JPH04315923A - Elastic wave transmitting speed measuring method for crystal surface - Google Patents

Elastic wave transmitting speed measuring method for crystal surface

Info

Publication number
JPH04315923A
JPH04315923A JP8391891A JP8391891A JPH04315923A JP H04315923 A JPH04315923 A JP H04315923A JP 8391891 A JP8391891 A JP 8391891A JP 8391891 A JP8391891 A JP 8391891A JP H04315923 A JPH04315923 A JP H04315923A
Authority
JP
Japan
Prior art keywords
crystal
elastic wave
elastic
speckle
crystal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8391891A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tagawa
田川 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8391891A priority Critical patent/JPH04315923A/en
Publication of JPH04315923A publication Critical patent/JPH04315923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make the constitution of a measuring device unnecessary to change even though the sort of the elastic body crystal is changed, and to carry out the measurement of the elastic wave transmitting speed in a desired area of a crystal surface. CONSTITUTION:While elastic waves are generated by driving an elastic body crystal 1 by a transducer 2, a speckle pattern on a crystal surface at a standard time which is generated by radiating laser beams and a speckle pattern after a specific time passes are compared in an image processing device 7. And depending on the resultant speckle movement amount and the specific time, the elastic wave transmitting speed on the surface of the crystal 1 is calculated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、弾性体結晶の表面を伝
搬する弾性波の伝搬速度を測定する方法に係り、特に、
結晶表面の任意の場所、領域における弾性波の伝搬速度
を非接触・非破壊により測定するための測定方法に関す
る。
[Field of Industrial Application] The present invention relates to a method for measuring the propagation velocity of an elastic wave propagating on the surface of an elastic crystal, and in particular,
This invention relates to a measurement method for non-contact and non-destructive measurement of the propagation velocity of elastic waves at any location or region on a crystal surface.

【0002】0002

【従来の技術】結晶表面上の弾性波の伝搬速度を測定す
るときは、従来は図2に示すように、被測定対象たる弾
性体結晶10の表面上にすだれ状電極11を形成し、こ
れに電源12を供給して弾性波を発生させるとともに該
電極11の近傍に図示を省略した同様の受信用すだれ状
電極を設け、受信した弾性波の周波数特性をスペクトラ
ムアナライザ等で検出することにより間接的に速度を算
出している。具体的に説明すると、図2において電極1
1の幅をh、空隙をa、その中心間距離をd(=a+h
)、弾性波の伝搬速度をv、波長をλ0とすると、最も
強力に励振され、且つ、受信用すだれ状電極で最も感度
良く受信されるのは、中心周波数f0(=v/λ0=v
/2(a+h))の波である。電極の中心間距離d(=
a+h)は設計の段階で明らかであり、中心周波数がf
0の波はスペクトラムアナライザ3等により求められる
ので、これにより伝搬速度vが算出できる。
2. Description of the Related Art When measuring the propagation velocity of an elastic wave on a crystal surface, conventionally, as shown in FIG. A power source 12 is supplied to generate an elastic wave, and a similar receiving interdigital electrode (not shown) is provided near the electrode 11, and the frequency characteristics of the received elastic wave are detected with a spectrum analyzer or the like. The speed is calculated accordingly. To explain specifically, in FIG.
The width of 1 is h, the gap is a, and the distance between their centers is d (=a+h
), the propagation speed of the elastic wave is v, and the wavelength is λ0, then the center frequency f0 (= v / λ0 = v
/2(a+h)) wave. Distance between electrode centers d (=
a+h) is clear at the design stage, and the center frequency is f
Since the zero wave is obtained by the spectrum analyzer 3 or the like, the propagation velocity v can be calculated from this.

【0003】また、最近、被測定結晶の表面にすだれ状
電極等を形成せずに簡便に弾性波の伝搬速度を計測する
技術が提供されている(特開昭60−91224号)。 この技術は、要するに、弾性体結晶基板の表面に弾性波
発生伝達手段を設けるとともに、弾性体結晶基板と同種
の被測定結晶を弾性波発生伝達手段に平行近接配置して
該被測定結晶表面を弾性波が伝搬するようにし、伝搬の
前後の周波数差データおよび位相差データをカウンタ等
で検出し、これら検出したデータに基づいて弾性波の伝
搬速度を算出しようというものである。
[0003] Furthermore, recently, a technique has been proposed for easily measuring the propagation velocity of an elastic wave without forming an interdigital electrode on the surface of a crystal to be measured (Japanese Patent Laid-Open No. 60-91224). In short, this technique involves providing an elastic wave generation/transmission means on the surface of an elastic crystal substrate, and arranging a crystal to be measured of the same type as the elastic crystal substrate in parallel to and close to the elastic wave generation/transmission means. The idea is to allow an elastic wave to propagate, detect frequency difference data and phase difference data before and after the propagation using a counter, etc., and calculate the propagation speed of the elastic wave based on these detected data.

【0004】0004

【発明が解決しようとする課題】しかしながら、図2に
示した従来の方法では、伝搬速度vの測定の都度、微細
加工・フォトリソ技術等を駆使してすだれ状電極を形成
しなければならないので、測定に多大な時間とコストが
かかる欠点があった。
[Problems to be Solved by the Invention] However, in the conventional method shown in FIG. 2, each time the propagation velocity v is measured, it is necessary to form an interdigital electrode by making full use of microfabrication, photolithography, etc. The disadvantage is that measurement takes a lot of time and cost.

【0005】また、特開昭60−91224号に開示さ
れた技術は、伝搬速度を簡易な手段で直接測定できる効
用があるが、その反面、測定の前段階として被測定結晶
と同じ材料の弾性体結晶基板を準備し、且つ、該基板上
に弾性波発生伝達手段を構成しなければならない問題が
あった。つまり、被測定結晶の材質が変わればそれに合
わせて測定装置を構成し直さなければならないので、複
数種の結晶表面における弾性波の伝搬速度の測定には不
向きであった。
[0005] The technique disclosed in JP-A-60-91224 has the advantage of directly measuring the propagation velocity with a simple means, but on the other hand, as a pre-measurement step, it is necessary to measure the elasticity of the same material as the crystal to be measured. There is a problem in that a body crystal substrate must be prepared and an elastic wave generation and transmission means must be constructed on the substrate. In other words, if the material of the crystal to be measured changes, the measuring device must be reconfigured accordingly, making it unsuitable for measuring the propagation speed of elastic waves on the surfaces of multiple types of crystals.

【0006】更に、上記方法等はいずれも結晶表面全体
を用いて測定するものなので、算出される伝搬速度は結
晶表面上の平均速度となる。したがって、結晶が部分的
に不均一である場合には測定誤差を生じていた。また、
電極マスク内の一パターンのみにおける伝搬速度を測定
して該パターンの状態を知りたい場合があるが、上記方
法等では部分的な測定が不可能であった。
Furthermore, since the above methods all measure using the entire crystal surface, the calculated propagation velocity is the average velocity on the crystal surface. Therefore, if the crystal is partially non-uniform, measurement errors occur. Also,
There are cases where it is desired to measure the propagation velocity in only one pattern in the electrode mask to know the state of that pattern, but partial measurement is not possible with the above methods.

【0007】本発明は、かかる問題点に鑑みて創案した
ものであり、その目的とするところは、被測定結晶の種
類が変わっても装置構成を変える必要がなく、且つ、結
晶表面上の任意の場所、領域での伝搬速度測定を可能と
する結晶表面の弾性波伝搬速度測定方法を提供すること
にある。
The present invention was devised in view of the above problems, and its purpose is to eliminate the need to change the device configuration even if the type of crystal to be measured changes, and to eliminate the need for arbitrary changes on the surface of the crystal. An object of the present invention is to provide a method for measuring the propagation velocity of an elastic wave on a crystal surface, which enables the measurement of the propagation velocity in a location and region.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するため、弾性体結晶を励振して弾性波を発生させる
とともに、該弾性体結晶にレーザー光を照射することに
よって生じる基準時点における結晶表面のスペックル模
様と所定時間後のスペックル模様とを比較し、比較の結
果得られるスペックル移動量と所定時間とに基づいて前
記結晶の表面における弾性波伝搬速度を算出するように
したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention excites an elastic crystal to generate an elastic wave, and irradiates the elastic crystal with a laser beam to generate a reference point in time. The speckle pattern on the crystal surface is compared with the speckle pattern after a predetermined time, and the elastic wave propagation speed on the surface of the crystal is calculated based on the amount of speckle movement obtained as a result of the comparison and the predetermined time. It is something.

【0009】[0009]

【作用】弾性体結晶の励振により結晶表面の歪みが移動
して弾性波が伝搬する。ここで、弾性体結晶の表面にレ
ーザー光を照射すると、レーザー光の可干渉性により結
晶表面からの拡散反射光に不規則な形状のスペックル模
様が生じる。このスペックル模様は、歪みの移動に伴っ
て移動するので、基準時点におけるものと所定時間後に
おけるものとを比較すれば該時間における歪みの移動量
がわかり、これらに基づいて弾性波の伝搬速度を算出す
ることができる。
[Operation] By excitation of the elastic crystal, the strain on the crystal surface moves and an elastic wave propagates. Here, when the surface of the elastic crystal is irradiated with laser light, an irregularly shaped speckle pattern is generated in the diffusely reflected light from the crystal surface due to the coherence of the laser light. This speckle pattern moves as the strain moves, so by comparing the one at the reference time and the one after a predetermined time, the amount of strain movement at that time can be determined, and based on this, the propagation speed of the elastic wave can be determined. can be calculated.

【0010】この方法は、スペックル法を利用して結晶
表面における歪みの移動量を非接触式に測定するものな
ので、被測定結晶の材質に特に制限がなく、また、光学
系の調整によりホログラムの撮影領域を任意に設定でき
るので、結晶表面の一部の領域における伝搬速度を測定
することもできる。
This method uses the speckle method to measure the amount of strain movement on the crystal surface in a non-contact manner, so there is no particular restriction on the material of the crystal to be measured, and the hologram can be adjusted by adjusting the optical system. Since the imaging area can be arbitrarily set, it is also possible to measure the propagation velocity in a part of the crystal surface.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0012】図1は本発明の一実施例に係る弾性波伝搬
速度測定装置の構成概要図である。図中、1は被測定対
象結晶、2はトランスジューサー、3はレーザー、4は
レーザー光を拡散するためのビーム拡大レンズ、5はハ
ーフミラー(ビームスプリッタ)、6はその表面が平滑
な参照拡散面、7は画像処理装置である。
FIG. 1 is a schematic diagram of the configuration of an elastic wave propagation velocity measuring device according to an embodiment of the present invention. In the figure, 1 is the crystal to be measured, 2 is the transducer, 3 is the laser, 4 is the beam expansion lens for diffusing the laser beam, 5 is the half mirror (beam splitter), and 6 is the reference diffuser whose surface is smooth. 7 is an image processing device.

【0013】トランスジューサー2は被測定対象結晶1
に歪を与えて弾性波を発生させるもので、例えば、結晶
表面にマスク蒸着して形成された電極に所定周波数の電
界を印加している。結晶表面の任意の場所に局部的に高
出力レーザーを照射して熱歪みを起こさせ、これにより
非接触式に弾性波を発生させるようにすることもできる
。また、参照拡散面はハーフミラー5からの距離が被測
定結晶1までの距離とほぼ同一の位置にハーフミラー5
を透過するレーザー光の光軸と垂直に配置され、画像処
理装置7は参照拡散面6からの反射光と被測定結晶1か
らの拡散反射光とを同時に受光できる位置に配置される
。画像処理装置7は例えば所定の画像処理プログラムに
したがって動作するマイクロコンピュータ装置を用いる
The transducer 2 is a crystal to be measured 1
This method generates elastic waves by applying strain to the crystal surface, for example, by applying an electric field of a predetermined frequency to an electrode formed by mask vapor deposition on the crystal surface. It is also possible to locally irradiate a high-power laser to any location on the crystal surface to cause thermal distortion, thereby generating elastic waves in a non-contact manner. In addition, the reference diffusion surface is placed on the half mirror 5 at a position where the distance from the half mirror 5 is almost the same as the distance to the crystal 1 to be measured.
The image processing device 7 is arranged perpendicularly to the optical axis of the laser beam that passes through the reference diffusing surface 6, and is arranged at a position where it can simultaneously receive the reflected light from the reference diffusing surface 6 and the diffusely reflected light from the crystal 1 to be measured. The image processing device 7 uses, for example, a microcomputer device that operates according to a predetermined image processing program.

【0014】なお、レーザー3には、必要に応じ、増幅
器を組み合わせて出力(光量)を増加させる。
Note that the laser 3 may be combined with an amplifier to increase its output (light amount), if necessary.

【0015】次に、上記構成の弾性波伝搬速度測定装置
を用いてスペックル干渉法により弾性波の伝搬速度を測
定する方法について説明する。
Next, a method of measuring the propagation velocity of an elastic wave by speckle interferometry using the elastic wave propagation velocity measuring apparatus having the above configuration will be explained.

【0016】レーザー3から出力されビーム拡大レンズ
4でビーム拡大されたレーザー光は、ハーフミラー5で
反射された後被測定結晶1の表面に照射される。このと
き被測定結晶1がトランスジューサー2により励振され
ているとすると、その表面に歪みが生じているので、レ
ーザー光が各部位で散乱して互いに不規則な位相関係で
干渉しあった拡散反射光となり、ハーフミラー5を透過
して画像処理装置7に導かれる。一方、ハーフミラー5
を透過したレーザー光は、参照拡散面6で反射された後
ハーフミラー5で再び反射されて画像処理装置7に導か
れる。この光は拡散反射光のように位相が不規則に変化
しない参照光となる。画像処理装置7に導かれるこれら
二つの光は相互に干渉しあって位相の変化をハイコント
ラストのスペックル模様に変換する。この模様を画像処
理装置7に記録する。
The laser beam output from the laser 3 and expanded by the beam expansion lens 4 is reflected by the half mirror 5 and then irradiated onto the surface of the crystal 1 to be measured. At this time, if the crystal 1 to be measured is excited by the transducer 2, its surface is distorted, so the laser light is scattered at various parts and interferes with each other in an irregular phase relationship, resulting in diffuse reflection. The light becomes light, passes through the half mirror 5, and is guided to the image processing device 7. On the other hand, half mirror 5
The laser beam that has passed through is reflected by the reference diffusing surface 6, then reflected again by the half mirror 5, and guided to the image processing device 7. This light becomes a reference light whose phase does not change irregularly like diffusely reflected light. These two lights guided to the image processing device 7 interfere with each other and convert phase changes into a high contrast speckle pattern. This pattern is recorded in the image processing device 7.

【0017】次に所定時差で再び被測定結晶1の表面に
レーザー光を照射してこのときの結晶表面の歪み状態を
表すスペックル模様を画像記録装置7に記録し、前に記
録したスペックル模様と電気的に重ね合わせる。これに
より両模様の干渉によるモアレ縞が生じる。この縞はス
ペックルの移動即ち一定方向に対する結晶表面の歪みの
変位量を表す等高線に相当し、縞の間隔は弾性波の1/
2波長となる。
Next, the surface of the crystal to be measured 1 is irradiated with laser light again at a predetermined time difference, and a speckle pattern representing the distortion state of the crystal surface at this time is recorded in the image recording device 7, and the previously recorded speckle is Electrically superimpose the pattern. This causes moiré fringes due to interference between the two patterns. These fringes correspond to contour lines that represent the movement of speckles, that is, the displacement of strain on the crystal surface in a certain direction, and the interval between the fringes is 1/1 of the elastic wave.
There are 2 wavelengths.

【0018】したがって、このモアレ縞を画像処理装置
7で解析して歪みの変位量を検出し、図示を省略した演
算装置で時間をパラメータとして演算すれば弾性波の伝
搬速度を高精度で求めることができる。
Therefore, the propagation velocity of the elastic wave can be determined with high precision by analyzing the moiré fringes with the image processing device 7 to detect the amount of distortion displacement, and by calculating with time as a parameter using a calculation device (not shown). Can be done.

【0019】このように、本実施例では、スペックル干
渉法を利用して非接触式に被測定結晶の歪みの変位量を
検出するようにしたので、被測定結晶の材質に特に制限
がなく、しかも弾性波の伝搬方向が単一指向性であるか
全方向性であるかを問わない。したがって、従来のよう
に、送受信用の二組のすだれ状電極を設けたり、結晶の
材質が変わる度に測定装置を構成し直す必要がなく、簡
易な構成により複数種の結晶表面における弾性波伝搬速
度の精度の良い測定が可能となる。
In this way, in this example, the amount of strain displacement of the crystal to be measured is detected in a non-contact manner using speckle interferometry, so there is no particular restriction on the material of the crystal to be measured. Moreover, it does not matter whether the propagation direction of the elastic waves is unidirectional or omnidirectional. Therefore, unlike conventional methods, there is no need to provide two sets of interdigital electrodes for transmission and reception, or to reconfigure the measurement device each time the crystal material changes. It becomes possible to measure speed with high precision.

【0020】また、レーザー光の照射量やハーフミラー
5における反射角度等を調整してレーザー光の照射領域
を任意に設定できるので、結晶表面の一部の領域におけ
る伝搬速度を測定することもできる。したがって、電極
マスクの特定のパターンのみを伝搬する弾性波の伝搬速
度測定も可能となる。
Furthermore, since the irradiation area of the laser beam can be arbitrarily set by adjusting the irradiation amount of the laser beam, the reflection angle on the half mirror 5, etc., it is also possible to measure the propagation velocity in a part of the crystal surface. . Therefore, it is also possible to measure the propagation velocity of elastic waves propagating only through a specific pattern of the electrode mask.

【0021】なお、以上はスペックル干渉法を利用して
弾性波伝搬速度を測定する方法について説明してきたが
、スペックル写真法あるいはスペックル相関法を利用し
てスペックル移動を求めても同様の効果を奏する。
[0021] Although the method for measuring the elastic wave propagation velocity using speckle interferometry has been explained above, the same method can be used to determine speckle movement using speckle photography or speckle correlation method. It has the effect of

【0022】スペックル写真法では、1本のレーザー光
で被測定結晶の表面を照射し、励振による歪みの前後に
おけるスペックル模様をフィルムに二重露光する。得ら
れたネガをスペックルグラムといい、その全面をレーザ
ー光ないし水銀ランプ等の単色性の良い光で照射し、斜
方向から観察すると、互いにずれた二つのスペックル模
様からの回折光が干渉しあうために生じるスペックル移
動成分の等高線をスペックルグラム上にみることができ
る。これをカメラに記録してスペックル移動を求める。 この方法はスペックル干渉法のように参照光を必要とし
ないので光学系がコンパクトであり、縞の感度も自由に
調節できる利点がある。
In the speckle photography method, the surface of the crystal to be measured is irradiated with a single laser beam, and the speckle pattern before and after distortion due to excitation is double exposed on a film. The obtained negative is called a specklegram, and when its entire surface is irradiated with monochromatic light such as a laser beam or a mercury lamp and observed from an oblique direction, the diffracted light from two speckle patterns that are shifted from each other interferes. The contour lines of the speckle movement component that occur due to the interaction can be seen on the specklegram. This is recorded on the camera to determine speckle movement. Unlike speckle interferometry, this method does not require a reference beam, so the optical system is compact, and the fringe sensitivity can be adjusted freely.

【0023】また、スペックル相関法では、被測定結晶
の表面に細いレーザー光を照射し、拡散反射光の中に一
次元イメージセンサを置く。センサの向きはスペックル
移動の方向に合わせるとともにレーザー光のビーム径と
反射点からのセンサ距離とを調節してセンサの解像力を
スペックルの平均径より小さくなるようにしておく。こ
の状態で被測定結晶表面の歪みの前後のセンサ出力を各
々マイクロコンピュータのメモリに貯え、それらの間の
極性相互相関を計算し、相関ピーク位置から直接にスペ
ックル移動を求める。この方法は、スペックル径より小
さな移動を求めることができる利点がある。
In the speckle correlation method, the surface of the crystal to be measured is irradiated with a narrow laser beam, and a one-dimensional image sensor is placed in the diffusely reflected light. The orientation of the sensor is adjusted to match the direction of speckle movement, and the beam diameter of the laser beam and the sensor distance from the reflection point are adjusted so that the resolving power of the sensor is smaller than the average diameter of the speckles. In this state, the sensor outputs before and after the strain on the surface of the crystal to be measured are stored in the memory of the microcomputer, the polarity cross-correlation between them is calculated, and the speckle movement is directly determined from the correlation peak position. This method has the advantage of being able to obtain a movement smaller than the speckle diameter.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
測定対象たる弾性体結晶の種類が変わっても装置構成を
変える必要がなく、且つ、結晶表面上の任意の場所、領
域での高精度の伝搬速度測定を可能とする結晶表面の弾
性波伝搬速度測定方法を提供することができる。
[Effects of the Invention] As explained above, according to the present invention,
Elastic wave propagation velocity on the crystal surface that does not require changing the equipment configuration even if the type of elastic crystal to be measured changes, and enables highly accurate propagation velocity measurement at any location or region on the crystal surface. A measurement method can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る弾性波伝搬速度測定装
置の構成概要図である。
FIG. 1 is a schematic diagram of the configuration of an elastic wave propagation velocity measuring device according to an embodiment of the present invention.

【図2】従来の弾性波伝搬速度測定装置における弾性波
発生手段の説明図である。
FIG. 2 is an explanatory diagram of elastic wave generating means in a conventional elastic wave propagation velocity measuring device.

【符号の説明】[Explanation of symbols]

1…被測定結晶、2…トランスジューサー、3…レーザ
ー、4…ビーム拡大レンズ、5…ハーフミラー、6…参
照拡散面、7…画像処理装置。
DESCRIPTION OF SYMBOLS 1... Crystal to be measured, 2... Transducer, 3... Laser, 4... Beam expansion lens, 5... Half mirror, 6... Reference diffusing surface, 7... Image processing device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  弾性体結晶を励振して弾性波を発生さ
せるとともに、該弾性体結晶にレーザー光を照射するこ
とによって生じる基準時点における結晶表面のスペック
ル模様と所定時間後のスペックル模様とを比較し、比較
の結果得られるスペックル移動量と所定時間とに基づい
て前記結晶の表面における弾性波伝搬速度を算出するよ
うにしたことを特徴とする結晶表面の弾性波伝搬速度測
定方法。
Claim 1: Exciting an elastic crystal to generate an elastic wave, and irradiating the elastic crystal with a laser beam to produce a speckle pattern on the surface of the crystal at a reference time and a speckle pattern after a predetermined time. A method for measuring an elastic wave propagation speed on a crystal surface, characterized in that the elastic wave propagation speed on the surface of the crystal is calculated based on the amount of speckle movement obtained as a result of the comparison and a predetermined time.
JP8391891A 1991-04-16 1991-04-16 Elastic wave transmitting speed measuring method for crystal surface Pending JPH04315923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8391891A JPH04315923A (en) 1991-04-16 1991-04-16 Elastic wave transmitting speed measuring method for crystal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8391891A JPH04315923A (en) 1991-04-16 1991-04-16 Elastic wave transmitting speed measuring method for crystal surface

Publications (1)

Publication Number Publication Date
JPH04315923A true JPH04315923A (en) 1992-11-06

Family

ID=13815984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8391891A Pending JPH04315923A (en) 1991-04-16 1991-04-16 Elastic wave transmitting speed measuring method for crystal surface

Country Status (1)

Country Link
JP (1) JPH04315923A (en)

Similar Documents

Publication Publication Date Title
JP5241806B2 (en) Apparatus and method for surface contour measurement
JP4216728B2 (en) Method and apparatus for compensating the time-varying optical properties of gases in an interferometer
US7697195B2 (en) Apparatus for reducing wavefront errors in output beams of acousto-optic devices
US7349102B2 (en) Methods and apparatus for reducing error in interferometric imaging measurements
JP7326292B2 (en) Apparatus and method for determining the position of a target structure on a substrate
JP3230536B2 (en) Optical performance measuring method and apparatus
JPH04315923A (en) Elastic wave transmitting speed measuring method for crystal surface
JPH04319626A (en) Measuring method of propagation speed of elastic wave in surface of crystal
JPS63218827A (en) Light spectrum detector
JPH11281313A (en) Heterodyne interference method for white-light
JPS59162405A (en) Optical-type mechanical-quantity measuring device
JP2753545B2 (en) Shape measurement system
JPS58225304A (en) Optical type mechanical quantity measuring apparatus
JPS62124405A (en) Thermal dilatometer
JPH08321452A (en) Method for evaluating alignment result and alignment equipment using the method
JPH0593611A (en) Thickness measuring apparatus
JP2778231B2 (en) Position detection device
JP2942002B2 (en) Surface shape measuring device
JPH10170340A (en) Measuring apparatus for interference efficiency of interferometer for ft
KR960015053B1 (en) Device for monitoring plane degree
JPH0469722B2 (en)
JPS62257010A (en) Detection of height
JPH0545140A (en) Method and device for measuring radius of curvature
JP2656333B2 (en) Gap setting method and apparatus
JPH02112709A (en) Method and device for alignment