JPS58225305A - Optical shape measuring apparatus - Google Patents

Optical shape measuring apparatus

Info

Publication number
JPS58225305A
JPS58225305A JP10872482A JP10872482A JPS58225305A JP S58225305 A JPS58225305 A JP S58225305A JP 10872482 A JP10872482 A JP 10872482A JP 10872482 A JP10872482 A JP 10872482A JP S58225305 A JPS58225305 A JP S58225305A
Authority
JP
Japan
Prior art keywords
measured
light
reflected
image sensor
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10872482A
Other languages
Japanese (ja)
Inventor
Shotaro Shindo
進藤 昭太郎
Yutaka Ono
裕 小野
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP10872482A priority Critical patent/JPS58225305A/en
Publication of JPS58225305A publication Critical patent/JPS58225305A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape of the surface of an object in a contactless manner by creating an interference fringe from a reflected light from the object to be measured and a reflected light from a double-side mirror. CONSTITUTION:Light from a light source 1 irradiates the surface 30 of an object 3 to be measured and a double-side mirror 4. Lights reflected on these reflective surfaces are reflected with or transmit a half mirror 2 and then, form on interference fringe on image sensors 51 and 52 by interference with each other according to the same theory as in the interference by the Mickelson's optical system. An m-order high harmonic outputted from the image sensors 51 and 52 is heterodyne detected with mixers 61 and 62 and counted 81 and 82 separately through low-pass filters 71 and 72 to compute 9 the Z-direction displacement Z of an object 3 to be measured and the angle DELTApsi of inclination of the surface thereof.

Description

【発明の詳細な説明】 本発明は、光の干渉を利用して鏡面をもつ被測定物体表
面の凹凸、傾斜、荒さ等の形状変化を知るようにした光
学式形状測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical shape measuring device that utilizes light interference to determine shape changes such as unevenness, inclination, and roughness on the surface of a mirror-surfaced object to be measured.

従来、被測定物体表面に針を機械KK接触させ、その高
低を測定することによりて表面荒さ等を知るようにした
触針式表面荒さ計がある。この装置は、被測定面に針が
接触するために、被測定表面に傷がつきゃす<、マた、
真の被測定面形状を知ることか困難なこと、柔かい物体
の表面測定が行なえ危いこと等の欠点があった。
BACKGROUND ART Conventionally, there is a stylus-type surface roughness meter that measures the surface roughness by bringing a needle into mechanical contact with the surface of an object to be measured and measuring its height. With this device, the needle comes into contact with the surface to be measured, which may cause scratches on the surface to be measured.
There are disadvantages such as it is difficult to know the true shape of the surface to be measured, and it is dangerous to measure the surface of soft objects.

本発明は、従来装置におけるこのような欠点を除去する
ことを目的としてな含れたものである。
The present invention has been included for the purpose of eliminating such drawbacks in conventional devices.

本発明に係る装置は、被測定物体表面が光を反射するよ
うに形成されたものであって、光源から    ゛の可
干渉光を、この被測定表面に照射するとともに、光源の
光軸に対してΔθ だけ傾き互いに(:L80’±2・
Δ0)の角度となるように設置した2面イラーに照射し
、被測定物体表面からの反射光と、2′msツーからの
反射光とを2個のイメージセンサ上に照射させ、各イメ
ージセンサ上に被測定表面の変化に対して互いに逆方向
に動く干渉縞をつくシ、各イメージセンサからの出力信
号を処理して、被測定表面の形状変化を知るようにした
ものである。
In the device according to the present invention, the surface of the object to be measured is formed so as to reflect light, and the surface to be measured is irradiated with coherent light of ゛ from a light source, and the optical axis of the light source is and tilt each other by Δθ (:L80'±2・
The light reflected from the surface of the object to be measured and the light reflected from the 2'ms2 are irradiated onto the two image sensors. Interference fringes that move in opposite directions relative to changes in the surface to be measured are formed on top of the sensor, and output signals from each image sensor are processed to determine changes in the shape of the surface to be measured.

第1図は、本発明に係る装置の構成ブロック図である。FIG. 1 is a block diagram of the configuration of an apparatus according to the present invention.

図において、1は光源で、例えばHeNeレーザ光源が
使用され、ここから可干渉表光が出射する。2はバー7
ンラーで、光源1の光軸C4?に対して45°傾斜させ
て設置されている。3は被測定物体で、その表面30は
光が反射するような反射面となっており、ここにハーフ
ミラ−2を通過した光が照射される。4は2面ミラーで
、光源1の光軸C1に対してΔ0 だけ傾き、互いに(
180°−2・Δりの角度で交わる2個のミラー41.
42で構成されておシ、ハーフξ2−2で反射した光源
1からの光が照射されている。51.52はそれぞれイ
メージセンサで、例えばCODが使用されており、その
受光面には、被測定物体の表面30からの反射光がハー
フミラ−2で反射されて照射するとともに、2面ミ2−
4からの反射光がハーフミラ−2を通って照射されてい
る。そして、これらのふたつの反射光によって、マイケ
ルソンの干渉縞がつくられるようになっている。ここで
、一方のイメージセンサ51と、他方イメージセンサ5
2とは、そζに照射される光によってつくられる干渉縞
が、被測定物体の表面30の2方向の変形に対して、互
いに逆方向に動く領域に設置されている。
In the figure, reference numeral 1 denotes a light source, for example, a HeNe laser light source is used, from which coherent surface light is emitted. 2 is bar 7
In the imager, optical axis C4 of light source 1? It is installed at an angle of 45°. Reference numeral 3 denotes an object to be measured, the surface 30 of which is a reflective surface that reflects light, and the light that has passed through the half mirror 2 is irradiated onto this object. Reference numeral 4 denotes a two-sided mirror, which is tilted by Δ0 with respect to the optical axis C1 of light source 1.
Two mirrors 41 that intersect at an angle of 180°-2·Δ.
42, and the light from the light source 1 reflected by the half ξ2-2 is irradiated. Reference numerals 51 and 52 each designate an image sensor, for example a COD, whose light-receiving surface is irradiated with reflected light from the surface 30 of the object to be measured, which is reflected by a half mirror 2;
The reflected light from 4 is irradiated through half mirror 2. These two reflected lights create Michelson interference fringes. Here, one image sensor 51 and the other image sensor 5
2 is located in a region where interference fringes created by light irradiated onto ζ move in opposite directions with respect to deformation of the surface 30 of the object to be measured in two directions.

61、62はそれ、それイメージセンサ51.52から
の出力周波数信号fa、 fbと参照周波数信号fRと
をミキシングするミキサ、71.72はそれぞれ対応す
るミキサからの出力信号のなかの特定周波数信号を通過
させるローパスフィルタ、81.82はそれぞれローパ
スフィルタ71.72からの周波数信号を計数するカウ
ンタ、9は各カウンタ81.82からの計数信号f□、
f2を入力する演算回路で、この演算回路としては、例
えばマイクロプロセッサが使用される。90は演算結果
を指示する表示装置で、例えばCRTが使用される。
61 and 62 are mixers for mixing the output frequency signals fa and fb from the image sensors 51 and 52 with the reference frequency signal fR, and 71 and 72 are for mixing specific frequency signals among the output signals from the corresponding mixers. The low-pass filters 81 and 82 are counters that count the frequency signals from the low-pass filters 71 and 72, and 9 is the count signal f□ from each counter 81 and 82,
This is an arithmetic circuit that inputs f2, and for example, a microprocessor is used as this arithmetic circuit. Reference numeral 90 denotes a display device for indicating the calculation results, for example, a CRT is used.

このように構成した装置の動作は次の通りである。光源
1から出射した波長λの光は、被測定物体5の表面30
と2面ミ2−4とに照射される。これらの反射面で反射
した各反射光は、ハーフミラ−2を反射、透過後、實イ
ケルソンの光学系による干渉と同じ原理で干渉し、各イ
メージセンサ51−52上に干渉縞を形成させる。
The operation of the device configured as described above is as follows. The light of wavelength λ emitted from the light source 1 is transmitted to the surface 30 of the object to be measured 5.
and the second surface Mi 2-4 is irradiated. Each of the reflected lights reflected by these reflective surfaces, after being reflected and transmitted through the half mirror 2, interferes with each other based on the same principle as interference by Ikelson's optical system, and forms interference fringes on each of the image sensors 51-52.

このときイメージセンサ51上に形成される干渉縞の間
隔d□は、表面30の傾斜角五Δψとすれば(1)式%
式% (1) また、イメージセンサ52上に形成される干渉縞の間隔
d2は(2)式で表わされる。
At this time, the interval d□ of the interference fringes formed on the image sensor 51 is calculated using the formula (1), where the inclination angle 5Δψ of the surface 30 is %.
Equation % (1) Furthermore, the interval d2 between interference fringes formed on the image sensor 52 is expressed by Equation (2).

】 各イメージセンサ−51,52上につくられる干渉縞の
1本の縞は、被測定物体30表面30の2方向のλ12
の変化(変位)に相当する。
] One fringe of the interference fringes created on each image sensor 51, 52 is λ12 in two directions of the surface 30 of the object to be measured 30.
corresponds to the change (displacement) in

各イメージセンサ51,521i、一端に周波数で。の
りaツク信号が印加されて駆動されておυ、各イメージ
センサ51.52の出力端からfO−f、/N (ただ
しNはイメージセンサai、 52のピット数)を基本
周波数とする(3)式、(4)式で表わされる周期信号
fa。
Each image sensor 51, 521i, with a frequency at one end. The output terminal of each image sensor 51 and 52 is driven by applying a glue signal, and fO-f, /N (where N is the number of pits of image sensor ai, 52) is set as the fundamental frequency (3 ) and the periodic signal fa expressed by equation (4).

fbが出力される。fb is output.

fa−A−Z−B匂9             (S
)fb−A−Z+B−Δψ            (
4)ただし、A、Bは係数、2は2方向移動量第2図は
各イメージセンサ51.52から得られる周波数信号f
a(fb)の周波数スペクトルを示す説明図である。こ
の周波数スペクトルは、基本周波数fOの整数倍の点で
ピークがもシ、かつ、そのピークは各イメージセンサ5
1.52の全幅の1/(整数)と、干渉縞の間隔が等し
いところが一番大きくなるものであって、表面30が矢
印2方向に2だけ移動すると、例えば、m次高調波に相
当するピークPmは、その移動速度di / dtに比
例したΔfmzだけ周波数シフトする。
fa-A-Z-B smell 9 (S
) fb-A-Z+B-Δψ (
4) However, A and B are coefficients, and 2 is the amount of movement in two directions. Figure 2 is the frequency signal f obtained from each image sensor 51.52.
FIG. 2 is an explanatory diagram showing a frequency spectrum of a(fb). This frequency spectrum has a peak at a point that is an integral multiple of the fundamental frequency fO, and the peak is at each image sensor 5.
The area where the interference fringe spacing is equal to 1/(integer) of the total width of 1.52 is the largest, and when the surface 30 moves by 2 in the direction of the arrow 2, it corresponds to, for example, the m-th harmonic. The peak Pm shifts in frequency by Δfmz, which is proportional to its moving speed di/dt.

第1図において、ミキサ61.、62は各イメージセン
サ51.52から出力されるm次高調波Pmと、その近
傍周波数fRとをミキシング、すなわちヘテロダイン検
波し、各出力をローパスフィルタ71.72tl−介し
てこれをカウンタ81.82で計数し、(3)式、(4
)式に関連した信号をそれぞれ得る。
In FIG. 1, mixer 61. , 62 performs mixing, that is, heterodyne detection, of the m-th harmonic Pm output from each image sensor 51.52 and its neighboring frequency fR, and passes each output through a low-pass filter 71.72tl- to a counter 81.82. (3), (4
), respectively.

演数回路9は、これらの信号を入力し、(5)式及び(
6)式に示すような演算を行なうことによって、被測定
物体5の矢印2方向の変位量21表面の傾斜角Δψを知
ることができる。
The arithmetic circuit 9 inputs these signals and calculates equations (5) and (
By performing calculations as shown in equation 6), the inclination angle Δψ of the surface of the displacement 21 of the object to be measured 5 in the two directions of the arrows can be determined.

Δψ■上(fb−fa) 2B(6) 第3図は本発明に係る装置の他の構成例を示す説明図で
ある。この装置は、第1図装置のI・−ノミラー2に代
えて、偏光ビームスプリッタ20゜λ/4板21.22
及び偏光板23を用いたものである。
Δψ■ Upper (fb-fa) 2B (6) FIG. 3 is an explanatory diagram showing another example of the configuration of the apparatus according to the present invention. This device uses a polarizing beam splitter 20°λ/4 plate 21, 22 in place of the I-no mirror 2 in the device shown in FIG.
and a polarizing plate 23.

この装置によ、れば、光のパワーロスを減少させること
ができる。
According to this device, power loss of light can be reduced.

なお、上記の各実施環において、2面ミラー4は互いに
(180°−2脅Δθ)の角度で交わるようにしたもの
であるが、180’ + 2・Δθの角度で交わるよう
Kしてもよい。また、イメージセンサ51.52は、C
CDを用いることを想定したが、これらに空間フィルタ
を組合せたようなパターン検出、器を用いてもよい。ま
た、イメージセンサかもの信号処理回路としては、別の
回路を用いてもよい。
In each of the embodiments described above, the two-sided mirrors 4 are arranged to intersect with each other at an angle of (180° - 2∆θ), but it is also possible to intersect with each other at an angle of 180' + 2·Δθ. good. Further, the image sensors 51 and 52 are C
Although it is assumed that a CD is used, a pattern detection device such as a combination of these and a spatial filter may also be used. Furthermore, another circuit may be used as the image sensor signal processing circuit.

以上説明したように、本発明に係る装置によれば、被測
定物体とは非接触で測定することができるもので、被測
定表面に傷がつくことなく、マた、柔かい物体の表面測
定をも行なうことができる。
As explained above, according to the device according to the present invention, it is possible to measure the object to be measured without contacting it, and it is possible to measure the surface of a soft object without damaging the surface to be measured. can also be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の構成ブロック図、第2図は
イメージセンサから得られる信号の周波数スペクトルを
示す説明図、第5図は本発明の他の実施例装置の構成説
明図である。 1・・・光源、2・・・ハーフ叱う−、5・・・被測定
物体、4・・・2面ミラー、51.52・・・イメージ
センサ。
FIG. 1 is a block diagram of the configuration of an apparatus according to the present invention, FIG. 2 is an explanatory diagram showing the frequency spectrum of a signal obtained from an image sensor, and FIG. 5 is an explanatory diagram of the configuration of another embodiment of the apparatus of the present invention. . 1...Light source, 2...Half scold-, 5...Measurement object, 4...Two-sided mirror, 51.52...Image sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)  光源からの可干渉光を被測定物体表面の光反
射面に照射するとと4に、前記光源の光軸に対してΔ0
だけ傾き互いに180”±2・Δθ−の角度となゐよう
に設置した2百ミラーに照射し、前記被測定物体表面か
らの反射光と前記2面ミ2−かもの反射光とを2個のイ
メージセンサ上に照射させ、前記2個のイメージセyす
上に前記被測定物体表面の形状変化に対して互いに逆方
向に動く干渉縞をつくり、各イメージセンナからの出力
信号を演算処理して被測定表面の形状変化を知るようK
した光学式%式%
(1) When coherent light from a light source is irradiated onto the light reflecting surface of the surface of the object to be measured, Δ0 with respect to the optical axis of the light source
The reflected light from the surface of the object to be measured and the reflected light from the two surfaces are reflected by two mirrors installed at an angle of 180"±2・Δθ- to each other. The image sensor is illuminated on the image sensor to create interference fringes on the two images that move in opposite directions with respect to changes in the shape of the surface of the object to be measured, and the output signals from each image sensor are processed. to know the change in shape of the surface to be measured.
Optical % formula %
JP10872482A 1982-06-24 1982-06-24 Optical shape measuring apparatus Pending JPS58225305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10872482A JPS58225305A (en) 1982-06-24 1982-06-24 Optical shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10872482A JPS58225305A (en) 1982-06-24 1982-06-24 Optical shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPS58225305A true JPS58225305A (en) 1983-12-27

Family

ID=14491940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10872482A Pending JPS58225305A (en) 1982-06-24 1982-06-24 Optical shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58225305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe

Similar Documents

Publication Publication Date Title
JPS6039518A (en) Interferometer system
US6717680B1 (en) Apparatus and method for phase-shifting interferometry
JP3410051B2 (en) Shape measuring method and device
JPH06229922A (en) Very accurate air refractometer
JPH0882508A (en) Frequency shifter and optical type displacement measuring apparatus using the same
JPS58225305A (en) Optical shape measuring apparatus
JP4405673B2 (en) Dynamic holographic velocimeter for vibration measurements.
JPS63122906A (en) Apparatus for measuring thickness of film
JP3564569B2 (en) Real-time surface shape measurement method and device
JPS59162405A (en) Optical-type mechanical-quantity measuring device
JPH0719842A (en) Optical measuring apparatus for shape of surface
JPH045122B2 (en)
JPS58225304A (en) Optical type mechanical quantity measuring apparatus
WO1981003073A1 (en) Process and apparatus for measurement of physical parameters of moving matter by means of coherent light source,by heterodyne detection of light reflected or scattered by moving matter
SU1101672A1 (en) Device for touch=free measuring of deformations
JPS6212442B2 (en)
Gurov et al. Automatic inspection of nonsmooth surface displacements by interferometer with low-coherent illumination
JPH02228512A (en) Highly accurate laser measurement method and apparatus for surface of solid
JPS63196805A (en) Surface internal measuring method
JP2656333B2 (en) Gap setting method and apparatus
JPS63172910A (en) Diameter measuring instrument for columnar body
JPS58225303A (en) Optical type mechanical quantity measuring apparatus
JPS63135808A (en) Length measuring device
JPH04315923A (en) Elastic wave transmitting speed measuring method for crystal surface
JPH04319626A (en) Measuring method of propagation speed of elastic wave in surface of crystal