is returned by the reflection device. an interferometer that forms interference fringes by interfering with light transmitted through the object to be measured and reflected on the back surface; a light intensity measuring device that measures the intensity of the interference fringes; and a light intensity measuring device that measures the intensity of the interference fringes; A sample rotation type interferometry film thickness measurement device, comprising: a measuring object rotation device that changes an incident angle. 2. The rotating interferometry film according to claim 1, wherein the reflection device includes a cylindrical mirror centered on the rotation axis of the object to be measured, which is disposed near the object to be measured. Thickness measuring device. 3. The rotation according to claim 1, wherein the reflecting device includes a plane mirror that rotates by the same amount of rotation as the amount of rotation of the object to be measured about a rotation axis common to the rotation axis of the object to be measured. Type interferometry film thickness measurement device.
JP22752686A 1986-09-26 1986-09-26 Film thickness measuring apparatus using specimen rotation type interference method Granted JPS6382306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22752686A JPS6382306A (en) 1986-09-26 1986-09-26 Film thickness measuring apparatus using specimen rotation type interference method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22752686A JPS6382306A (en) 1986-09-26 1986-09-26 Film thickness measuring apparatus using specimen rotation type interference method

Publications (2)

Publication Number Publication Date
JPS6382306A JPS6382306A (en) 1988-04-13
JPH0435682B2 true JPH0435682B2 (en) 1992-06-11

Family

ID=16862284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22752686A Granted JPS6382306A (en) 1986-09-26 1986-09-26 Film thickness measuring apparatus using specimen rotation type interference method

Country Status (1)

Country Link
JP (1) JPS6382306A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606764B2 (en) * 1991-08-30 1997-05-07 東海ゴム工業株式会社 Method of manufacturing male member used for connector
US5729343A (en) * 1995-11-16 1998-03-17 Nikon Precision Inc. Film thickness measurement apparatus with tilting stage and method of operation

Also Published As

Publication number Publication date
JPS6382306A (en) 1988-04-13

Similar Documents

Publication Publication Date Title
US20040184038A1 (en) Method and apparatus for measuring the shape and thickness variation of polished opaque plates
US5218424A (en) Flying height and topography measuring interferometer
TW201728869A (en) Device and method for measuring height in the presence of thin layers
JPH07500909A (en) Measuring device
EP0747666B1 (en) Method and apparatus for characterising multilayer thin film systems and for measuring the distance between two surfaces in the presence of thin films
JPH0781818B2 (en) Shearing interferometer for measuring lens lateral aberration
JPH0435682B2 (en)
JP4032511B2 (en) Method for measuring optical constants of thin films
JPS6211106A (en) Film thickness measurement by interference method
JPS6271804A (en) Film thickness measuring instrument
JP2510418B2 (en) Beam scanning interferometry film thickness measuring device
JP2541197Y2 (en) Interference shape measuring instrument
JP3461566B2 (en) Interferometer for measuring cone shape
JPH02228512A (en) Highly accurate laser measurement method and apparatus for surface of solid
JPH0453362B2 (en)
JP3417834B2 (en) Method and apparatus for measuring phase shift amount for processing phase shift mask
WO1981003073A1 (en) Process and apparatus for measurement of physical parameters of moving matter by means of coherent light source,by heterodyne detection of light reflected or scattered by moving matter
JPS6353481B2 (en)
JPH0439886B2 (en)
JP2732167B2 (en) Measurement method of flying height of magnetic head
RU28391U1 (en) Device for measuring film thickness
JPH0230642B2 (en) SHIARINGU * KONTORASUTOHOMAKUATSUSOKUTEISOCHI
JPH07159114A (en) Microdisplacement gage
JPH11325856A (en) Optical measurement device and adapter for optical measurement
JPH0450518Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term