JPS63190769A - Ceramic-metal bonded body - Google Patents
Ceramic-metal bonded bodyInfo
- Publication number
- JPS63190769A JPS63190769A JP2205387A JP2205387A JPS63190769A JP S63190769 A JPS63190769 A JP S63190769A JP 2205387 A JP2205387 A JP 2205387A JP 2205387 A JP2205387 A JP 2205387A JP S63190769 A JPS63190769 A JP S63190769A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- ceramic
- layer
- metals
- brazing material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 115
- 239000002184 metal Substances 0.000 title claims description 115
- 239000000919 ceramic Substances 0.000 claims description 76
- 238000005219 brazing Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 30
- 150000002739 metals Chemical class 0.000 claims description 29
- 230000008018 melting Effects 0.000 claims description 20
- 238000002844 melting Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims description 8
- 238000005240 physical vapour deposition Methods 0.000 claims description 7
- 229910017944 Ag—Cu Inorganic materials 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 6
- 238000005304 joining Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000005422 blasting Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- GRNHLFULJDXJKR-UHFFFAOYSA-N 3-(2-sulfanylethyl)-1h-quinazoline-2,4-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)NC2=C1 GRNHLFULJDXJKR-UHFFFAOYSA-N 0.000 description 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PCEXQRKSUSSDFT-UHFFFAOYSA-N [Mn].[Mo] Chemical compound [Mn].[Mo] PCEXQRKSUSSDFT-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- -1 borides Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 産業上の利用分野 本発明はセラミックスと金属の接合体に関する。[Detailed description of the invention] Industrial applications The present invention relates to a joined body of ceramics and metal.
さらに詳細には本発明は、酸化物、炭化物、ホウ化物、
窒化物及びこれらの複合物等のセラミックスの表面を金
属化し、この金属化面にロウ材を介して金属部材を接合
することによって構成されるセラ透ツクス部材と金属部
材の接合体の改良に関する。More specifically, the present invention provides oxides, carbides, borides,
The present invention relates to an improvement in a joined body of a ceramic ceramic member and a metal member, which is constructed by metallizing the surface of a ceramic such as a nitride or a composite thereof, and joining a metal member to the metallized surface via a brazing material.
従来立及査
セラミックスは耐熱、耐摩耗、軽量性等に優れているが
、金属との接合が困難であるのでその用途が限定されて
いる。一般にセラミックス部材と金属部材の接合体は、
セラミックスの表面を金属化し、この金属化面で他の金
属部材と接合して行われる。このようなセラミックス部
材と金属部材の接合が十分な強度で達成されると、電子
部品におけるセラミックス基板への金属素子や放熱フィ
ンの接合体、あるいは構造部品やエンジン部品における
セラミックス部材と金属部材の接合体等、セラミックス
の用途は拡大するはずである。Conventional ceramics have excellent heat resistance, wear resistance, light weight, etc., but their use is limited because they are difficult to bond with metals. In general, a joined body of a ceramic member and a metal member is
This is done by metallizing the surface of the ceramic and joining it to another metal member on this metallized surface. When such a bond between a ceramic member and a metal member is achieved with sufficient strength, it can be used to bond a metal element or heat dissipation fin to a ceramic substrate in an electronic component, or to bond a ceramic member and a metal member in a structural or engine component. The applications of ceramics, such as bodies, are expected to expand.
このようなセラミックス部材と金属部材の接合体を得る
ために行われるセラミックスの代表的な金属化法として
は、モリブデン−マンガン法、活性金属法および酸化物
ソルダー法がある。このうち、活性金属法は、Ti、
Zrの如き高温で活性となり、セラミックスと反応しや
すくなる活性金属を利用する方法である。すなわち、板
または箔状の活性金属をセラミックスと封゛着金属との
間に挿入し、真空或いは不活性ガス中で加熱処理して封
着する方法である。Typical ceramic metallization methods used to obtain such a joined body of a ceramic member and a metal member include a molybdenum-manganese method, an active metal method, and an oxide solder method. Among these, the active metal method uses Ti,
This method uses active metals such as Zr, which become active at high temperatures and easily react with ceramics. That is, this is a method in which a plate or foil-shaped active metal is inserted between the ceramic and the sealing metal, and the ceramics and the sealing metal are heated and sealed in a vacuum or an inert gas.
日経メカニカル(NIKKEI MECH八旧CへL)
1986.1.13には活性金属ロウ材は法が記載され
ている。この活性金属ロウ材は法は、ロウ材と活性金属
を使用する方法であって、ロウ材の箔を活性金属と共に
使用するか、ロウ材に活性金属を混入して使用する。ま
た、Si、N、のようなセラミックスの表面にNi等の
活性金属の粉末を散布し、真空下で加熱して金属化する
方法も開示されている。Nikkei Mechanical (NIKKEI MECH 8 old C to L)
On January 13, 1986, a method for using active metal brazing materials is described. This active metal brazing method is a method using a brazing material and an active metal, and either a foil of the brazing material is used together with the active metal, or the active metal is mixed into the brazing material. Also disclosed is a method in which powder of an active metal such as Ni is sprinkled on the surface of a ceramic such as Si, N, and the like is heated under vacuum to metallize the surface.
日が”しようとする間 点
上述したようにセラミックス部材と金属部材のとを接合
するための、従来技術による活性金属によるセラミック
スの金属化法としては、活性金属を混入した合金ロウ材
による方法、また、箔、板状にして接合する方法等が提
案されている。しかしながら、これらの方法では、純度
の高い活性金□属を使用できず、さらに不純物混入によ
る活性度の低下がみられる。他方、活性金属は、その高
活性のため、酸化等の腐蝕しやすい性情を有するため活
性金属のせっかくの高活性が生かされない問題もあった
。As mentioned above, conventional methods of metallizing ceramics using active metals for joining ceramic members and metal members include methods using alloy brazing fillers mixed with active metals; Additionally, methods have been proposed in which the metal is bonded in the form of foil or plate. However, these methods do not allow the use of highly pure activated metals, and furthermore, the activity decreases due to the inclusion of impurities.On the other hand, Due to their high activity, active metals have the property of being susceptible to corrosion such as oxidation, so there is a problem that the high activity of active metals cannot be utilized.
また、これらの問題に対し、イオンブレーティング法に
よって高純度のTiをセラミックス表面に蒸着する方法
が提案されている。しかしながら、この方法で蒸着され
たTiNは、固相状態で接合されているためセラミック
スに対し濡れ性が悪く、セラミックスとの反応が進行せ
ず界面強度が低いという問題点があった。このためセラ
ミックスと金属との十分に高い接合強度を有し且つ均質
な接合体は未だに開発されていなかった。In addition, in order to solve these problems, a method has been proposed in which highly purified Ti is deposited on the surface of ceramics using an ion blating method. However, since TiN deposited by this method is bonded in a solid state, it has poor wettability with respect to ceramics, and there are problems in that the reaction with ceramics does not proceed and the interfacial strength is low. For this reason, a homogeneous bonded body with sufficiently high bonding strength between ceramic and metal has not yet been developed.
従って、本発明の目的は上記した従来技術の問題を解決
して、清浄、均質かつ強固な接合面を有するセラミック
ス部材と金属部材の接合体を提供することにある。Therefore, an object of the present invention is to solve the problems of the prior art described above and to provide a joined body of a ceramic member and a metal member having a clean, homogeneous and strong joint surface.
問題点を解ンするための
本発明者等は、上記した従来技術のセラミックスと金属
との接合の問題に鑑み、種々の実験、検討を繰り返した
結果、本発明を完成したものである。In order to solve the problems, the inventors of the present invention have completed the present invention as a result of repeated various experiments and studies in view of the above-mentioned problems of bonding ceramics and metals in the prior art.
本発明に従うと、セラミックス部材と金属部材の接合体
であって、これらのセラミックス部材と金属部材とは、
セラミックス部材側にA層、金属部材側にBJilを介
して接合され、
上記A層は、物理蒸着法により活性金属を含む2種以上
の金属を蒸着し、該蒸着された金属層をその融点以上の
温度に加熱して形成され、該セラミックス部材と相互拡
散されている層であり、上記BNはロウ材であり、該金
属部材および該ANと結合している層である、
ことを特徴とするセラミックス部材と金属部材の接合体
が提供される。According to the present invention, a joined body of a ceramic member and a metal member, the ceramic member and the metal member are
The A layer is bonded to the ceramic member side and the metal member side via BJil, and the above A layer is formed by vapor depositing two or more metals including an active metal by physical vapor deposition, and depositing the vapor deposited metal layer above its melting point. The layer is formed by heating to a temperature of , and is interdiffused with the ceramic member, the BN is a brazing material, and the layer is bonded to the metal member and the AN. A joined body of a ceramic member and a metal member is provided.
添付の第1図を参照して本発明のセラミックスと金属の
接合体を説明する。セラミックス部材lの1表面が金属
化され、A層2を形成されている。The ceramic-metal bonded body of the present invention will be explained with reference to the attached FIG. 1. One surface of the ceramic member l is metallized to form an A layer 2.
一方、A層2と金属部材4の表面には8M3が介在して
いる。ここで、AM2は、物理蒸着法により活性金属を
含む2種以上の金属を蒸着し、該金属層をその融点温度
以上に加熱して形成した金属化層であり、これらのA層
の金属はセラミックス部材1および接合すべき金属部材
4側のBH3と相互拡散している。一方、BIi13は
、ロウ材であって、金属部材4およびA12と結合して
いる。On the other hand, 8M3 is present on the surfaces of the A layer 2 and the metal member 4. Here, AM2 is a metallized layer formed by depositing two or more metals including an active metal by a physical vapor deposition method and heating the metal layer to a temperature higher than its melting point. It is interdiffused with the BH3 on the side of the ceramic member 1 and the metal member 4 to be joined. On the other hand, BIi 13 is a brazing material and is bonded to the metal member 4 and A12.
このようなり層3をなすロウ材としてはAu −Cuロ
ウ材が好ましい。The brazing material forming the layer 3 is preferably Au--Cu brazing material.
上記A層2の蒸着金属の融点は1600°C以下である
ことが好ましく、このような低温度の融点とすることに
よって蒸着金属の熱処理およびセラミックス部材1を金
属部材4と接合する処理の際の加熱温度を低温度にでき
る。従って、セラミックス部材1の損傷が防止でき、強
固な接合部材が得られる。The melting point of the vapor deposited metal of the A layer 2 is preferably 1600°C or less, and by setting the melting point to such a low temperature, it is possible to heat the vapor deposited metal and join the ceramic member 1 to the metal member 4. The heating temperature can be lowered. Therefore, damage to the ceramic member 1 can be prevented and a strong bonded member can be obtained.
さらに本発明の態様に従うと、セラミックス部材1は、
酸化物、炭化物、ホウ化物、窒化物またはこれらの複合
物等のセラミックスであり、一方、活性金属は、Ti、
NiXZr、 Fe、 Nb、 W、 Mo、T1ま
たはA1であることが好ましい。Furthermore, according to an aspect of the present invention, the ceramic member 1 is
Ceramics such as oxides, carbides, borides, nitrides or composites thereof, while active metals include Ti,
Preferably, it is NiXZr, Fe, Nb, W, Mo, T1 or A1.
さらにA層2をなす2種類の金属はイオンブレーティン
グ法又はスパッタリング法等の物理蒸着法で積層蒸着ま
たは複合蒸着によって形成され、その加熱処理は真空下
で行うのが好ましい。ここで複合蒸着とは、同時に異種
の金属を蒸着または異種金属の合金を蒸着することをい
う。Further, the two types of metals constituting the A layer 2 are formed by laminated deposition or composite deposition using a physical vapor deposition method such as an ion blasting method or a sputtering method, and the heat treatment is preferably performed under vacuum. Here, composite deposition refers to simultaneously depositing different metals or depositing an alloy of different metals.
さらに、セラミックス部材の金属化JiAをロウ材を介
して接合するときは、真空下で行うことが好ましい。Furthermore, when joining metallized JiA ceramic members via a brazing material, it is preferable to perform the joining under vacuum.
■
本発明のセラミックス部材と金属部材の接合体の特徴を
さらに詳細に説明する。(2) The characteristics of the joined body of the ceramic member and metal member of the present invention will be explained in more detail.
まず、本発明のセラミックス部材と金属部材の接合体を
作製するには、イオンブレーティング法又はスパッタリ
ング法の如き物理蒸着法により活性金属を含む2種以上
の金属をセラミックス部材の表面に蒸着することによっ
て活性度の高い状態でセラミックスに活性金属を接触さ
せる。これは、セラミックスに対し活性金属を純粋な状
態(すなわち、高純度であり、酸化等の腐食のない状態
)で接触させることによりできるだけ反応性を高め、同
時にセラミックス部材とA層との界面に悪影響を及ぼす
酸化物等の発生を抑制するためである。First, in order to produce a joined body of a ceramic member and a metal member of the present invention, two or more metals including an active metal are vapor-deposited on the surface of the ceramic member by a physical vapor deposition method such as an ion blasting method or a sputtering method. The active metal is brought into contact with the ceramic in a highly active state. This increases the reactivity as much as possible by bringing the active metal into contact with the ceramic in a pure state (that is, in a state of high purity and free from corrosion such as oxidation), while at the same time having an adverse effect on the interface between the ceramic member and the A layer. This is to suppress the generation of oxides etc. that cause
例えば、Tiを活性金属として使用する場合、Ti01
TiO□の生成は界面の強度低下の大きな原因となるが
、物理蒸着法によるとそれらの発生が抑制され、高活性
の状態で清浄かつ均質な状態で活性金属が蒸着される。For example, when using Ti as the active metal, Ti01
The generation of TiO□ is a major cause of a decrease in the strength of the interface, but the physical vapor deposition method suppresses their generation and allows the active metal to be vapor-deposited in a highly active state in a clean and homogeneous state.
さらに、本発明では、活性金属を含む2種以上の金属を
蒸着してAMを形成する。これは2種以上の金属の層を
形成し、加熱するとこれらの金属が共晶合金状となり、
融点が大巾に低下するからである。すなわち、従来技術
の如く、活性金属単体では融点は非常に高く、加熱溶融
するとき高温度となりセラミックスが損傷する恐れがあ
るが、本発明のの場合、蒸着層であるA層を低温度でも
加熱溶融できるのでセラミックスの損傷がみられない。Further, in the present invention, two or more metals including an active metal are deposited to form the AM. This forms a layer of two or more metals, and when heated, these metals form a eutectic alloy,
This is because the melting point is significantly lowered. In other words, as in the prior art, the active metal alone has a very high melting point, and when heated and melted, the temperature becomes high and there is a risk of damaging the ceramic, but in the case of the present invention, the A layer, which is the vapor deposited layer, can be heated even at a low temperature. Since it can be melted, there is no damage to the ceramics.
このため、本発明の好ましい態様ではAJiをなす金属
全体の融点を1600°C以下とする。2種以上の金属
は順次積層してもよいが、同時に複合蒸着してもよい。Therefore, in a preferred embodiment of the present invention, the melting point of the entire metal constituting AJi is set to 1600°C or less. Two or more types of metals may be laminated one after another, or may be compositely deposited at the same time.
複合蒸着とは同時に、異種の金属を蒸着または異種金属
の合金を蒸着することを示す。Composite deposition refers to simultaneously depositing different metals or alloys of different metals.
次いで蒸着した2種以上の金属からなるAlWを融点以
上の温度で加熱処理し、融液状態でセラミックス部材と
反応させる。これは、金属層を融液状態でセラミックス
に接触させることにより金属の濡れ性が向上し、セラミ
ックスと活性金属との接触面積が増大し、活性金属の活
性度を最大限に活用することができ、セラミックスに対
し強固な反応層を形成することができるからである。こ
のようにして、固相状態で反応させるよりもセラミック
スに対し濡れ性が向上し、物理蒸着法により金属層を形
成することの相乗効果により活性金属の反応性を最大限
に引き出すことができる。また、蒸着された金属は溶融
加熱されるため融液状態をなし、均一にセラミックスと
反応し、バラツキのない安定化した界面強度を得ること
ができる。Next, the vapor-deposited AlW made of two or more metals is heat-treated at a temperature higher than its melting point, and reacts with the ceramic member in a molten state. This is because by bringing the metal layer into contact with the ceramic in a molten state, the wettability of the metal improves, the contact area between the ceramic and the active metal increases, and the activity of the active metal can be utilized to the maximum. This is because a strong reaction layer can be formed on ceramics. In this way, wettability with respect to ceramics is improved compared to reacting in a solid state, and the reactivity of the active metal can be maximized due to the synergistic effect of forming a metal layer by physical vapor deposition. In addition, since the deposited metal is melted and heated, it becomes a molten liquid and reacts uniformly with the ceramic, making it possible to obtain a stable interfacial strength without variation.
さらに加熱溶融処理を真空下で行うと、活性金属の活性
度が損なわれず、さらに高強度な接合界面が得られるの
で好ましい。Furthermore, it is preferable to carry out the heating and melting treatment under vacuum because the activity of the active metal is not impaired and a bonding interface with even higher strength can be obtained.
これら金属層の熱処理温度として、活性金属の過度の反
応を制御し、又セラミックス自体の変質を防止するため
に、1600’C以下の温度とすることが好ましく、そ
のために蒸着する金属層の融点を1600°C以下とな
るように蒸着すべき金属群を選択する。The heat treatment temperature for these metal layers is preferably 1600'C or less in order to control excessive reaction of the active metal and to prevent deterioration of the ceramic itself. The metal group to be deposited is selected so that the temperature is 1600°C or less.
次にB層をなすロウ材について説明すると、B層のロウ
材はソフトで塑性変形能を有したロウ材であることが好
ましい。このよう辷ロウ材を介在させることによって接
合時のセラミックス部材と金属部材との熱膨張係数差に
よる熱応力を緩和、吸収し、接合強度を著しく向上させ
る。しかもロウ材であるため金属となじみが良く柔らか
いので金属との接合は容易であり、強度信頼性も高い。Next, the brazing material forming the B layer will be explained. The brazing material of the B layer is preferably a soft brazing material having plastic deformability. By interposing the wax material in this manner, the thermal stress caused by the difference in thermal expansion coefficient between the ceramic member and the metal member during bonding is alleviated and absorbed, and the bonding strength is significantly improved. Moreover, since it is a brazing material, it is soft and compatible with metals, making it easy to join with metals and having high strength and reliability.
さらにセラミックス部材の金属化層Aを金属部材とロウ
材を介して接合するのも真空下で行うことが好ましい。Furthermore, it is preferable to bond the metallized layer A of the ceramic member to the metal member via the brazing material under vacuum.
これは、活性金属により生成されたセラミックスとの界
面が雰囲気により腐食される恐れが少なくなるからであ
り、これにより一段と高強度な接合が得られることとな
る。This is because the interface with the ceramic produced by the active metal is less likely to be corroded by the atmosphere, resulting in a bond with even higher strength.
以上説明の如く、高反応性を有した金属層とセラミック
スとは強固に接合し、また金属とも熱応力の影響をほと
んど受けずに接合できるので、接合プロセスも容易で大
きな接合強度を有した接合体が得られる。As explained above, highly reactive metal layers and ceramics can be strongly bonded, and metals can also be bonded with almost no influence of thermal stress, so the bonding process is easy and a bond with high bonding strength can be achieved. You get a body.
以下、本発明を実施例により説明するが、これらの実施
例は本発明の単なる例示であり、本発明の技術的範囲を
何ら限定するものではないことは勿論である。Hereinafter, the present invention will be explained with reference to Examples, but these Examples are merely illustrative of the present invention, and of course do not limit the technical scope of the present invention.
ス崖開土
10 X 10 X 20龍の寸法を有し、純度99%
のへI202セラミックスの表面を清浄化し、イオンブ
レーティング装置を用いてNb、 Niを各々1μm積
層蒸着した。このときの蒸着条件は真空度が5 X 1
0− ’Torrであった。これら積層された金属層の
融点は1280°Cであった。Scrap open earth with dimensions of 10 x 10 x 20 dragons, purity 99%
The surface of the I202 ceramic was cleaned, and Nb and Ni were deposited in layers of 1 μm each using an ion blating device. The evaporation conditions at this time were a degree of vacuum of 5 x 1
It was 0-'Torr. The melting point of these laminated metal layers was 1280°C.
得られた試片について500’Cから融点以上である1
600°Cまでの種々の温度に加熱処理して金属化した
A層を形成した。次いで、850’Cにてへg−Cuロ
ウ材(BAg−80つ材)を用いて345C鋼に接合さ
せた。接合体を3 X 4 X40m形状に加工し、4
点曲げ法により接合強度を評価した。結果を第1表に示
′す。Regarding the obtained specimen, the temperature is higher than the melting point from 500'C.
The metallized A layer was formed by heat treatment at various temperatures up to 600°C. Next, it was bonded to 345C steel at 850'C using a Heg-Cu brazing material (BAg-80 material). Process the joined body into a 3 x 4 x 40m shape, and
The joint strength was evaluated using the point bending method. The results are shown in Table 1.
里1大
第1表に示す如く、AJliの蒸着金属の融点である1
280°C未満の温度で加熱処理した場合には接合強度
が著しく低い。一方、本発明に従いA層の融点以上の温
度で加熱処理するとA層はセラミックス部材に強固に接
合して接合体全体としても高強度のものが得られる。し
かしながら、A層の加熱処理温度が高くなるとセラミッ
クスが変質して強度が急激に低下する。As shown in Table 1, the melting point of AJli's vapor deposited metal is 1.
When heat treated at a temperature below 280°C, the bonding strength is extremely low. On the other hand, when heat-treated at a temperature higher than the melting point of layer A according to the present invention, layer A is firmly bonded to the ceramic member, resulting in a high strength bonded body as a whole. However, when the heat treatment temperature of layer A becomes high, the quality of the ceramic changes and the strength rapidly decreases.
実3z影
110X10X20の寸法を有し、Y z O:Iを添
加して部分安定化したZrO2セラミックス部材を清浄
化し、イオンブレーティング装置によってZr5Cuを
各々0.5μm積層渾着させた。このときの蒸着条件は
真空度が5 X 10−’Torr、基板温度が500
℃1Zr蒸着強度が5.0人/sec、 Cu蒸着強度
が20人/secであり、高周波によりイオン化を行っ
た。こうして積層させた金属層の融点は990°Cであ
った。A ZrO2 ceramic member having dimensions of 110×10×20 and partially stabilized by adding Y z O:I was cleaned, and Zr5Cu was deposited in a layer of 0.5 μm each using an ion blasting device. The evaporation conditions at this time were a vacuum level of 5 x 10-'Torr and a substrate temperature of 500°C.
℃1 Zr vapor deposition intensity was 5.0 people/sec, Cu vapor deposition intensity was 20 people/sec, and ionization was performed by high frequency. The melting point of the metal layer thus laminated was 990°C.
得られた試片について500’Cから融点以上である1
600°Cまでの範囲の種々の温度で加熱処理した。Regarding the obtained specimen, the temperature is higher than the melting point from 500'C.
Heat treatments were carried out at various temperatures ranging up to 600°C.
処理後の試片の一部はAg−Cuロウ材を介して、他は
そのままで1000°Cで10分保持して345 Cf
!Iと接合させた。得られた各々の試片を3 X 4
X40mmの形状に加工し、4点曲げ法により接合強度
を評価した。結果を第2表に示す。After treatment, some of the specimens were heated to 345 Cf by holding them at 1000°C for 10 minutes through Ag-Cu brazing material and the other parts as they were.
! It was joined with I. Each specimen obtained was divided into 3 x 4
It was processed into a shape of x40mm, and the bonding strength was evaluated by a four-point bending method. The results are shown in Table 2.
第2表
第2表に示す如く、AJilの蒸着金属の融点である9
90°C未満の温度で加熱処理した場合には、ロウ材を
介在させたか否かにかかわらず接合強度が著しく低い。Table 2 As shown in Table 2, the melting point of AJil's vapor deposited metal is 9
If the heat treatment is performed at a temperature below 90°C, the bonding strength will be extremely low regardless of whether or not a brazing material is used.
一方、本発明に従いA層の融点以上の温度で加熱処理す
るとAJilはセラミックス部材に強固に接合し、ロウ
材を介在させると全体として高強度の接合体が得られる
。しかしながら、A層の加熱処理温度が高くなるとセラ
ミックスが変質して強度が急激に低下する。また、ロウ
材を介在させないときは熱応力によりZrO2側で冷却
時に破壊した。On the other hand, when heat treated at a temperature equal to or higher than the melting point of layer A according to the present invention, AJil is firmly bonded to the ceramic member, and when a brazing material is interposed, a high-strength bonded body is obtained as a whole. However, when the heat treatment temperature of layer A becomes high, the quality of the ceramic changes and the strength rapidly decreases. In addition, when no brazing material was used, the ZrO2 side broke during cooling due to thermal stress.
尖旌開ユ
Bを含有し常圧焼結体のSiCセラミックスを清浄化し
、マグネトロンスパッタリング装置によってMoを0.
1.czm、 sicを2.0μmの厚さでそれぞれ積
層蒸着した。次いで真空下で1500°Cに加熱処理し
た後Cu −Agロウ材を介在または介在させずに耐熱
5US310Sと真空下で接合した。得られた接合体を
3 X 4 X4(haに加工し、曲げ強度(4点曲げ
)について評価を行った。Ag−Cuロウ材を用いて接
合したものは曲げ強度として22にg/mm”を示した
のに対し、Ag −Cuロウ材を用いずに接合したもの
は2.5Kg/mm”の強度しか示さなかった。A pressureless sintered SiC ceramic containing Chisel Kaiyu B is cleaned, and Mo is removed by a magnetron sputtering device.
1. czm and sic were each deposited in layers to a thickness of 2.0 μm. After that, it was heat-treated at 1500° C. under vacuum and then joined to heat-resistant 5US310S under vacuum with or without intervening Cu-Ag brazing material. The resulting joined body was processed into a size of 3 x 4 x 4 (ha) and evaluated for bending strength (4-point bending).The bending strength of the joined body using Ag-Cu brazing material was 22 g/mm. On the other hand, those joined without using the Ag-Cu brazing material showed a strength of only 2.5 Kg/mm''.
尖旌炎土
AINセラミックス基板の表面をイオンブレーティング
装置を用いてFe:Si= 1 : 1 (重量比)の
合金により1.0μmの膜厚で複合蒸着を行った。Composite vapor deposition of Fe:Si=1:1 (weight ratio) alloy with a film thickness of 1.0 μm was performed on the surface of a Tsinhu Yan clay AIN ceramic substrate using an ion-blating device.
これら蒸着金属層の融点を測定したところ1250’c
を示したため、真空下で1350°Cにて10分間熱処
理を行った。The melting point of these vapor deposited metal layers was measured to be 1250'c.
Therefore, heat treatment was performed at 1350°C for 10 minutes under vacuum.
その後Ag−Cuロウ材を用いて、Cu製放熱フィンを
接合したところ強固な接合体が得られ、長時間に及ぶ熱
サイクル後も接合部は良好であった。Thereafter, when the Cu radiation fins were bonded using Ag-Cu brazing material, a strong bonded body was obtained, and the bonded portion remained good even after a long heat cycle.
又凱皇四来
以上説明したように、本発明のセラミックスと金属の接
合体は従来技術に比べ大巾に高い強度と均質な接合状態
を示すものである。Furthermore, as explained above, the ceramic-metal bonded body of the present invention exhibits significantly higher strength and a more homogeneous bonded state than those of the prior art.
従って、本発明のセラミックスと金属の接合体は、耐熱
性、耐摩耗性に優れたセラミックス自体の特性と金属の
軽量性等に優れた特性を合わせ持つ優れた複合部材であ
って、その用途はセラミックス電子部品、構造部品、エ
ンジン部品(ターボチャージャー、エンジンピストンヘ
ッド、ロックアーム、エンジンシリンダー)等の広い分
野にまたがるものである。Therefore, the ceramic-metal bonded body of the present invention is an excellent composite member that has both the properties of ceramic itself, which is excellent in heat resistance and abrasion resistance, and the excellent properties such as lightness of metal, and its uses are as follows. It spans a wide range of fields including ceramic electronic parts, structural parts, and engine parts (turbochargers, engine piston heads, lock arms, engine cylinders), etc.
第1図は本発明のセラミックスと金属の接合体の概略模
式図である。
(主な参照番号)
1・・・セラミックス部材、
2・・・AF! (金属化面)、
3・・・B層(ロウ材)、
4・・・金属部材FIG. 1 is a schematic diagram of a ceramic-metal bonded body according to the present invention. (Main reference numbers) 1...Ceramics member, 2...AF! (metallized surface), 3... B layer (brazing material), 4... metal member
Claims (5)
これらのセラミックス部材と金属部材とは、該セラミッ
クス部材側にA層、該金属部材側にB層を介して接合さ
れ、 上記A層は、物理蒸着法により活性金属を含む2種以上
の金属を蒸着し、該蒸着された金属層をその融点以上の
温度に加熱して形成され、該セラミックス部材と相互拡
散されている層であり、上記B層はロウ材であり、該金
属部材および該A層と結合している層である、 ことを特徴とするセラミックス部材と金属部材の接合体
。(1) A joined body of a ceramic member and a metal member,
These ceramic members and metal members are bonded through layer A on the ceramic member side and layer B on the metal member side, and the above layer A is coated with two or more metals including active metals by physical vapor deposition. It is a layer that is formed by vapor depositing and heating the vapor deposited metal layer to a temperature above its melting point, and is interdiffused with the ceramic member, and the layer B is a brazing material, and the metal member and the A A joined body of a ceramic member and a metal member, characterized in that the layer is bonded to another layer.
を特徴とする特許請求の範囲第1項記載のセラミックス
部材と金属部材の接合体。(2) The joined body of a ceramic member and a metal member according to claim 1, wherein the brazing material of the B layer is an Ag-Cu brazing material.
あることを特徴とする特許請求の範囲第1項または第2
項に記載のセラミックス部材と金属部材の接合体。(3) Claim 1 or 2, characterized in that the vapor-deposited metal of layer A has a melting point of 1600°C or less.
A joined body of a ceramic member and a metal member as described in 2.
されたことを特徴とする特許請求の範囲第1項乃至第5
項のいずれか1項に記載のセラミックス部材と金属部材
の接合体。(4) Claims 1 to 5, characterized in that the layer A is formed by laminated vapor deposition of two or more metals.
A joined body of a ceramic member and a metal member according to any one of the above items.
されたことを特徴とする特許請求の範囲第1項乃至第5
項のいずれか1項に記載のセラミックス部材と金属部材
の接合体。(5) Claims 1 to 5, characterized in that the layer A is formed by composite vapor deposition of two or more metals.
A joined body of a ceramic member and a metal member according to any one of the above items.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2205387A JPS63190769A (en) | 1987-02-02 | 1987-02-02 | Ceramic-metal bonded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2205387A JPS63190769A (en) | 1987-02-02 | 1987-02-02 | Ceramic-metal bonded body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63190769A true JPS63190769A (en) | 1988-08-08 |
Family
ID=12072173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2205387A Pending JPS63190769A (en) | 1987-02-02 | 1987-02-02 | Ceramic-metal bonded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63190769A (en) |
-
1987
- 1987-02-02 JP JP2205387A patent/JPS63190769A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4602731A (en) | Direct liquid phase bonding of ceramics to metals | |
US7270885B1 (en) | Method for brazing ceramic-containing bodies, and articles made thereby | |
JPS60131874A (en) | Method of bonding ceramic and metal | |
US6884511B1 (en) | Method for brazing ceramic-containing bodies, and articles made thereby | |
JPS63190769A (en) | Ceramic-metal bonded body | |
JPS63190788A (en) | Metallization of ceramics | |
JPS63190768A (en) | Ceramic-metal bonded body | |
JP3523665B2 (en) | Method of forming metal layer on ceramic surface | |
JPH0472793B2 (en) | ||
JP3505212B2 (en) | Joint and method of manufacturing joint | |
JP2729751B2 (en) | Joining method of alumina ceramics and aluminum | |
JP4373538B2 (en) | Bonded body of metal-ceramic composite material and ceramic and bonding method thereof | |
JPH0142914B2 (en) | ||
JPS63190772A (en) | Ceramic metal joined body with high joint strength | |
JPS59184778A (en) | Pressure welding of ceramic member to metal member | |
JPS63190770A (en) | Ceramic-metal joined body with high temperature characteristics | |
JP3289860B2 (en) | Joining method of ceramics and silicon | |
JPS62113775A (en) | Method of joining ceramic members | |
JPS6261558B2 (en) | ||
JPS59223280A (en) | Method of bonding ceramic and metal | |
JPS60131873A (en) | Cerqmic-metal direct bonded body and manufacture | |
JPH04235246A (en) | Alloy for metalizing for ceramics and metalizing method | |
JP3255379B2 (en) | Joining method of alumina ceramics and metal | |
KR0180485B1 (en) | Method of manufacturing si3n4 sintered body and metal conjugate | |
JPS62265185A (en) | Method of bonding ceramics to metals |