JPS58225304A - Optical type mechanical quantity measuring apparatus - Google Patents

Optical type mechanical quantity measuring apparatus

Info

Publication number
JPS58225304A
JPS58225304A JP10934982A JP10934982A JPS58225304A JP S58225304 A JPS58225304 A JP S58225304A JP 10934982 A JP10934982 A JP 10934982A JP 10934982 A JP10934982 A JP 10934982A JP S58225304 A JPS58225304 A JP S58225304A
Authority
JP
Japan
Prior art keywords
light
movement
target
mechanical quantity
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10934982A
Other languages
Japanese (ja)
Other versions
JPH026002B2 (en
Inventor
Eiji Ogita
英治 荻田
Toshitsugu Ueda
敏嗣 植田
Yutaka Ono
裕 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP10934982A priority Critical patent/JPS58225304A/en
Publication of JPS58225304A publication Critical patent/JPS58225304A/en
Publication of JPH026002B2 publication Critical patent/JPH026002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the three-dimensional mechanical quantity by causing an interference between a speckle pattern formed with a mobile diffusion surface and a reference light from a fixed reflection surface. CONSTITUTION:Light from a light source 1 irradiates a target 4 passing through a first polarized beam splitter 21. The light reflected from the target 4 enters a light receiver 7 reflected with the first PBS21. The light which enters the first PBS21 from the light source 1 and passes through first and second PBSs 21 and 22 reflected with a mirror 6 enters a light receiver 7 as reference light. A speckle pattern is formed on the light receiver 7 in such a manner as to be overlapped by a Michelson interference fringe. The three-dimensional mechanical quantity is measured from the movement of the speckle pattern and the movement of the interference fringe.

Description

【発明の詳細な説明】 本発明は、光の干渉を利用して変位量、変位速度、振動
数等の機械量を知るようにした光学式機械量測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical mechanical quantity measuring device that uses optical interference to determine mechanical quantities such as displacement amount, displacement speed, and vibration frequency.

本発明の目的は、被測定物体とは非接触でそのS次元の
各種機械量を高精度、高分解能で測定することのできる
構造簡単な、この種の装置を実現定機械量が与えられる
可動拡散面と、固定反射面を干渉させてスペックルパタ
ーンに干渉稿を重畳させ、スペックルパターンの移動及
び干渉稿の移動から1次元の機械量測定を行なうように
したものである。
The purpose of the present invention is to realize a device of this type with a simple structure that can measure various mechanical quantities in the S dimension with high precision and high resolution without contacting the object to be measured. An interference pattern is superimposed on a speckle pattern by interfering with a diffuser surface and a fixed reflection surface, and one-dimensional mechanical quantity measurement is performed from the movement of the speckle pattern and the movement of the interference pattern.

第1図は本発明に係る装置の一例を示す構成説明図であ
る。図において、1は光源で、例えばHeNeレーザ光
源が使用され、ここから可干渉な光が出射される。it
、 12はレンズで、光源1から出射した光を拡げて平
行光とするビームエクスパンダBXを構成している。2
1は第1の偏光ビームスプリッタ(以下PB3と略す)
で、ビームエクスパンダBXを通って入射する光源1か
らの光ビームを、2方向に分割する。22は#IE2の
PBSで、第1″のPBSに対して45°回転して設置
されておシ、ここに入射する2種の光を干渉させて縞を
作る役目をしている。31.32はそれぞれ焦点距離が
f□、f2のレンズ、30はレンズ31と32との間で
あって、レンズ31からf工、レンズ32からf2の距
離に設置した絞シ板で、これには、径dの透孔が設けら
れていゐ。
FIG. 1 is a configuration explanatory diagram showing an example of a device according to the present invention. In the figure, reference numeral 1 denotes a light source, for example, a HeNe laser light source is used, from which coherent light is emitted. it
, 12 is a lens, which constitutes a beam expander BX that expands the light emitted from the light source 1 and converts it into parallel light. 2
1 is the first polarizing beam splitter (hereinafter abbreviated as PB3)
Then, the light beam from the light source 1 entering through the beam expander BX is split into two directions. 22 is the PBS of #IE2, which is installed rotated by 45 degrees with respect to the 1'' PBS, and has the role of causing the two types of light incident there to interfere to create stripes. 31. 32 is a lens with a focal length of f□ and f2, respectively; 30 is an aperture plate installed between lenses 31 and 32 at a distance of f from lens 31 and f2 from lens 32; A through hole with a diameter d is provided.

4は拡散面40を有するターゲットで、レンズ32から
1<1はO〜2f2程度が好ましい)だけ離れて設置さ
れており、これには、例えば図示のようにxl 71 
z方向の3次元の測定機械量が与えられる。
Reference numeral 4 denotes a target having a diffusing surface 40, which is installed at a distance from the lens 32 by a distance of 1<1 (preferably approximately O~2f2);
A three-dimensional measured mechanical quantity in the z-direction is given.

51はレンズ32とターゲット4との間に設置し九λ1
4板、6はミラーで、光源10光軸C4に対して僅かな
角度Δθだけ傾斜して設置宴れており、第1のPBS 
21で分割された光源1からの光ビームが入射する。5
2は第1のPB321とζクー6との間に設置し九^/
4板、7は第2のPBS 22から出射した光を受光す
る受光器である。
51 is installed between the lens 32 and the target 4.
The 4th plate and 6 are mirrors, which are installed at a slight angle Δθ with respect to the optical axis C4 of the light source 10.
A light beam from the light source 1 divided by 21 enters. 5
2 is installed between the first PB321 and ζku 6.
4 and 7 are light receivers that receive the light emitted from the second PBS 22.

第2図は、この受光器7の受光面の構成例を示す平面図
である。ここには、例えば多数個の受光素子を7レイ状
に配列して構成されるCODなどのイメージセンナ71
.72を、受光素子の配列方向が互いに直交するよ)に
設置して構成しである。
FIG. 2 is a plan view showing an example of the structure of the light receiving surface of this light receiver 7. As shown in FIG. Here, for example, an image sensor 71 such as a COD configured by arranging a large number of light receiving elements in a 7-ray pattern.
.. 72 are arranged such that the arrangement directions of the light receiving elements are orthogonal to each other.

第3図は第1図装置において、電気的な回路を示す構成
プayり図である。この図において、70は、例えばC
CDで構成され、た各受光器71.72を駆動するクロ
ック発振器で、例えば周波数foのクロ    ゛ツク
信号を各受光器に印加している。81.82は各受光器
71.72からの出力周波数信号fx、 fyを入力し
、これと参照周波数信号fR□と11キシングす石電キ
サ、83は受光器71からの周波数信号fxを入力し、
これと参照周波数信号fR□とをミキシングする電キサ
% 91.92.93はそれぞれ対応するt#すかもの
出力信号のなかの特定な周波数信号を通過させる四−バ
スフィルタ、41.42.43はそれぞれローパスフィ
ルタ91.92.93からの周波数信号を計数するカウ
ンタ、6は各カウンタ41.42.43からの計数信号
f工# f21 fst−人力する演算回路で、この演
算回路としては、例えばマイクロブ四セッサが使用され
る。60は表示装置で、例えばCRTが使用され、演算
回路6での演算結果を表示する。
FIG. 3 is a configuration diagram showing an electrical circuit in the apparatus shown in FIG. 1. In this figure, 70 is, for example, C
The clock oscillator is composed of a CD and drives each of the optical receivers 71 and 72, and applies a clock signal of, for example, a frequency fo to each optical receiver. 81.82 inputs the output frequency signals fx, fy from each photoreceiver 71.72, and a reference frequency signal fR□ and a stone electric sensor 11, and 83 inputs the frequency signal fx from the photoreceiver 71. ,
The electric mixer 91.92.93 that mixes this and the reference frequency signal fR□ is a four-bass filter that passes a specific frequency signal in the corresponding t#Sukamono output signal, and 41.42.43 is a Counters 6 count the frequency signals from each of the low-pass filters 91, 92, and 93, and 6 is a manually operated arithmetic circuit that counts the frequency signals from each counter 41, 42, and 43. Four setsa are used. Reference numeral 60 denotes a display device, for example, a CRT, which displays the calculation results of the calculation circuit 6.

このように構成した装置の動作は次の通りである。光源
1から出射された波長大の光は、ビームエクスパンダB
Xで拡げられ、平行光となって第1のPBS 21に入
射する。ここに入射した光のうち、入射面に対して振動
方向が平行な光成分(P波)は、ここを通過し、し/ズ
31、絞シ板30.レンズ32及びλ/4板5板金1て
ターゲット4の拡散面40に平行光となりて照射される
。ターゲット4の拡散面40に照射された平行光は、こ
の拡散面の凹凸によってランダムな位相変調を受けて反
射し、この反射光は、再びλ14板51.レンズ32.
絞り板30゜レンズ31を通って戻り、第1のPBS 
21に入射する。
The operation of the device configured as described above is as follows. The light with a large wavelength emitted from the light source 1 is sent to the beam expander B.
The light is expanded by X, becomes parallel light, and enters the first PBS 21. Of the light incident here, the light component (P wave) whose vibration direction is parallel to the incident plane passes through the lens 31, the aperture plate 30. The parallel light is irradiated onto the diffusing surface 40 of the target 4 through the lens 32 and the λ/4 plate 5 and the metal plate 1. The parallel light irradiated onto the diffusing surface 40 of the target 4 undergoes random phase modulation due to the unevenness of this diffusing surface and is reflected, and this reflected light is reflected again by the λ14 plate 51. Lens 32.
Returns through the aperture plate 30° lens 31 and returns to the first PBS.
21.

ここで、レンズ3工、絞シ板30.レンズ32は、ここ
を通過する光の空間周波数を下げるローパスフィルタと
して機能しておシ、必ずしも必要でない。
Here, 3 lenses, 30 aperture plates. The lens 32 functions as a low-pass filter that lowers the spatial frequency of light passing through it, and is not necessarily necessary.

第1のPBSに再入射する光は、λ14板51を2度通
過したので、906偏波面が回転して8波となってお〕
、このPBS 21で反射して、第2のPBS 22に
入射する・・−万光源1から第1のPBS 21に入射
した光のうち、8波成分は、ここで反射し、λ14板5
2を通って、ミラー6で反射し、再びλ14板52を通
って、第1のPBS 21に再入射する。この光はP波
となっておシ、このPH1021を通過して、第2のP
BS 22に参照光として入射する。第2のPBS 2
2は、第1のPBS 21に対して45°回転して置か
れておシ、ここて、互いに偏波面が90’異々るターゲ
ット4からの反射光と、光源1からζツー4で反射して
くる参照光とのうち、第4図に示すように456成分の
ものが透過し、受光器7上に干渉稿がつくられゐ、なお
、第2のPH1022は、偏光波を用いてもよい。
The light re-entering the first PBS passes through the λ14 plate 51 twice, so the 906 polarization plane rotates and becomes 8 waves.]
, is reflected by this PBS 21 and is incident on the second PBS 22... Of the light that has entered the first PBS 21 from the light source 1, eight wave components are reflected here and are transmitted to the λ14 plate 5.
2, is reflected by the mirror 6, passes through the λ14 plate 52 again, and enters the first PBS 21 again. This light becomes a P wave, passes through this PH1021, and becomes a second P wave.
The light enters the BS 22 as a reference light. 2nd PBS 2
2 is placed rotated by 45 degrees with respect to the first PBS 21, and here, the reflected light from the target 4 whose polarization planes differ from each other by 90', and the reflected light from the light source 1 by ζ2 4. Of the incoming reference light, 456 components are transmitted as shown in Fig. 4, and an interference pattern is created on the light receiver 7. good.

第5図は、受光器7上に得られたパターンの−例を示す
図であり−・て、スペックルパターン8Pに、マイケル
ンン干渉縞が重畳したものとなる。そして、このパター
ンにおいて、ターゲット4がX OF)方向へ変位する
と、スペックルパターン8Pは第5図において、X(y
)方向に移動する。また、ターゲット4が露方向へ変位
すゐと、マイケルソン干渉稿MPはX方向へ変位し、そ
のときスペックルパターンspは動かない。
FIG. 5 is a diagram showing an example of a pattern obtained on the light receiver 7, in which Michael interference fringes are superimposed on a speckle pattern 8P. In this pattern, when the target 4 is displaced in the X(y OF) direction, the speckle pattern 8P is
) direction. Further, when the target 4 is displaced in the dew direction, the Michelson interference pattern MP is displaced in the X direction, and at this time, the speckle pattern sp does not move.

こζで、レンズ31.32の距離がf1+ f2である
ことと、ターゲット4に平面波が照射されるようにすれ
ば、所謂純移動状態となシ、この状態では、受光器7の
受光面に得られるスペックルパターンの、平均的スペッ
クル径は、(f工・λ)l(π・d)で与えられる。t
た、干渉稿の平均ピッチはλ/ sinΔ0で与えられ
、ひとつのスペックルパターンの中には、5〜10本の
縞が入るように選ぶのが望ましい。
In this case, if the distance between the lenses 31 and 32 is f1+f2 and the target 4 is irradiated with a plane wave, a so-called pure movement state can be achieved.In this state, the light receiving surface of the light receiver 7 The average speckle diameter of the resulting speckle pattern is given by (f×λ)l(π×d). t
In addition, the average pitch of the interference pattern is given by λ/sinΔ0, and it is desirable to select so that 5 to 10 stripes are included in one speckle pattern.

したがって、しyズ32とターゲット4との間の距離t
や、レンズ31から受光器7までの距離は、線移動状態
、スペックル径、千渉稿のピッチには無関係となる。
Therefore, the distance t between the lens 32 and the target 4
Also, the distance from the lens 31 to the light receiver 7 is unrelated to the state of line movement, the diameter of speckles, and the pitch of the image.

受光器7の各受光器71.72は、一端にクロック発振
器70かも周波数fcのクロック信号が印加されて駆動
されてお〕、各受光器71.72からfo wa fc
/N(ただしNは受光器71.72のビット数)を基本
周波数とする周波数信号fx、 fyが出力される。
Each of the light receivers 71.72 of the light receiver 7 is driven by a clock signal of frequency fc applied to one end of the clock oscillator 70.
Frequency signals fx and fy whose fundamental frequency is /N (where N is the number of bits of the photoreceiver 71.72) are output.

第6図は、各受光@71かち得られる周波数信号fxの
周波・数スペクトルを示す説明図である0、この信号の
パワースペクトルは、基本周波数fOの整数倍の点でピ
ークがわり、かつこれらのピークの包結線はfR2の周
波数(!R2)fR□とする)で、干渉縞によるピーク
を有している−ここで、ターゲット4が買方向にXだけ
移動すれば、m次高調波に相当するピークPmは、その
移動速!l dX / dtに比例したfmxだけ周波
数シフトする。また、ターゲット4が露方向に移動すれ
ば、包路線のピークが移動する。
FIG. 6 is an explanatory diagram showing the frequency/number spectrum of the frequency signal fx obtained from each received light @71. The envelope line of the peak has a peak due to interference fringes at the frequency of fR2 (!R2) fR The peak Pm is the moving speed! The frequency is shifted by fmx proportional to ldX/dt. Moreover, if the target 4 moves in the dew direction, the peak of the envelope line moves.

1“”fgKk″”C,1lPf8”・°′1−一“・
   )、72かも出力される周波数信号と、周波数f
R1とをミキシング、すなわち、ヘテ四ダイン検波し、
各出力をローパスフィルタ91.92及びカウンタ41
゜42を介することによって、例えばm次高調波に相当
するピークPmの、ターゲット4のx (y)方向変位
に伴う周波数シフトΔfmx e (青my )に対応
した信号をそれぞれ得る。演算回路6は、これらの信号
を入力し、所定の演算、例えば積分演算することによっ
て、ターゲット4のx、y方向の変位1x、yを知ゐこ
とができる。同じように、ぐキナ83は、受光器71か
ら出力される周波数信号と、周波数fR□とをミキシン
グし、ローパスフィルタ93.カウンタ43を介するこ
とによりて、包結線のピークのシフトΔfzに対応した
信号を得る。演算回路6は、この信号を入力し、所定の
演算をすることによって、ターゲット4の富方向の変位
量2を知ることができる。なお、Δfmx 、Δfmy
 、Δfzは、いずれもターゲット4の移動方向に応じ
て正、負に極性が変ることから、移動方向の判別も同時
にできる。
1""fgKk""C, 1lPf8"・°'1-1"・
), 72 also output frequency signal and frequency f
Mixing with R1, that is, performing hetero-four dyne detection,
Each output is passed through a low-pass filter 91, 92 and a counter 41.
42, a signal corresponding to the frequency shift Δfmx e (blue my ) accompanying the displacement of the target 4 in the x (y) direction is obtained, for example, with a peak Pm corresponding to the m-th harmonic. The arithmetic circuit 6 inputs these signals and performs a predetermined calculation, for example, an integral calculation, thereby being able to know the displacements 1x and y of the target 4 in the x and y directions. Similarly, the gokina 83 mixes the frequency signal output from the light receiver 71 and the frequency fR□, and passes the signal through the low-pass filter 93. By passing through the counter 43, a signal corresponding to the shift Δfz of the envelope peak is obtained. The calculation circuit 6 inputs this signal and performs a predetermined calculation to determine the displacement amount 2 of the target 4 in the rich direction. In addition, Δfmx, Δfmy
, Δfz change polarity to positive or negative depending on the moving direction of the target 4, so that the moving direction can be determined at the same time.

このように構成される装置は、ひとつの光源からのビー
ムによって3次元の変位が同時に測定できるもので、全
体構成を簡単にできる。また、各受光器から得られゐ信
号は周波数信号であることから、演算処理が容易であり
、高分解能で各種機械量を測定することができる。
The device configured in this way can simultaneously measure three-dimensional displacement using a beam from one light source, and the overall configuration can be simplified. Furthermore, since the signals obtained from each light receiver are frequency signals, calculation processing is easy and various mechanical quantities can be measured with high resolution.

なお、上記の実施例において、ミラー6は、入射光と反
射光とがΔθ傾くものならば、他の構成、例えば、頂角
がt′12+Δθ12のプリズムやキーーブコーナーを
用いてもよい。また9、ここでは、受光器71.72・
とじてCODのようなイメージセン、すを用いることを
想定したが、空゛間フィルタを組合せたようなパターン
検出器を用いてもよい。また、光パワーに余裕があれば
第7図に示すようにハーフギン−23を用いるような光
°学系としてもよい、また、仁ζで紘ターゲット4のx
* 3’e ”方向の変位量を測定する場合を説明した
が、ターゲット4の変位速度、振動数9回転数あるいは
形状変化等、各種の3次元の機械量を測定することがで
きる。
In the above embodiment, the mirror 6 may have other configurations, such as a prism or a Keeb corner with an apex angle of t'12+Δθ12, as long as the incident light and the reflected light are inclined by Δθ. In addition, 9, here, the light receivers 71, 72,
Although it is assumed that an image sensor such as a COD is used, a pattern detector such as a combination of a spatial filter may also be used. Furthermore, if there is sufficient optical power, an optical system using a half-gin-23 as shown in Fig. 7 may be used.
Although the case of measuring the amount of displacement in the *3'e'' direction has been described, it is also possible to measure various three-dimensional mechanical quantities such as the displacement speed of the target 4, the number of vibrations (9 rotations), or the change in shape.

以上説明したように、本発明に係る装置によれば、被測
定機械量が与えられるターゲットとは非接触で、このタ
ーゲットの3次元の変位量などの機械量を高分解能で測
定することができる。
As explained above, according to the device according to the present invention, mechanical quantities such as three-dimensional displacement of a target can be measured with high resolution without contacting the target to which the mechanical quantity to be measured is given. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一例を示す構成説明図、第
2図は第1図装置に用いられている受光器の構成説明図
、第3図は電気的な回路を示す構成ブロック図、第4図
は受光器に照射される光の備波面の説明図、第5図は受
光器の受光面につくられるパターンの一例を示す説明図
、第6図は受光器から得られる信号の周波数スペクトル
を示す説明図、第7図は本発明の他の光学系の要部を示
す説明図である。 1・・・光源、21,22・・・偏光ビームスプリッタ
、31゜32・・、・レンズ、30・・・絞り板、4・
・・ターゲット、40・・・拡散面、51.52・・・
λ/2板、6・・・ミ2−17・・・受光器。 第2図
FIG. 1 is a configuration explanatory diagram showing an example of a device according to the present invention, FIG. 2 is a configuration explanatory diagram of a light receiver used in the device shown in FIG. 1, and FIG. 3 is a configuration block diagram showing an electrical circuit. , Fig. 4 is an explanatory diagram of the wavefront of the light irradiated to the optical receiver, Fig. 5 is an explanatory diagram showing an example of the pattern created on the light receiving surface of the optical receiver, and Fig. 6 is an explanatory diagram of the signal obtained from the optical receiver. FIG. 7 is an explanatory diagram showing a frequency spectrum, and FIG. 7 is an explanatory diagram showing main parts of another optical system of the present invention. 1... Light source, 21, 22... Polarizing beam splitter, 31° 32... Lens, 30... Diaphragm plate, 4...
...Target, 40...Diffusion surface, 51.52...
λ/2 plate, 6... Mi2-17... Light receiver. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  光源からの可干渉な光を、被測定機械量が与
えられるターゲットの拡散面と、入射光と出射光とが所
定角度となるように入射光を反射させる反射手段とに照
射するとともに、前記拡散面からの拡散光と前記反射手
段からの反射光とを受光手段上に照射させ、前記拡散光
がつくるパターンの移動を検出して前記ターゲットの2
次元方向の機械量を測定し、前記拡散光と前記反射光と
が干渉してり(られるパターンの移動を検出して前記2
次元の軸と直交する軸方向の機械量を測定するようにし
た光学式機械量測定装置。
(1) Coherent light from a light source is irradiated onto the diffusing surface of the target to which the mechanical quantity to be measured is given, and on a reflecting means that reflects the incident light so that the incident light and the outgoing light form a predetermined angle. , irradiating the light receiving means with the diffused light from the diffusing surface and the reflected light from the reflecting means, detecting the movement of the pattern created by the diffused light, and detecting the movement of the pattern formed by the diffused light,
Measuring the mechanical quantity in the dimensional direction, detecting the movement of the pattern where the diffused light and the reflected light interfere with each other.
An optical mechanical quantity measuring device that measures mechanical quantities in the axial direction perpendicular to the dimensional axis.
(2)  パターンの移動を検出する手段としてイメー
ジセンナを使用し、このイメージセンナからの周波数信
号をヘテ四ダイン検波し、得られた周波数信号を利用し
て所定の演算を行な量測定装置。
(2) A quantity measuring device that uses an image sensor as a means for detecting pattern movement, performs heterodyne detection on the frequency signal from the image sensor, and performs predetermined calculations using the obtained frequency signal.
JP10934982A 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus Granted JPS58225304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10934982A JPS58225304A (en) 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10934982A JPS58225304A (en) 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS58225304A true JPS58225304A (en) 1983-12-27
JPH026002B2 JPH026002B2 (en) 1990-02-07

Family

ID=14507969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10934982A Granted JPS58225304A (en) 1982-06-25 1982-06-25 Optical type mechanical quantity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58225304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298707A (en) * 1986-06-05 1987-12-25 ブリティッシュ・テクノロジー・グループ・リミテッド Optical inspection method
JPH03128405A (en) * 1989-10-12 1991-05-31 Keyence Corp Feed quantity detecting device for material of forming machine or the like
WO1992014115A1 (en) * 1991-01-31 1992-08-20 Vincent Toal A method and apparatus for determining direction of displacement of an object surface
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298707A (en) * 1986-06-05 1987-12-25 ブリティッシュ・テクノロジー・グループ・リミテッド Optical inspection method
JPH03128405A (en) * 1989-10-12 1991-05-31 Keyence Corp Feed quantity detecting device for material of forming machine or the like
WO1992014115A1 (en) * 1991-01-31 1992-08-20 Vincent Toal A method and apparatus for determining direction of displacement of an object surface
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe

Also Published As

Publication number Publication date
JPH026002B2 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
CN111457843B (en) Displacement measuring device, displacement measuring method and photoetching equipment
US4512661A (en) Dual differential interferometer
KR20190031550A (en) Lattice measuring device
US3723004A (en) Laser velocimeter employing dual scatter detection
EP1225420A2 (en) Laser-based interferometric measuring apparatus and method
US3635552A (en) Optical interferometer
US5028137A (en) Angular displacement measuring interferometer
JPS58225304A (en) Optical type mechanical quantity measuring apparatus
US4346999A (en) Digital heterodyne wavefront analyzer
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
US20230062525A1 (en) Heterodyne light source for use in metrology system
TWI522597B (en) Angle measurement system
JPH0134082Y2 (en)
JPH045122B2 (en)
JPS59162405A (en) Optical-type mechanical-quantity measuring device
US3419331A (en) Single and double beam interferometer means
JP3441292B2 (en) Phase object measuring device
JPS58225303A (en) Optical type mechanical quantity measuring apparatus
JPH04155260A (en) Rotational speed measuring apparatus
CN112747667B (en) Differential interferometer apparatus
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPS60216207A (en) Optical measuring instrument for mechanical amount
JPS63218827A (en) Light spectrum detector
JP2001343222A (en) Method and apparatus for measuring three-dimensional shape
JPH04289401A (en) Two wave motion interferometer