JPS59162405A - Optical-type mechanical-quantity measuring device - Google Patents

Optical-type mechanical-quantity measuring device

Info

Publication number
JPS59162405A
JPS59162405A JP3701783A JP3701783A JPS59162405A JP S59162405 A JPS59162405 A JP S59162405A JP 3701783 A JP3701783 A JP 3701783A JP 3701783 A JP3701783 A JP 3701783A JP S59162405 A JPS59162405 A JP S59162405A
Authority
JP
Japan
Prior art keywords
light
measured
target
dimensional
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3701783A
Other languages
Japanese (ja)
Other versions
JPH0326321B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Daisuke Yamazaki
大輔 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP3701783A priority Critical patent/JPS59162405A/en
Publication of JPS59162405A publication Critical patent/JPS59162405A/en
Publication of JPH0326321B2 publication Critical patent/JPH0326321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02029Combination with non-interferometric systems, i.e. for measuring the object
    • G01B9/0203With imaging systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To make it possible to measure three-dimensional mechanical quantities highly accurately with high resolution without contact with a body to be measured, by forming reference light and light to be measured based on the output light from a light source. CONSTITUTION:Coherent light from a laser light source 1 is made to be parallel light through lenses 11 and 12, sequentially transmitted to polarization beam splitters PBSs 21-24, and divided into a vertical-component wave S and a horizontal-component wave P. The S wave from the PBS21 is projected on a diffusing surface 50 of a target 5 through a lambda/2 plate 42. Three-dimensional quantities to be measured are imparted to the target 5. A speckle pattern is formed on light receiving surfaces of X-axis and Y-axis sensors 8x and 8y, based on the reflected light from the diffusing surface 50 through the PBSs 21 and 22, a mirror 33, a lambda/4 plate 44, and the PBS23. Based on the light component in a (z) system, interference fringes with the reference light from a mirror 32 are formed on a receiving surface of a sensor 8z through a stop 62 and the PBS24. The movement of the interference fringes is detected, and the mechanical quantities in the directions of three-dimensional axes are measured.

Description

【発明の詳細な説明】 本発明は、光の干渉を利用して変位量、変位速度、振動
数等の機械量を知るようにした光学式機械量測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical mechanical quantity measuring device that uses optical interference to determine mechanical quantities such as displacement amount, displacement speed, and vibration frequency.

本発明の目的は、被測・魔物体とは非接触で3次元の各
種機械量を高精度で、かつ高分解能で測定することので
きる構造の簡単な、この種の装置を実現しようとするも
のである。
The purpose of the present invention is to realize this type of device with a simple structure that can measure various three-dimensional mechanical quantities with high precision and high resolution without contacting the measured/magical object. It is something.

本発明に係る装置は、光源からの可干渉な光を被測定機
械量が与えられている可動拡散面に照射し、そこから得
られるスペックルパターンヲ利用して2次元の機械量を
測定するとともに、このスペックルパターンに光源から
の光を参照光として照射し、その結果得られる干渉縞の
パターンを利用して可動拡散板の前記2次元の軸と直交
する軸方向の変位等の機械”量を測定するようにした点
に構成上の特徴がある。
The device according to the present invention irradiates coherent light from a light source onto a movable diffusing surface on which a mechanical quantity to be measured is given, and measures a two-dimensional mechanical quantity using the speckle pattern obtained therefrom. At the same time, this speckle pattern is irradiated with light from a light source as a reference light, and the resulting pattern of interference fringes is used to move the movable diffuser plate in the axial direction perpendicular to the two-dimensional axis. Its structural feature lies in the fact that it measures quantities.

第1図は本発明に係る装置の一例を示す構成説明図であ
る。図において、1は光源で、例えばHe Neレーザ
光源が使用され、ここから可干渉な光が出射される。1
1.12はレンズで、光源1から出射した光を拡げて平
行光とするビームエクスパンダBXを構成している。2
1は第1の偏光ビームスプリッタ(以下PBSと略す)
、22は第2のPBS、23は第3のPBSl、24は
第4のPBSである。各PB8 U、入射する光ビーム
を2方向に分割する役目をなし、入射光線と入射面にた
てた法線が作る入射面に垂直方向に振動する光成分(S
波)と、平行に振動する光成分(P波)に分かれる。第
1のPBSにおいて、P波はこのPBSを通過し、ミラ
ー31で反射し、λ/2板41を通ってミラー32で反
射し、第4のPB824に入って2系の参照光となる。
FIG. 1 is a configuration explanatory diagram showing an example of a device according to the present invention. In the figure, reference numeral 1 denotes a light source, for example, a He Ne laser light source is used, from which coherent light is emitted. 1
A lens 1.12 constitutes a beam expander BX that expands the light emitted from the light source 1 into parallel light. 2
1 is the first polarizing beam splitter (hereinafter abbreviated as PBS)
, 22 is the second PBS, 23 is the third PBS1, and 24 is the fourth PBS. Each PB8 U plays the role of splitting the incident light beam into two directions, and the light component (S
waves) and light components that vibrate in parallel (P waves). In the first PBS, the P wave passes through this PBS, is reflected by the mirror 31, passes through the λ/2 plate 41, is reflected by the mirror 32, enters the fourth PB 824, and becomes a two-system reference light.

また、第1のPB821において、S波はこのPBSで
反射され、λ/4板42を通って、ターゲット5の拡散
面50に照射される。このターゲット5−には、図示す
るように測定すべき3次元の機械量が与えられている。
Further, in the first PB 821, the S wave is reflected by this PBS, passes through the λ/4 plate 42, and is irradiated onto the diffusion surface 50 of the target 5. A three-dimensional mechanical quantity to be measured is given to this target 5- as shown in the figure.

ターゲット5の拡散面50で拡散した光(反射光)は、
λ/4板42を通ってPBS21に戻り、ここを通過後
、レンズ13(焦点fo)、λ/2板43をそれぞれ通
ってPB822に入り、ここで、z系の光成分(直進す
る光)と、x、y糸の光成分(反射する光)とに分けら
れる。2系とXY系の光量の配分は、λ/2板43を回
転させることで調整できる。XY系の光成分は、ミラー
33で反射し、例えばピンホール径0.8 mlの絞p
61、レンズ14(焦点f)、//4板4板金4ッテ、
PB823に入り、ここで、X系、Y系に分けられ、各
々のX軸センサ8X、Y軸センサ8Yの受光面にスペッ
クルパターンを作り、これがそれぞれ検出される。
The light (reflected light) diffused by the diffusion surface 50 of the target 5 is
After passing through the λ/4 plate 42 and returning to the PBS 21, the light passes through the lens 13 (focal point fo) and the λ/2 plate 43 and enters the PB 822, where the z-system light component (light traveling straight) and x and y thread light components (reflected light). The distribution of the light amount between the 2 system and the XY system can be adjusted by rotating the λ/2 plate 43. The XY system light component is reflected by the mirror 33, and the aperture p has a pinhole diameter of 0.8 ml, for example.
61, lens 14 (focal point f), //4 plates, 4 metal plates,
The light enters the PB823, where it is divided into an X system and a Y system, and speckle patterns are created on the light receiving surfaces of each of the X-axis sensor 8X and Y-axis sensor 8Y, and these are detected respectively.

PB822において分けられたZ系の光成分は、例えば
ピンホール径0.2IIIIの絞り62、レンズ15(
焦点f )、PBS24及び偏光板7を通って、2軸セ
ンサ8z上に照射され、その受光面にミラー32側から
くる参照光と干渉して干渉縞が作られ、これを検出する
The Z-system light component separated by the PB822 is passed through, for example, an aperture 62 with a pinhole diameter of 0.2III, a lens 15 (
It passes through the focal point f ), the PBS 24 and the polarizing plate 7, and is irradiated onto the two-axis sensor 8z, and interferes with the reference light coming from the mirror 32 side on its light receiving surface to form interference fringes, which are detected.

X軸センサ8X、Y軸センサ8Y及び2軸センサ8ZU
、多数個の受光素子をアレイ状に配列して構成されるも
ので、CCDなどのイメージセンサが使用可能でアシ、
X軸センサ8XとY軸センサ8Yの各受光素子の配列方
向は互いに直交するように配置されている。
X-axis sensor 8X, Y-axis sensor 8Y and 2-axis sensor 8ZU
, consists of a large number of light-receiving elements arranged in an array, and image sensors such as CCDs can be used.
The arrangement directions of the light receiving elements of the X-axis sensor 8X and the Y-axis sensor 8Y are arranged to be orthogonal to each other.

第2図は第1図装置において、電気的な回路を示す構成
ブ費ツク図である。この図において、80は、例えばC
CDで構成された各センサ8X、8Y。
FIG. 2 is a block diagram showing an electrical circuit in the apparatus shown in FIG. In this figure, 80 is, for example, C
Each sensor 8X, 8Y consists of a CD.

8zを駆動するクロック発振器で、例えば周波数fc 
 のクロック信号を各センサに印加している。
A clock oscillator that drives 8z, for example, the frequency fc
clock signals are applied to each sensor.

71.72.73は各セyt8X、8Y、8Zからの出
力周波数信号fx+ fy+ fzを入力し、これと参
照周波数信号fRとをミキシングするミキサ、81゜8
2.83はそれぞれ対応するミキサからの出力信号のな
かの特定な周波数信号を通過させるローパスフィルタ、
91.92.93はそれぞれローパスフィルタ81.8
2.83からの周波数信号を計数するカウンタ、90は
各カウンタ91.92.93からの計数信号fax、 
foy、 fozを入力する演算回路で、この演算回路
としては、例えばマイクロプロセッサが使用される。9
5は表示装置で、例えばCRTが使用され、演算回路9
0での演算結果を表示する。
71.72.73 is a mixer which inputs the output frequency signal fx+fy+fz from each set 8X, 8Y, 8Z and mixes this with the reference frequency signal fR, 81°8
2.83 is a low-pass filter that passes a specific frequency signal in the output signal from the corresponding mixer;
91.92.93 are low pass filters 81.8 respectively
90 is a count signal fax from each counter 91, 92, 93,
This is an arithmetic circuit that inputs foy and foz, and for example, a microprocessor is used as this arithmetic circuit. 9
5 is a display device, for example a CRT is used, and an arithmetic circuit 9
Display the calculation result at 0.

第3図Hx軸センサ8X、Y軸センサ8Y上に作られる
スペックルパターンの一例を示す図である。この図にお
いて、スペックルパターンは、ターゲット5が矢印X方
向に移動したときは、X軸方向に移動し、ターゲット5
が矢印X方向に移動したとき)は、y軸方向に移動する
。X軸センサ8Xは、この受光面に作られる第3図に示
すかつなスペックルパターンのX軸方向変位を把える。
FIG. 3 is a diagram showing an example of a speckle pattern created on the Hx-axis sensor 8X and the Y-axis sensor 8Y. In this figure, when the target 5 moves in the direction of the arrow X, the speckle pattern moves in the X-axis direction;
moves in the direction of the arrow X) moves in the y-axis direction. The X-axis sensor 8X detects the displacement in the X-axis direction of the speckle pattern shown in FIG. 3 formed on this light-receiving surface.

また、Y軸センサ8YU、この受光面に作られる第3図
に示すようなスペックルパターンのY軸方向変位を把え
る。
Further, the Y-axis sensor 8YU detects displacement in the Y-axis direction of a speckle pattern as shown in FIG. 3 formed on this light-receiving surface.

第4図及び第5図は、2軸センサ8z上に得られるパタ
ーンの一例を示す図であって、スペックルパターンにマ
イケルソン干渉縞が重畳したようなものとなる。このパ
ターンは、ターゲット5が矢印2方向に移動すると、Z
軸方向に移動する。
FIGS. 4 and 5 are diagrams showing an example of a pattern obtained on the two-axis sensor 8z, in which Michelson interference fringes are superimposed on a speckle pattern. This pattern shows that when target 5 moves in the two directions of arrows, Z
Move in the axial direction.

2軸センサ8zは、この受光面に照射された第4図に示
すようなパターンの2軸方向質位を把える。
The two-axis sensor 8z detects the two-axis direction quality of the pattern shown in FIG. 4 illuminated on this light receiving surface.

ここで、第4図は、絞962に設けたピンホールの径が
0.8111の場合であシ、第5図は絞シロ2に設けた
ピンホールの径が0.2朋の場合である。
Here, FIG. 4 shows the case where the diameter of the pinhole provided in the diaphragm 962 is 0.8111, and FIG. 5 shows the case where the diameter of the pinhole provided in the diaphragm 2 is 0.2. .

このように、絞り62に設けるピンホールの径を小さく
すると、スペックルパターンは全体的に大きく、また縞
は直線に近い形になることが認められる。これは、スペ
ックルの径が、(f・λ)/d(d:ピンホール径、f
:レンズ焦点距離、λ:レーザの波長)で決まるためで
あり、また、ピンホール径dを小さくすることによって
、スペックル中の高周波成分がカットされ、縞の空間周
波数がスペックルにより乱されなくてすむことによるも
のと考えられる。なお、ピンホールの径dを小さくすれ
ばするほど、干渉縞は良くなるはずであるが、dを少さ
くすると光の強度が低下してS/Nが悪化する。それ故
に、径dの値はこれらを総合して適宜選定する必要がめ
る。第1図に示す構成の装置によれば、dはQ、2/m
程就が最適であった。
As described above, it is recognized that when the diameter of the pinhole provided in the aperture 62 is reduced, the speckle pattern becomes larger as a whole, and the stripes take on a shape close to a straight line. This means that the speckle diameter is (f・λ)/d (d: pinhole diameter, f
: Lens focal length, λ: Laser wavelength). Also, by reducing the pinhole diameter d, the high frequency components in the speckles are cut, and the spatial frequency of the fringes is not disturbed by the speckles. This is thought to be due to the fact that the Note that the smaller the diameter d of the pinhole, the better the interference fringes should be, but if d is reduced, the intensity of light decreases and the S/N ratio deteriorates. Therefore, it is necessary to appropriately select the value of the diameter d by taking all these factors into account. According to the device having the configuration shown in FIG. 1, d is Q, 2/m
Cheng Shu was the best choice.

第6図は、空間周波数Fと、スペクトル強度Iとの関係
を示す線図である。この線図において、ピンホール径を
小さくすると、この特性曲線は矢印a方向に、ピンホー
ル径を大きくすると、矢印す方向に変化する状態を示し
ている。
FIG. 6 is a diagram showing the relationship between spatial frequency F and spectral intensity I. In this diagram, when the pinhole diameter is decreased, the characteristic curve changes in the direction of arrow a, and when the pinhole diameter is increased, the characteristic curve changes in the direction of arrow .

本発明に係る装置においては、絞り62に設けるピンホ
ールの径を所定の大きさに選定することによって、2軸
センサ8zの受光面につくられる干渉縞を鮮明にし、タ
ーゲット5の2方向度位を確実に検出できるようにして
いる。
In the device according to the present invention, by selecting the diameter of the pinhole provided in the diaphragm 62 to a predetermined size, the interference fringes created on the light receiving surface of the two-axis sensor 8z are made clear, and the two-directional degree position of the target 5 is made clear. can be reliably detected.

第2図ニオいて、各センサ8X、8Y、8Zは、一端に
クロック発振器80からの周波数fcのクロック信号が
印加されて駆動されておシ、各センサBx、By、Bz
から、fc=fc/N (ただし、Nは各センサのビッ
ト数)を基本周波数とする周波数信号fx、 fy、 
fz  が出力される。
In FIG. 2, each sensor 8X, 8Y, 8Z is driven by applying a clock signal of frequency fc from a clock oscillator 80 to one end, and each sensor Bx, By, Bz
Therefore, frequency signals fx, fy, whose fundamental frequency is fc=fc/N (where N is the number of bits of each sensor)
fz is output.

第7図は、各センサ8x、By、Bzから得られる周波
数信号fx、 fy、 fz  の周波数スペクトルを
示す説明図である。この信号の周波数スペクトルは、基
本周波数foの整数倍の点でピークが、l)、かつその
ピークは、各センサの全幅の1/(整数)と、干渉縞の
間隔が等しいところが一番大きくなり、ターゲット5の
移動とともに、移動する。例えば、ターゲット5がX方
向にXたけ移動すれば、センサ8Xからの周波数信号f
xの例えばm次高調波に相当するピークPmは、その移
動速度dX/dtに比例したΔfmx たけ周波数シフ
トする。
FIG. 7 is an explanatory diagram showing frequency spectra of frequency signals fx, fy, fz obtained from each sensor 8x, By, Bz. The frequency spectrum of this signal has a peak at a point that is an integer multiple of the fundamental frequency fo, and the peak is greatest where the interval between the interference fringes is equal to 1/(an integer) of the total width of each sensor. , moves as the target 5 moves. For example, if the target 5 moves by X amount in the X direction, the frequency signal f from the sensor 8X
For example, the peak Pm corresponding to the m-th harmonic of x is shifted in frequency by Δfmx which is proportional to the moving speed dX/dt.

同じように、ターゲット5がX方向にYだけ移動すれば
、センサ8Yからの周波数信号fyのm次高調波に相当
するピークPmは、その移動速度dY/dtに比例した
fmyだけ周波数シフトする。センサ8zからの周波数
信号についても同様である。
Similarly, when the target 5 moves by Y in the X direction, the peak Pm corresponding to the m-th harmonic of the frequency signal fy from the sensor 8Y shifts in frequency by fmy, which is proportional to the moving speed dY/dt. The same applies to the frequency signal from the sensor 8z.

っ1月 Δfmx +Δfmy、Δfmzの位相を測定
すればX。
January If you measure the phase of Δfmx +Δfmy, Δfmz, it will be X.

y、zの変位量を測定できる。The amount of displacement in y and z can be measured.

例えば第2図の回路において、ミキサ71.72゜73
1d、各センサから出力されるm矢高調波Pmと、その
近傍周波数fRとをミキシング、すなわちヘテロダイン
検波し、各出力をローノくスフイルタ81,82.83
i介することによって、その出力端に次式に示すような
周波数信号fox、 foy、 fozをそれぞれ得る
For example, in the circuit shown in Figure 2, the mixer 71.72°73
1d, the m-arrow harmonic Pm output from each sensor and its neighboring frequency fR are mixed, that is, heterodyne detection is performed, and each output is passed through a rotor filter 81, 82, 83.
By doing so, frequency signals fox, foy, and foz as shown in the following equations are obtained at the output terminals, respectively.

fax=mfo−fR±Δfmx ’foy=mfo−fH±Δfmy foz=mfo−fR±Δfmz 各カウンタ91,92.93U、これらの周波数信号を
それぞ才し計数する。演算回路90Vi、各カウンタ9
1.92.93からの信号fax+ foy、 foz
を入力し、所定の演算、例えば積分を含む演算をするこ
とによって、ターゲット5の各矢印x+y+z方向の変
位量x、 y、 zを知ることができる。またΔfmx
、Δfmy、Δfmzば、ターゲット5の移動方向に応
じて、正、負に極性が変ることから、移動方向の判別も
同時にできる。
fax=mfo-fR±Δfmx'foy=mfo-fH±Δfmy foz=mfo-fR±Δfmz Each counter 91, 92.93U calculates and counts these frequency signals. Arithmetic circuit 90Vi, each counter 9
Signal fax+ foy, foz from 1.92.93
By inputting and performing predetermined calculations, for example calculations including integration, the displacement amounts x, y, and z of the target 5 in the directions of the arrows x+y+z can be found. Also Δfmx
, Δfmy, Δfmz, the polarity changes between positive and negative depending on the moving direction of the target 5, so that the moving direction can be determined at the same time.

このように構成される装置は、ひとつの光源からのビー
ムによって3次元の変位が同時に測定できるもので、全
体構成全開単にできる。また、各センサから得られる信
号は周波数信号であることから、演算処理が容易であり
、高分解能で、各種機械量を測定することができる。
The device configured in this manner can simultaneously measure three-dimensional displacement using a beam from a single light source, and the entire configuration can be fully opened. Furthermore, since the signals obtained from each sensor are frequency signals, calculation processing is easy and various mechanical quantities can be measured with high resolution.

なお、上記の実施例において、光源1の光パワーに余裕
のある場合は、PH122,23,24等はハーフミラ
−としてもよい。また、ターゲット5の拡散面50には
、再帰性反射物やその他必要な模様等を設けるようにし
、検出感度を増大させるようにしてもよい。また、ここ
では、ターゲットのx、 y、 z方向の変位量や移動
速度を測定する場合を説明したが、ターゲット5の振動
数や回転数、あるいは形状変化等、各種の3次元の機械
量を測定することができる。
In the above embodiment, if the light source 1 has sufficient optical power, the PHs 122, 23, 24, etc. may be half mirrors. Further, the diffusion surface 50 of the target 5 may be provided with a retroreflector or other necessary patterns to increase the detection sensitivity. In addition, although we have explained here the case of measuring the displacement amount and movement speed of the target in the x, y, and z directions, it is also possible to measure various three-dimensional mechanical quantities such as the vibration frequency, rotation speed, or shape change of the target 5. can be measured.

以上説明したように、本発明に係る装置によれば、被測
距機械量が与えられるターゲットとは非接触で、このタ
ーゲットの3次元の変位置など各種機械量を高分解能で
測定することができる。
As explained above, according to the device according to the present invention, various mechanical quantities such as the three-dimensional displacement of the target can be measured with high resolution without contacting the target to which the mechanical quantity to be measured is given. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一例を示す構成説明図、第
2図は′電気的な回路を示す構成ブロック図、第3図は
第1図装置において、X軸センサ。 Y軸センサ上に作られるスペックルパターンの一例を示
す説明図、第4図及び第5図は2軸センサ上に作られる
パターンの一例を示す説明図、第6図は空間周波数とス
ペックトル強度との関係を示す線図、第7図は各センサ
から得られる信号の周波数スペックトルを示す説明図で
ある。 1・・・光源、21.22.23,24・・・偏光ビー
ムスプリッタ、31.32・・・ミラー、5・・・ター
°ゲット、6]、、62−・・絞り、8x、By、Bz
=−x軸、Y軸、2軸センサ 箪3図 爪4囚 第5図 爪6図
FIG. 1 is a configuration explanatory diagram showing an example of a device according to the present invention, FIG. 2 is a configuration block diagram showing an electrical circuit, and FIG. 3 is an X-axis sensor in the device shown in FIG. An explanatory diagram showing an example of a speckle pattern created on a Y-axis sensor, Figures 4 and 5 are explanatory diagrams showing an example of a pattern created on a two-axis sensor, and Figure 6 shows spatial frequency and speckle intensity. FIG. 7 is an explanatory diagram showing the frequency spectra of signals obtained from each sensor. 1... Light source, 21.22.23, 24... Polarizing beam splitter, 31.32... Mirror, 5... Target, 6], , 62-... Aperture, 8x, By, Bz
=-x-axis, Y-axis, 2-axis sensor Fig. 3 Claw 4 Fig. 5 Claw Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)光源からの可干渉な光を、被測定機械量が与えら
れるターゲットの拡散面に照射し、そこからの反射光を
ピンホールを有する絞りを通し、この絞りを通った光に
よるパターンの移動を検出して前記ターゲットの1次元
あるいは2次元方向の機械量をそれぞれ測定するととも
に、前記反射光を分割し、ピンホールを有する絞9を通
った光に、前記光源からの可干渉光を参照光として照射
して作られるパターンの移動を検出して前記1次元又V
i2次元方向の軸と直交する軸方向の機械量を測定する
ようにした光学式機械量測定装置。
(1) Coherent light from a light source is irradiated onto the diffuse surface of the target where the mechanical quantity to be measured is given, and the reflected light is passed through a diaphragm with a pinhole, and a pattern is created by the light passing through this diaphragm. In addition to detecting the movement and measuring the mechanical quantities of the target in one-dimensional or two-dimensional directions, the reflected light is divided and the coherent light from the light source is added to the light that passes through the diaphragm 9 having a pinhole. The one-dimensional or V
An optical mechanical quantity measuring device configured to measure a mechanical quantity in an axial direction perpendicular to an axis in an i-two-dimensional direction.
JP3701783A 1983-03-07 1983-03-07 Optical-type mechanical-quantity measuring device Granted JPS59162405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3701783A JPS59162405A (en) 1983-03-07 1983-03-07 Optical-type mechanical-quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3701783A JPS59162405A (en) 1983-03-07 1983-03-07 Optical-type mechanical-quantity measuring device

Publications (2)

Publication Number Publication Date
JPS59162405A true JPS59162405A (en) 1984-09-13
JPH0326321B2 JPH0326321B2 (en) 1991-04-10

Family

ID=12485893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3701783A Granted JPS59162405A (en) 1983-03-07 1983-03-07 Optical-type mechanical-quantity measuring device

Country Status (1)

Country Link
JP (1) JPS59162405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914914A (en) * 1994-06-06 1997-01-17 Kishimoto Sangyo Kk Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
CN102359814A (en) * 2011-07-04 2012-02-22 苏州舜新仪器有限公司 Three-dimensional laser motion attitude measuring system and method
US8797549B2 (en) 2008-02-28 2014-08-05 Statoil Petroleum As Interferometric methods and apparatus for seismic exploration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441205A (en) * 1987-08-07 1989-02-13 Nec Corp Inductance element for microwave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441205A (en) * 1987-08-07 1989-02-13 Nec Corp Inductance element for microwave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914914A (en) * 1994-06-06 1997-01-17 Kishimoto Sangyo Kk Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
US8797549B2 (en) 2008-02-28 2014-08-05 Statoil Petroleum As Interferometric methods and apparatus for seismic exploration
CN102359814A (en) * 2011-07-04 2012-02-22 苏州舜新仪器有限公司 Three-dimensional laser motion attitude measuring system and method

Also Published As

Publication number Publication date
JPH0326321B2 (en) 1991-04-10

Similar Documents

Publication Publication Date Title
US4470696A (en) Laser doppler velocimeter
US4512661A (en) Dual differential interferometer
JP2007163479A (en) Interferometer
US6954273B2 (en) Laser-based measuring apparatus for measuring an axial run-out in a cylinder of rotation and method for measuring the same utilizing opposing incident measuring light beams
JPS59162405A (en) Optical-type mechanical-quantity measuring device
US4346999A (en) Digital heterodyne wavefront analyzer
US20230062525A1 (en) Heterodyne light source for use in metrology system
JPS58225304A (en) Optical type mechanical quantity measuring apparatus
JPH045122B2 (en)
JPH0134082Y2 (en)
US3419331A (en) Single and double beam interferometer means
JPH0141205B2 (en)
JPH0444922B2 (en)
JPS58225302A (en) Optical type mechanical quantity measuring apparatus
JPS63218827A (en) Light spectrum detector
EP0050144A1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body.
JPS62106310A (en) Apparatus for measuring degree of parallelism of plane-parallel plates
JPH02228512A (en) Highly accurate laser measurement method and apparatus for surface of solid
JPH02259506A (en) Fringe scanning type interference measuring instrument
JPH04289401A (en) Two wave motion interferometer
JPH0719842A (en) Optical measuring apparatus for shape of surface
JPS6212442B2 (en)
JPS63238504A (en) Interferometer for displacement measurement
JPH04315923A (en) Elastic wave transmitting speed measuring method for crystal surface
JPH0549922B2 (en)