JPS63190012A - Hollow yarn film of polyacrylonitrile and production thereof - Google Patents

Hollow yarn film of polyacrylonitrile and production thereof

Info

Publication number
JPS63190012A
JPS63190012A JP1623487A JP1623487A JPS63190012A JP S63190012 A JPS63190012 A JP S63190012A JP 1623487 A JP1623487 A JP 1623487A JP 1623487 A JP1623487 A JP 1623487A JP S63190012 A JPS63190012 A JP S63190012A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
acrylonitrile
polymer
polyacrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1623487A
Other languages
Japanese (ja)
Other versions
JPH0653976B2 (en
Inventor
Masahiro Henmi
昌弘 辺見
Kazusane Tanaka
和実 田中
Seiji Shimamura
島村 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62016234A priority Critical patent/JPH0653976B2/en
Publication of JPS63190012A publication Critical patent/JPS63190012A/en
Publication of JPH0653976B2 publication Critical patent/JPH0653976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled hollow yarn film having high water permeability and small pore diameter (distribution), by spinning a spinning stock solution comprising a specific acrylonitrile polymer by the use of a spinneret for sheath- core type hollow yarn and injecting a solution having low coagulating properties from a core part yarn. CONSTITUTION:An acrylonitrile polymer, preferably a polymer comprising one or more components of acrylonitrile polymer containing acrylonitrile having extremely high polymerization degree, is dissolved in an organic solvent such as dimethyl sulfoxide, etc., to prepare a spinning stock solution having 5-20wt.% total polymer concentration. Then the spinning stock solution is extruded from a sheath part by the use of a spinneret for sheath-core type hollow yarn, a coagulating solution having low coagulating properties is injected from a core part to yarn and the organic solvent is evaporated in a gas phase. Further the extruded yarn is immersed in a coagulating bath, washed and wound to give the aimed hollow yarn film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリアクリロニトリル系中空糸膜及びその製法
に関する。さらに詳しくは透水性が高く、しかも孔径お
よび孔径分布が小さく、特に中空糸膜の外側から被処理
液を供給するのに適した高性能ポリアクリロニトリル系
限外濾過用中空糸膜及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polyacrylonitrile hollow fiber membrane and a method for producing the same. More specifically, the present invention relates to a high-performance polyacrylonitrile hollow fiber membrane for ultrafiltration that has high water permeability, small pore size and pore size distribution, and is particularly suitable for supplying a liquid to be treated from the outside of the hollow fiber membrane, and a method for producing the same.

(従来の技術) 従来、食品工業、医療分野、電子工業分野など数々の分
野で有効成分の濃縮あるいは、回収、または造水などに
、セルロースアセテート、ポリアクリロニトリル、ポリ
オレフィンなどの限外濾過膜を用いる方法が検討されて
いる。限外濾過膜に要求される性能としては、特に透水
性が大きいこと、溶質の分離能が高いこと、などである
。その中でポリアクリロニトリル系限外濾過膜は、セル
ロースアセテートより化学的安定性にすぐれ、機械的特
性も良く疎水性材料でありながら水に濡れ易いという特
徴を持っており、優れた限外濾過膜が形成されることが
例えば特公昭52−15072号公報、特公昭53−3
1106号公報、特公昭60−39404号公報に記載
されている。
(Prior art) Ultrafiltration membranes made of cellulose acetate, polyacrylonitrile, polyolefin, etc. have been used to concentrate or recover active ingredients, or to create water in many fields such as the food industry, medical field, and electronics industry. Methods are being considered. The performance required of ultrafiltration membranes includes particularly high water permeability and high solute separation ability. Among these, polyacrylonitrile-based ultrafiltration membranes have superior chemical stability than cellulose acetate, have good mechanical properties, and are easily wetted by water despite being a hydrophobic material, making them excellent ultrafiltration membranes. For example, in Japanese Patent Publication No. 52-15072 and Japanese Patent Publication No. 53-3,
It is described in Japanese Patent Publication No. 1106 and Japanese Patent Publication No. 60-39404.

特公昭52−150724公報は、いわゆる緻密層を持
たず、傾斜型多孔質層と網状多孔質構造体とからなるも
のであり、特公昭53−31106号公報は、比較的重
合体濃度の高い溶液を用いる製造法である。しかし、い
ずれの膜も分離能力または濾過能力が不十分で、ざらに
向上することが要求されている。また、特公昭60−3
9404号公報は、緻密層・多孔質層・巨大空孔とから
なりすぐれた濾過性能を持っているが、まだ十分とは言
えず、機械的強度や熱的特性などに問題があると考えら
れる。
Japanese Patent Publication No. 52-150724 does not have a so-called dense layer and consists of a graded porous layer and a network porous structure, and Japanese Patent Publication No. 53-31106 uses a solution with a relatively high polymer concentration. This is a manufacturing method using However, all of these membranes have insufficient separation or filtration ability, and there is a need for further improvement. In addition, special public service 1986-3
Although Publication No. 9404 has excellent filtration performance due to its dense layer, porous layer, and giant pores, it is still not sufficient and there are considered to be problems with mechanical strength and thermal properties. .

本発明者らは、かかる現状に鑑み鋭意研究を進めた結果
、本発明をなすに至った。
The present inventors have conducted extensive research in view of the current situation, and have now accomplished the present invention.

(発明が解決しようとする問題点) すなわち、本発明の目的は、従来のポリアクリロニトリ
ル系限外濾過膜に比較して分離能力および濾過能力が高
く、両者のバランスが取れ、かつ機械的強度や熱的特性
にすぐれた中空糸膜及びその製法を提供するにある。
(Problems to be Solved by the Invention) That is, an object of the present invention is to have higher separation ability and filtration ability than conventional polyacrylonitrile ultrafiltration membranes, to have a good balance between the two, and to have mechanical strength and An object of the present invention is to provide a hollow fiber membrane with excellent thermal properties and a method for producing the same.

(問題点を解決するための手段) 本発明は、次の構成を有する。(Means for solving problems) The present invention has the following configuration.

(1)中空糸膜の最外層が500Å以下の孔径を有する
緻密層からなり、該最外層から最内層にかけて孔径が大
きくなる多孔質層を形成し、実質上巨大空孔を含まない
ことを特徴とするポリアクリロニトリル系中空糸膜。
(1) The outermost layer of the hollow fiber membrane is composed of a dense layer with a pore size of 500 Å or less, forms a porous layer with the pore size increasing from the outermost layer to the innermost layer, and is characterized by substantially no macropores. Polyacrylonitrile hollow fiber membrane.

(2)中空糸膜が超高重合度のアクリロニトリルを含む
アクリロニトリル系重合体を少なくとも1成分とする重
合体である特許請求の範囲第(1)項に記載のポリアク
リロニトリル系中空糸膜。
(2) The polyacrylonitrile hollow fiber membrane according to claim (1), wherein the hollow fiber membrane is a polymer having at least one component an acrylonitrile polymer containing acrylonitrile with an ultra-high degree of polymerization.

(3)超高重合度のアクリロニトリルが極限粘度2.0
以上である特許請求の範囲第(2)項に記載のポリアク
リロニトリル系中空糸膜。
(3) Ultra-high polymerization degree acrylonitrile has an intrinsic viscosity of 2.0
The polyacrylonitrile hollow fiber membrane according to claim (2) above.

(4)鞘芯型中空糸用口金を用いて中空糸膜を製造する
に際し、紡糸原液にアクリロニトリル系重合体の全重合
体濃度が5〜20重量%である有機溶媒溶液を用い、芯
部より低凝固性の注入液を注入することを特徴とするポ
リアクリロニトリル系中空糸膜の製法。
(4) When manufacturing a hollow fiber membrane using a sheath-core type hollow fiber die, an organic solvent solution containing an acrylonitrile polymer with a total polymer concentration of 5 to 20% by weight is used as the spinning stock solution, and A method for producing a polyacrylonitrile hollow fiber membrane, which is characterized by injecting a low-coagulable injection liquid.

(5)アクリロニトリル系重合体が超高重合度のアクリ
ロニトリルを含むアクリロニトリル系重合体を少なくと
も1成分とする重合体である特許請求の範囲第(4)項
に記載のポリアクリロニトリル系中空糸膜の製法。
(5) The method for producing a polyacrylonitrile hollow fiber membrane according to claim (4), wherein the acrylonitrile polymer is a polymer having at least one component an acrylonitrile polymer containing acrylonitrile with an ultra-high degree of polymerization. .

(6)超高重合度のアクリロニトリルが極限粘度2.0
以上である特許請求の範囲第(5)項に記載のポリアク
リロニトリル系中空糸膜の製造方法。
(6) Ultra-high polymerization degree acrylonitrile has an intrinsic viscosity of 2.0
The method for producing a polyacrylonitrile hollow fiber membrane according to claim (5) above.

(7)低凝固性の注入液がジメチルスルホキシドを主体
とする水系液である特許請求の範囲第(4)項に記載の
ポリアクリロニトリル系中空糸膜の製法。
(7) The method for producing a polyacrylonitrile hollow fiber membrane according to claim (4), wherein the low coagulability injection liquid is an aqueous liquid mainly containing dimethyl sulfoxide.

本発明の特徴は、中空糸膜の最外層が緻密層で、ざら−
に膜の内部に進むに従って孔径の大きくなる多孔質層か
らなり、実質上巨大空孔を含まないものでありながら、
高い透水性能を持つことにある。
The feature of the present invention is that the outermost layer of the hollow fiber membrane is a dense layer and has a rough texture.
It consists of a porous layer whose pore size increases as it progresses inside the membrane, and although it contains virtually no giant pores,
It has high water permeability.

また、超高重合度のアクリロニトリル系重合体(以下A
N系重合体と略称する)を用い、比較的低い重合体濃度
の紡糸原液を凝固性の低い注入液で製糸することも製法
上の大きな特徴である。
In addition, ultra-high degree of polymerization acrylonitrile polymer (hereinafter referred to as A
Another important feature of the manufacturing method is that the spinning stock solution with a relatively low polymer concentration is used for spinning with an injection liquid having low coagulability.

従来の考え方では、緻密層と多孔質層と巨大空孔を含む
網状構造層を持った膜が透水性にすぐれでいるというこ
とであり、巨大空孔を持たないものは、機械的特性は良
いが透水性が低かった。
The conventional thinking is that membranes with a dense layer, a porous layer, and a network structure layer containing giant pores have excellent water permeability, and membranes without giant pores have good mechanical properties. had low water permeability.

本発明の中空糸膜の透水性が高いのは、比較的重合体濃
度の低い紡糸原液を用いているためであり、機械的特性
及び熱特性が良いのは、巨大空孔を持たない繊維構造形
態と超高重合度の重合体を用いていることに起因してい
る。ここに述べる熱特性とは、熱収縮率のことであり、
本発明の中空糸膜は、この熱収縮率が低いため温水を流
したときの透水量の低下が従来のものに比べて小さい。
The high water permeability of the hollow fiber membrane of the present invention is due to the use of a spinning dope with a relatively low polymer concentration, and the good mechanical and thermal properties are due to the fiber structure without large pores. This is due to the shape and the use of a polymer with an ultra-high degree of polymerization. The thermal properties mentioned here refer to the thermal contraction rate,
Since the hollow fiber membrane of the present invention has a low thermal shrinkage rate, the decrease in water permeability when hot water is passed through it is smaller than that of conventional membranes.

また、機械的特性の中でも、特に屈曲疲労に対して強く
、この特性は、超高重合度の重合体を用いていることに
大きく依存しており、これらの特徴は大規模な水処理分
野に好適である。
In addition, among its mechanical properties, it is particularly resistant to bending fatigue, and this property is largely dependent on the use of polymers with an ultra-high degree of polymerization, and these characteristics are useful in the large-scale water treatment field. suitable.

本発明における中空糸膜は、第1図に見られるように、
最外層(左側)が緻密層で、さらに膜の内部に進むに従
って孔径の大きくなる多孔質層からなっている。最外層
の緻密層は、第2図のように孔径が500Å以下である
。500Å以下であれば自由に調節できるが、特に10
0〜300人が濾過性能のバランスの点で好ましい。
As seen in FIG. 1, the hollow fiber membrane in the present invention has the following features:
The outermost layer (on the left) is a dense layer, and the membrane further consists of a porous layer whose pore diameter increases as it goes inside the membrane. The outermost dense layer has a pore diameter of 500 Å or less as shown in FIG. If it is 500 Å or less, it can be adjusted freely, but especially 10
0 to 300 people is preferable in terms of balance of filtration performance.

本発明において、膜の最外層から最内層に進むに従って
孔径の大きくなる傾斜型多孔質層を形成する。その孔径
の範囲は、外層(第2図)、内層(第3図)、内層表面
(第4図)かられかるように500人〜500002で
あり、特に1000人〜20000人であることが多い
In the present invention, a graded porous layer is formed in which the pore diameter increases from the outermost layer to the innermost layer of the membrane. The pore size ranges from 500 to 500,002 as seen from the outer layer (Figure 2), inner layer (Figure 3), and inner layer surface (Figure 4), and is often 1,000 to 20,000. .

本発明の中空糸膜は、実質上巨大空孔を含まないが、こ
こに言う巨大空孔とは、5μm以上ざらには10μm以
上の直径を有する空洞をいう。
Although the hollow fiber membrane of the present invention does not substantially contain giant pores, the term "giant pores" as used herein refers to cavities having a diameter of 5 μm or more, particularly 10 μm or more.

本発明における主成分として含む超高重合度のAN系重
合体とは、極限粘度が2.0以上、好ましくは2.5〜
3.6、さらに好ましくは2.9〜3.3という特定の
重合度を有するものである。
The ultra-high degree of polymerization AN-based polymer contained as the main component in the present invention refers to an intrinsic viscosity of 2.0 or more, preferably 2.5 to 2.5.
It has a specific degree of polymerization of 3.6, more preferably 2.9 to 3.3.

ざらに該重合体は、ANを少なくとも90モル%、好ま
しくは95〜100モル%と該ANに対して。
In general, the polymer contains at least 90 mol % AN, preferably 95 to 100 mol %, based on the AN.

共重合性を有するビニル化合物5モル%以下、好ましく
は0〜5モル%とからなるANホモポリマもしくはAN
系共重合体である。
AN homopolymer or AN consisting of 5 mol% or less, preferably 0 to 5 mol%, of a vinyl compound having copolymerizability
It is a copolymer.

上記ビニル化合物としては、公知の各種ANに対して共
重合性を有する化合物であればよく、特に限定されない
が、好ましい共重合成分としては、アクリル酸、イタコ
ン酸、アクリル酸メチル、メタクリル酸メチル、酢酸ビ
ニル、アリルスルホン酸ソーダ、メタリルスルホン酸ソ
ーダ、p−スチレンスルホン酸ソーダなどを例示するこ
とができる。
The vinyl compound is not particularly limited as long as it is a compound that is copolymerizable with various known ANs, but preferred copolymerizable components include acrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, Examples include vinyl acetate, sodium allylsulfonate, sodium methallylsulfonate, and sodium p-styrenesulfonate.

本発明において、AN系重合体を溶解する有機溶媒は、
ANに使用される溶剤であればよく、ジメチルスルホキ
シド(DMSO) 、ジメチルホルムアミド(DMF>
 、ジメチルアセトアミド(DMAC> 、エチレンカ
ーボネート、ブチルラクトンなどを例示することができ
るが、特にDMSOが好ましく選択され得られた重合体
溶液が紡糸原液として使用される。
In the present invention, the organic solvent that dissolves the AN-based polymer is
Any solvent used for AN may be used, such as dimethyl sulfoxide (DMSO), dimethyl formamide (DMF>
, dimethylacetamide (DMAC), ethylene carbonate, butyl lactone, etc., but DMSO is particularly preferably selected and the obtained polymer solution is used as a spinning dope.

しかしながら、この紡糸原液の全重合体濃度は、約5〜
20重量%、好ましくは10〜18重量%の範囲内のも
のがよく、全重合体濃度が5%よりも低くなると、緻密
層を形成しにくくなるばかりでなく、機械的強度が不十
分で使用に耐えなくなる。一方、全重合体濃度が20%
を越えると、緻密層が厚くなりすぎたり、多孔質層の孔
径が小ざくなったりして、濾過能力が著しく低下し、ま
た粘度が高くなることによって紡糸性が悪くなるため好
ましくない。
However, the total polymer concentration of this spinning dope is about 5 to
20% by weight, preferably within the range of 10 to 18% by weight. If the total polymer concentration is lower than 5%, not only will it be difficult to form a dense layer, but the mechanical strength will be insufficient, making it difficult to use. I can't stand it anymore. On the other hand, the total polymer concentration is 20%
Exceeding this is not preferable because the dense layer becomes too thick or the pore diameter of the porous layer becomes small, resulting in a significant decrease in filtration ability and an increase in viscosity, which impairs spinnability.

本発明において、超高重合度のAN系重合体に親水基を
含むAN系共重合体をブレンドしても良いが、多すぎる
と機械的強度、特に屈曲強度が低下したり濾過能力が下
がるので、40重量%以下が好ましい。該AN系共重合
体とは、アクリロニトリル50重口%以上、アクリロニ
トリルと共重合可能な公知の単量体1種又は2種以上O
〜50重四%からなる重合体である。
In the present invention, an AN-based copolymer containing a hydrophilic group may be blended with an AN-based polymer having an ultra-high degree of polymerization, but if the amount is too high, the mechanical strength, especially the bending strength, and the filtration ability will decrease. , preferably 40% by weight or less. The AN-based copolymer includes 50% by weight or more of acrylonitrile and one or more known monomers copolymerizable with acrylonitrile.
It is a polymer consisting of ~50% by weight.

また、透水量を高めるために、重合体溶液に水、アルコ
ール類、無機塩、またはポリエチレングリコール、ポリ
ビニルピロリドンなどの他の高分子を加えても良い。
Furthermore, in order to increase water permeability, water, alcohols, inorganic salts, or other polymers such as polyethylene glycol and polyvinylpyrrolidone may be added to the polymer solution.

次に、本発明のポリアクリロニトリル系中空糸膜の具体
的な製法について述べる。
Next, a specific method for producing the polyacrylonitrile hollow fiber membrane of the present invention will be described.

本発明におけるポリアクリロニトリル系中空糸膜は、超
高重合度のアクリロニトリルを含むAN系重合体を、前
記有機溶媒を用いて全重合体濃度5〜20重母%の範囲
内で紡糸原液を作製し、これを乾湿式法によって紡糸す
ることによって製造できる。
The polyacrylonitrile hollow fiber membrane of the present invention is prepared by preparing a spinning stock solution of an AN polymer containing acrylonitrile with an ultra-high degree of polymerization using the organic solvent at a total polymer concentration of 5 to 20%. , which can be produced by spinning it using a dry-wet method.

すなわち、具体的には、該溶液を鞘芯型中空糸用口金を
用いて鞘部より吐出し、芯部より凝固液を注入して、気
相中でO〜20分間有機溶媒を蒸発させ、これを水と有
機溶媒の混合液(いわゆる凝固浴)に浸積し、ついで4
0℃未満の温度にある水または水と非溶媒混合液中で処
理を行い製造する。該凝固浴中の有機溶媒は紡糸原液に
用いられる溶媒が用いられるが、特にDMSOが好まし
く選択される。該有機溶媒の濃度は、あまり高すぎると
最外層に緻密層を形成しにくくなるので、0〜50重量
%、好ましくは0〜30%である。
That is, specifically, the solution is discharged from the sheath part using a sheath-core type hollow fiber nozzle, the coagulation liquid is injected from the core part, and the organic solvent is evaporated in the gas phase for 0 to 20 minutes. This was immersed in a mixture of water and an organic solvent (so-called coagulation bath), and then
It is produced by processing in water or a mixture of water and a non-solvent at a temperature below 0°C. As the organic solvent in the coagulation bath, the solvent used for the spinning stock solution is used, and DMSO is particularly preferably selected. The concentration of the organic solvent is 0 to 50% by weight, preferably 0 to 30%, because if it is too high, it becomes difficult to form a dense layer in the outermost layer.

また、該凝固浴の温度は、あまり高すぎると膜の収縮が
起り透水性が低下するので、b の間で選択される。
Furthermore, the temperature of the coagulation bath is selected between b and 2, since if it is too high, the membrane will shrink and the water permeability will decrease.

本発明において、前述の如く鞘芯型中空糸用口金を用い
て鞘部より紡糸原液を吐出し、芯部より凝固性の低い凝
固液を注入して中空糸膜を製造するが、芯部より注入す
る凝固液は、紡糸原液に用いられる溶媒とその非溶媒と
からなる。溶媒としては、前述のものが挙げられるが、
特にDMSOが好ましく選択される。非溶媒としては、
水、アルコール類、脂肪族ケトン、グリセリン、ポリエ
チレングリコールなどが挙げられるが、特に水が好まし
く選択される。該溶媒の濃度は70重量%以上であるが
、溶媒と非溶媒の組合わせによって最適な範囲は変化す
る。すなわち、70重量%未満では凝固性が高いため、
中空糸最内層に比較的緻密な層ができ、ざらにその内部
に巨大空孔が形成されてしまうが、紡糸原液と同じ溶媒
の濃度を70重口%以上に高めて凝固性を低くすると、
最内層の凝固速度が小さくなり孔径の大きな層となるた
め、その内部には巨大空孔を含まない傾斜型多孔質層を
形成するのである。
In the present invention, a hollow fiber membrane is manufactured by discharging a spinning stock solution from a sheath part using a sheath-core type hollow fiber nozzle and injecting a coagulating liquid with low coagulability from a core part, as described above. The coagulating liquid to be injected consists of the solvent used in the spinning dope and its non-solvent. Examples of the solvent include those mentioned above,
In particular, DMSO is preferably selected. As a non-solvent,
Examples include water, alcohols, aliphatic ketones, glycerin, polyethylene glycol, and water is particularly preferably selected. The concentration of the solvent is 70% by weight or more, but the optimum range varies depending on the combination of solvent and nonsolvent. That is, if it is less than 70% by weight, coagulability is high;
A relatively dense layer is formed in the innermost layer of the hollow fiber, and giant pores are formed inside it, but if the concentration of the same solvent as the spinning stock solution is increased to 70% by weight or more to lower coagulation,
Since the solidification rate of the innermost layer is low and the pore size becomes large, a graded porous layer containing no giant pores is formed inside the innermost layer.

以下、実施例を示すが、これに限定されるものではない
Examples will be shown below, but the invention is not limited thereto.

(1)透水ff1(UFR)とは、中空糸膜の中空部に
水あるいは水溶液を流し、その際中空糸の膜を通して外
部へ出てくる水の量を膜の有効面積(外表面)、時間お
よび圧力で単位換算したものであり、単位は、d/hr
−mHO・尻である。ここで水−UFRは純水を用いた
時の透水量をあられす。
(1) Water permeability ff1 (UFR) refers to the amount of water that flows outside through the hollow fiber membrane when water or an aqueous solution flows through the hollow part of the hollow fiber membrane, and the effective area (outer surface) of the membrane and the time. The unit is d/hr.
-mHO・butt. Here, water-UFR refers to the water permeability when using pure water.

(2)ΔS(%)とは、長さLOの中空糸を非緊張下で
60℃の水に10分間浸積した後の長さをLlとした時
に次式で表される値であり、その値が小ざいのは、熱収
縮率が小さく、温水を流した時の透水量の低下が小ざい
ことを示す。
(2) ΔS (%) is a value expressed by the following formula when a hollow fiber of length LO is immersed in water at 60°C for 10 minutes under no tension, and the length is Ll, A small value indicates that the thermal shrinkage rate is small and the decrease in water permeability when hot water is poured is small.

0−Ll ΔS(%)−X100 (3)強伸度は、TENSI LON/UTM−111
(東洋ボールドウィン社製)を使用し、試長50M1引
張り速度50m/l1inで測定し、糸の断面積として
は中空部分を除いた膜の断面積を採用した。
0-Ll ΔS (%)-X100 (3) Strength and elongation is TENSI LON/UTM-111
(manufactured by Toyo Baldwin Co., Ltd.), the measurement was carried out at a sample length of 50 M and a tensile speed of 50 m/1 inch, and the cross-sectional area of the membrane excluding the hollow portion was used as the cross-sectional area of the thread.

(4)屈曲疲労試験は、屈曲角180度、屈曲速度90
往復/n+inで行った。
(4) The bending fatigue test was conducted at a bending angle of 180 degrees and a bending speed of 90 degrees.
I went round trip/n+in.

(5)重合体の極限粘度は、Jounal  ofPo
lymer  5cience(A−1>第6巻、第1
47〜157(1968年)に記載されている測定法に
準じて、ジメチルホルムアミド(DMF)を溶剤に使用
し、30℃で測定した。
(5) The intrinsic viscosity of the polymer is determined by Journal ofPo
lymer 5science (A-1>Volume 6, Volume 1
47-157 (1968), dimethylformamide (DMF) was used as a solvent, and the measurement was performed at 30°C.

(実施例) ”実施例1 アクリロニトリル100モル%、[ηコニ3゜2の重合
体をDMSO中で重合し、ざらに希釈して重合体濃度1
3.0重量%の紡糸原液を得た。
(Example) ``Example 1 A polymer of 100 mol% acrylonitrile and [ηconi 3゜2] was polymerized in DMSO and roughly diluted to a polymer concentration of 1.
A 3.0% by weight spinning dope was obtained.

内径0.25agt、スリット巾0.IIIIIIの鞘
芯型中空糸用口金を用いて鞘部よりこの紡糸原液を1゜
4rd/1IIinの速度で吐出し、芯部よりDMS0
80重量%水溶液を凝固液として注入した。口金温度は
50℃で、吐出した糸条をいったん空気中(室温)を8
0m通過させた後、30℃の水からなる凝固浴中へ導い
て凝固させ、35℃の水中で洗浄した後巻きとり、第1
図〜第4図に示すような中空糸膜を得た。得られた中空
糸膜は、内径207μm、膜厚35μmで、膜の構造は
、最外層に100〜300人の孔径の緻密層を持ち、膜
内部に行くに従って孔径が大きくなるがイ1〜2μmま
での大きざであり、巨大空孔は全くないものであった。
Inner diameter 0.25agt, slit width 0. This spinning stock solution was discharged from the sheath at a speed of 1°4rd/1IIin using a sheath-core type hollow fiber nozzle, and DMS0 from the core.
An 80% by weight aqueous solution was injected as a coagulating liquid. The temperature of the nozzle was 50℃, and the discharged yarn was placed in the air (room temperature) for 8
After passing through 0 m, it was introduced into a coagulation bath consisting of water at 30°C to coagulate, washed in water at 35°C, and then wound up.
A hollow fiber membrane as shown in Figs. to 4 was obtained. The obtained hollow fiber membrane has an inner diameter of 207 μm and a membrane thickness of 35 μm, and the membrane structure has a dense layer with a pore size of 100 to 300 people in the outermost layer, and the pore size increases toward the inside of the membrane, but it is 1 to 2 μm. There were no large holes at all.

得られた中空糸膜の緒特性は表1に示す通りであり、透
水性が高く、屈曲疲労に強く、特に熱収縮率が小さく劣
化の小さい中空糸膜であった。
The properties of the obtained hollow fiber membrane are as shown in Table 1, and it was a hollow fiber membrane with high water permeability, strong resistance to bending fatigue, particularly low thermal shrinkage rate, and little deterioration.

実施例2 アクリロニトリル100モル%、[η]=3゜2の重合
体をDMSO中で重合し、重合体濃度15.5重量%の
紡糸原液を得た。内径0.67111゜スリット巾0.
1711111の鞘芯型中空糸用口金を用いて鞘部より
この紡糸原液を2.8d/minの速度で吐出し、芯部
よりDMS080重量%水溶液を凝固液として注入した
。口金温度は60℃で、後の処理は実施例1と同様に行
った。
Example 2 A polymer containing 100 mol% acrylonitrile and [η]=3°2 was polymerized in DMSO to obtain a spinning dope with a polymer concentration of 15.5% by weight. Inner diameter 0.67111° Slit width 0.
This spinning stock solution was discharged from the sheath at a speed of 2.8 d/min using a sheath-core type hollow fiber nozzle No. 1711111, and an 80% by weight aqueous solution of DMS0 was injected as a coagulation liquid from the core. The die temperature was 60° C., and the subsequent treatments were carried out in the same manner as in Example 1.

得られた中空糸膜は、内径298−μm1膜厚50μm
で、膜構造は、実施例1の膜と同様に緻密層と傾斜型多
孔質層とからなっているが、重合体濃度が高いので孔径
は実施例1に比べて小さかった。この中空糸膜の緒特性
は表1にまとめた。透水性は多少劣るが、機械的特性が
良く、熱収縮率がざらに低く優れた膜である。
The obtained hollow fiber membrane had an inner diameter of 298 μm and a membrane thickness of 50 μm.
The membrane structure was composed of a dense layer and a graded porous layer similar to the membrane of Example 1, but the pore diameter was smaller than that of Example 1 due to the high polymer concentration. The properties of this hollow fiber membrane are summarized in Table 1. Although its water permeability is somewhat inferior, it is an excellent membrane with good mechanical properties and a fairly low heat shrinkage rate.

比較例1 アクリロニトリル93.1モル%、アクリル酸メチル5
.8モル%、メタリルスルホン酸ソーダ0.3モル%、
[η]−1,2の共重合体をDMSO中で重合し、ざら
に希釈して16重量%の紡糸原液を得た。内径0.25
m+、スリット巾0゜075J111の鞘芯型中空糸用
口金を用いて、芯部に水を注入する以外は実施例1と同
様に製糸した。
Comparative Example 1 Acrylonitrile 93.1 mol%, methyl acrylate 5
.. 8 mol%, sodium methallylsulfonate 0.3 mol%,
[η]-1,2 copolymer was polymerized in DMSO and roughly diluted to obtain a 16% by weight spinning stock solution. Inner diameter 0.25
Using a sheath-core type hollow fiber spindle with m+ and a slit width of 0°075J111, yarn was produced in the same manner as in Example 1, except that water was injected into the core.

得られた中空糸膜は、内径205μm1膜厚56μmで
、最外層および最内層に緻密層を持ち、内層に直径10
μm以上の巨大空孔を有していた。
The obtained hollow fiber membrane has an inner diameter of 205 μm and a membrane thickness of 56 μm, has a dense layer in the outermost layer and an innermost layer, and has a diameter of 10 μm in the inner layer.
It had huge pores larger than μm.

中空糸膜の緒特性は表1にまとめた。透水性が低いだけ
でなく、屈曲疲労に弱く折れ易く、熱収縮率も高い膜で
あった。
The properties of the hollow fiber membranes are summarized in Table 1. The membrane not only had low water permeability, but also was susceptible to bending fatigue, easily broke, and had a high thermal shrinkage rate.

比較例2 実施例1と同じ紡糸原液を用い、芯部より水を注入した
以外は実施例1と同様に紡糸した。
Comparative Example 2 Spinning was carried out in the same manner as in Example 1, except that the same spinning dope as in Example 1 was used and water was injected from the core.

得られた中空糸膜は、内径205μm、膜厚56μmで
、最外層および最内層に緻密層を持ち、内層に直径10
μm以上の巨大空孔を有していた。
The obtained hollow fiber membrane had an inner diameter of 205 μm, a membrane thickness of 56 μm, a dense layer in the outermost layer and an innermost layer, and a diameter of 10 μm in the inner layer.
It had huge pores larger than μm.

この中空糸膜の緒特性は表1にまとめた。実施例1に比
べ伸度が低いため折れ易く、熱収縮率が大きいため温水
では十分な性能を発揮できなかった。
The properties of this hollow fiber membrane are summarized in Table 1. Since the elongation was lower than that of Example 1, it was easily broken, and the heat shrinkage rate was large, so it could not exhibit sufficient performance in hot water.

〈発明の効果〉 本発明のポリアクリロニトリル系中空糸膜は、分離能力
および濾過能力に優れ、かつ両者のバランスの取れた、
限外濾過性能を有し、折れにくく、熱に強い。
<Effects of the Invention> The polyacrylonitrile hollow fiber membrane of the present invention has excellent separation ability and filtration ability, and has a good balance between the two.
It has ultrafiltration performance, is hard to break, and is resistant to heat.

特に、従来の中空糸膜以上に各種の産業分野に適用でき
る。たとえば、食品分野、製薬関係、微生物関連分野、
電子工業、原子力発電などの水および他の液体処理分野
が挙げられるが、特に電子工業、原子力発電の分野に好
適である。
In particular, it can be applied to various industrial fields more than conventional hollow fiber membranes. For example, food field, pharmaceutical field, microorganism field,
Examples include water and other liquid treatment fields such as the electronic industry and nuclear power generation, and are particularly suitable for the electronic industry and nuclear power generation fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は、実施例1で得た中空糸膜の走査型電子顕
微鏡写真である。第1図は中空糸膜の横断面写真(10
00倍)である。第2,3図は中空糸膜のそれぞれ内層
、外層の横断面写真(5000倍)である。第4図は中
空糸膜の内層表面写真(5000倍)である。
1 to 4 are scanning electron micrographs of the hollow fiber membrane obtained in Example 1. Figure 1 is a cross-sectional photograph of a hollow fiber membrane (10
00 times). Figures 2 and 3 are cross-sectional photographs (5000x magnification) of the inner and outer layers of the hollow fiber membrane, respectively. FIG. 4 is a photograph (5000x magnification) of the inner layer surface of the hollow fiber membrane.

Claims (7)

【特許請求の範囲】[Claims] (1)中空糸膜の最外層が500Å以下の孔径を有する
緻密層からなり、該最外層から最内層にかけて孔径が大
きくなる多孔質層を形成し、実質上巨大空孔を含まない
ことを特徴とするポリアクリロニトリル系中空糸膜。
(1) The outermost layer of the hollow fiber membrane is composed of a dense layer with a pore size of 500 Å or less, forms a porous layer with the pore size increasing from the outermost layer to the innermost layer, and is characterized by substantially no macropores. Polyacrylonitrile hollow fiber membrane.
(2)中空糸膜が超高重合度のアクリロニトリルを含む
アクリロニトリル系重合体を少なくとも1成分とする重
合体である特許請求の範囲第(1)項に記載のポリアク
リロニトリル系中空糸膜。
(2) The polyacrylonitrile hollow fiber membrane according to claim (1), wherein the hollow fiber membrane is a polymer having at least one component an acrylonitrile polymer containing acrylonitrile with an ultra-high degree of polymerization.
(3)超高重合度のアクリロニトリルが極限粘度2.0
以上である特許請求の範囲第(2)項に記載のポリアク
リロニトリル系中空糸膜。
(3) Ultra-high polymerization degree acrylonitrile has an intrinsic viscosity of 2.0
The polyacrylonitrile hollow fiber membrane according to claim (2) above.
(4)鞘芯型中空糸用口金を用いて中空糸膜を製造する
に際し、紡糸原液にアクリロニトリル系重合体の全重合
体濃度が5〜20重量%である有機溶媒溶液を用い、芯
部より低凝固性の注入液を注入することを特徴とするポ
リアクリロニトリル系中空糸膜の製法。
(4) When manufacturing a hollow fiber membrane using a sheath-core type hollow fiber die, an organic solvent solution containing an acrylonitrile polymer with a total polymer concentration of 5 to 20% by weight is used as the spinning stock solution, and A method for producing a polyacrylonitrile hollow fiber membrane, which is characterized by injecting a low-coagulable injection liquid.
(5)アクリロニトリル系重合体が超高重合度のアクリ
ロニトリルを含むアクリロニトリル系重合体を少なくと
も1成分とする重合体である特許請求の範囲第(4)項
に記載のポリアクリロニトリル系中空糸膜の製法。
(5) The method for producing a polyacrylonitrile hollow fiber membrane according to claim (4), wherein the acrylonitrile polymer is a polymer having at least one component an acrylonitrile polymer containing acrylonitrile with an ultra-high degree of polymerization. .
(6)超高重合度のアクリロニトリルが極限粘度2.0
以上である特許請求の範囲第(5)項に記載のポリアク
リロニトリル系中空糸膜の製法。
(6) Ultra-high polymerization degree acrylonitrile has an intrinsic viscosity of 2.0
The method for producing a polyacrylonitrile hollow fiber membrane according to claim (5) above.
(7)低凝固性の注入液がジメチルスルホキシドを主体
とする水系液である特許請求の範囲第(4)項に記載の
ポリアクリロニトリル系中空糸膜の製法。
(7) The method for producing a polyacrylonitrile hollow fiber membrane according to claim (4), wherein the low coagulability injection liquid is an aqueous liquid mainly containing dimethyl sulfoxide.
JP62016234A 1987-01-28 1987-01-28 Manufacturing method of polyacrylonitrile-based hollow fiber membrane Expired - Fee Related JPH0653976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016234A JPH0653976B2 (en) 1987-01-28 1987-01-28 Manufacturing method of polyacrylonitrile-based hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016234A JPH0653976B2 (en) 1987-01-28 1987-01-28 Manufacturing method of polyacrylonitrile-based hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPS63190012A true JPS63190012A (en) 1988-08-05
JPH0653976B2 JPH0653976B2 (en) 1994-07-20

Family

ID=11910860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016234A Expired - Fee Related JPH0653976B2 (en) 1987-01-28 1987-01-28 Manufacturing method of polyacrylonitrile-based hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH0653976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273522A (en) * 1989-04-17 1990-11-08 Asahi Medical Co Ltd Polyacrylonitrile group hollow yarn film and its manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039404A (en) * 1983-08-12 1985-03-01 Nippon Ester Co Ltd Correction of face of spinneret in melt spinning
JPS61119710A (en) * 1984-11-16 1986-06-06 Toray Ind Inc Production of acrylic fiber having high tenacity and modules
JPS61119708A (en) * 1984-11-16 1986-06-06 Toray Ind Inc High-tenacity acrylic fiber and production thereof
JPS61160415A (en) * 1985-01-09 1986-07-21 Toray Ind Inc Acrylic yarn having improved mechanical strength and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039404A (en) * 1983-08-12 1985-03-01 Nippon Ester Co Ltd Correction of face of spinneret in melt spinning
JPS61119710A (en) * 1984-11-16 1986-06-06 Toray Ind Inc Production of acrylic fiber having high tenacity and modules
JPS61119708A (en) * 1984-11-16 1986-06-06 Toray Ind Inc High-tenacity acrylic fiber and production thereof
JPS61160415A (en) * 1985-01-09 1986-07-21 Toray Ind Inc Acrylic yarn having improved mechanical strength and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273522A (en) * 1989-04-17 1990-11-08 Asahi Medical Co Ltd Polyacrylonitrile group hollow yarn film and its manufacture

Also Published As

Publication number Publication date
JPH0653976B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP4050977B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
WO1997022405A1 (en) Hollow fiber type filtration membrane
CN103501878B (en) Performance enhancing additives for fiber formation and polysulfone fibers
US5290448A (en) Polyacrylonitrile membrane
JPH0569571B2 (en)
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JP2550543B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPS63190012A (en) Hollow yarn film of polyacrylonitrile and production thereof
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
JPS62102801A (en) Selective permeable hollow composite fiber
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
KR100454153B1 (en) A hollow fiber membrane made of polyacrylonitrile and a preparation method thereof
JPS63145345A (en) Production of porous polyacrylonitrile material
JP3422657B2 (en) Hollow fiber membrane for dehumidification
JP2954327B2 (en) Porous hollow fiber membrane
JP4075236B2 (en) Production method of polyphenylsulfone hollow fiber membrane
JP2004305953A (en) Method of manufacturing hollow fiber membrane
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JP2004098027A (en) High-performance precision filtration film
JP2905208B2 (en) Polysulfone hollow fiber separation membrane
JP3294783B2 (en) Stock solution
JPH03254826A (en) Preparation of polysulfone semipermeable membrane
JPS60202701A (en) Separation membrane
JPS6025525B2 (en) Hollow fibrous membrane and its manufacturing method
JPH10337456A (en) Membrane forming stock solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees