JPS5932562B2 - Hollow fibrous membrane and its manufacturing method - Google Patents

Hollow fibrous membrane and its manufacturing method

Info

Publication number
JPS5932562B2
JPS5932562B2 JP11918777A JP11918777A JPS5932562B2 JP S5932562 B2 JPS5932562 B2 JP S5932562B2 JP 11918777 A JP11918777 A JP 11918777A JP 11918777 A JP11918777 A JP 11918777A JP S5932562 B2 JPS5932562 B2 JP S5932562B2
Authority
JP
Japan
Prior art keywords
dense layer
core
hollow
membrane
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11918777A
Other languages
Japanese (ja)
Other versions
JPS5455623A (en
Inventor
公二 三村
徹 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11918777A priority Critical patent/JPS5932562B2/en
Publication of JPS5455623A publication Critical patent/JPS5455623A/en
Publication of JPS5932562B2 publication Critical patent/JPS5932562B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、優れた透水性と物質分離能を有する中空繊維
状膜、特に中空内部に緻密層を有するアクリロニトリル
系中空繊維状膜及びその新規な製造法に関するものであ
る。
Detailed Description of the Invention The present invention relates to a hollow fibrous membrane having excellent water permeability and substance separation ability, particularly an acrylonitrile-based hollow fibrous membrane having a dense layer inside the hollow space, and a novel method for producing the same. .

限外口過膜を使って種々の物質口過分離を行なう技術に
ついては、古くから巾広く利用されているが、近年にい
たりセルロースアセテート膜、コラーゲン膜が新たに開
発されるようになって、食品工業、医療分野、電子工業
、公害防止等の広範な用途に応用されるようになってき
た。
The technology of separating various substances using ultrafiltration membranes has been widely used for a long time, but in recent years cellulose acetate membranes and collagen membranes have been newly developed. It has come to be applied to a wide range of applications such as the food industry, medical field, electronic industry, and pollution prevention.

特に限外口過膜を中空状に成形した中空繊維状膜は、口
過面積が大きく、コンパクトな装置化が可能になるとい
うことで注目を集めており、その開発研究もさかんに行
なわれている。
In particular, hollow fibrous membranes made by molding ultrafiltration membranes into hollow shapes have been attracting attention because they have a large pore area and can be made into compact devices, and research and development are being actively conducted on them. There is.

一般に、限外口過膜に要求される性能としては■透水性
が大きいこと、■物質公理能が高いこと、■耐薬品性に
優れ膜寿命が長いことの3つが基本的に要求されている
In general, the three basic performance requirements for ultrafiltration membranes are: ■ High water permeability, ■ High material axiom ability, and ■ Excellent chemical resistance and long membrane life. .

そのためには適当な素材を選ぶこと、及び表面に緻密層
を有し内部にポーラス層を有するといった膜構造のコン
トロールの2つが特に要求される。
For this purpose, two things are particularly required: selection of an appropriate material and control of the membrane structure, such as having a dense layer on the surface and a porous layer inside.

従って、膜構造をコントロールするための技術が数多く
発表されており、中空繊維状膜もその例外ではない。
Therefore, many techniques for controlling membrane structure have been published, and hollow fibrous membranes are no exception.

しかるに、中空繊維状膜の場合、外部に緻密層を有する
ものについては、よく知られているが、内部に緻密層を
有する繊維の例は極めて少ない。
However, in the case of hollow fibrous membranes, although those having a dense layer on the outside are well known, there are very few examples of fibers having a dense layer on the inside.

中空繊維の医療分野への応用その他で内部に処理液を通
す内圧法が採用されることが多いが、この場合は当然内
表面に緻密層を有する中空繊維が要求される。
When applying hollow fibers to the medical field, an internal pressure method is often adopted in which a processing liquid is passed inside the fibers, but in this case, hollow fibers having a dense layer on the inner surface are naturally required.

しかるに、内表面に緻密層を有する中空繊維を湿式紡糸
法で製造するのは、外表面に緻密層を有するものよりは
るかにその製造が困難である。
However, it is much more difficult to manufacture hollow fibers having a dense layer on the inner surface by a wet spinning method than those having a dense layer on the outer surface.

その理由は、湿式紡糸法で中空繊維を製造しようとする
場合、一般に内部(芯部)に凝固剤を通すことによって
製造されるが、用いるノズル構造等から、内部凝固剤の
組成あるいは導入条件に制限があるため、なかなか内部
緻密層の形成がむづかしいからである。
The reason for this is that when attempting to produce hollow fibers using the wet spinning method, it is generally produced by passing a coagulant through the interior (core), but the composition of the internal coagulant or the introduction conditions may vary depending on the nozzle structure used, etc. This is because it is difficult to form an internal dense layer due to the limitations.

本発明者らは、かかる現状に鑑み内部に緻密層を有する
中空繊維を湿式紡糸法で容易に製造する方法について鋭
意研究を進めた結果、本発明に到達した。
In view of the current situation, the present inventors have conducted intensive research on a method for easily producing hollow fibers having a dense layer inside by a wet spinning method, and as a result, they have arrived at the present invention.

即ち、本発明は、公知の鞘芯型ノズルを用い、鞘部より
紡糸原液を送入し、芯部より空気又は不活性ガスを送入
して、内部に空気又は不活性ガスを含んだ状態で凝固浴
中に紡出することを特徴とする内表面に緻密層を有する
アクリロニトリル系中空繊維状膜及びその湿式紡糸法に
関するものである。
That is, the present invention uses a known sheath-core type nozzle, feeds the spinning dope from the sheath part, and feeds air or inert gas from the core part, thereby creating a state containing air or inert gas inside. The present invention relates to an acrylonitrile-based hollow fibrous membrane having a dense layer on its inner surface, which is characterized by being spun into a coagulation bath, and a wet spinning method thereof.

中空繊維状膜の膜性能を決定する最も大きな要因は、そ
の膜素材の選択にある。
The most important factor determining the membrane performance of hollow fibrous membranes is the selection of the membrane material.

膜素材の選択は、親水性の大きさという素材自身の性状
の他に、膜構造をコントロールするという観点からの成
形のしやすさを考慮した上で行なわなければならない。
The selection of the membrane material must be made by taking into consideration the properties of the material itself, such as its hydrophilicity, as well as the ease of molding from the perspective of controlling the membrane structure.

数多くの合成高分子の中で、この2つの条件を満足する
ものについて、種々探索検討した結果、アクリロニトリ
ル系重合体が最も適当である。
Among the many synthetic polymers, we have searched and examined various polymers that satisfy these two conditions, and as a result, acrylonitrile polymers are the most suitable.

アクリロニトリル系重合体は水に対する親和性が非常に
大きいこと、湿式紡糸法によりボイドが生成しやすく、
且つ成形条件を選ぶことにより、その大きさ、形状等を
コントロールすることができる。
Acrylonitrile polymers have a very high affinity for water, and voids are easily generated by wet spinning.
Moreover, by selecting molding conditions, its size, shape, etc. can be controlled.

本発明で用いるアクリロニトリル系重合体とは、アクリ
ロニトリル50重量%以上、アクリロニトリルと共重合
可能な公知の単量体1種又は2種以上0〜50重量から
なる重合体である。
The acrylonitrile polymer used in the present invention is a polymer comprising 50% by weight or more of acrylonitrile and 0 to 50% by weight of one or more known monomers copolymerizable with acrylonitrile.

又、中空糸の製造に際しアクリロニトリルを溶解するの
に用いる溶剤としては、ジメチルホルムアミド、ジメチ
ルアセトアミド、ジメチルスルホキシド等の有機溶剤、
塩化並塩、ロダン塩、硝酸等の無機濃厚水溶液等公知の
アクリロニトリル系溶剤を挙げることができる。
In addition, the solvents used to dissolve acrylonitrile during the production of hollow fibers include organic solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfoxide;
Known acrylonitrile solvents such as ordinary salts of chloride, rhodan salts, inorganic concentrated aqueous solutions of nitric acid and the like can be used.

用いる紡糸原液のポリマー濃度はポリマーの重合度、組
成溶剤の種類等により、大きく異なるが、一般に5〜3
5重量%が適当である。
The polymer concentration of the spinning dope used varies greatly depending on the polymerization degree of the polymer, the type of composition solvent, etc., but is generally 5 to 3.
5% by weight is suitable.

又この原液濃度と関連して芯部より空気又は不活性ガス
を導入する必要のあることから紡糸原液の粘度が特に重
要であり、あまり粘度が低すぎると芯部より導入した空
気圧により、中空形状を保ち得なくなる。
In addition, the viscosity of the spinning dope is particularly important because it is necessary to introduce air or inert gas from the core in relation to the concentration of the dope. If the viscosity is too low, the air pressure introduced from the core will cause the spinning dope to become hollow. It becomes impossible to maintain

一般に紡糸原液粘度としては、200ポイズ以上、好ま
しくは500ポイズ以上が適当である。
Generally, the suitable viscosity of the spinning dope is 200 poise or more, preferably 500 poise or more.

芯部より導入するのは、空気又は窒素、アルゴン等の不
活性ガスが適当である。
Air or an inert gas such as nitrogen or argon is suitably introduced from the core.

又その導入圧は、上記紡糸原液粘度、鞘芯ノズル形状等
によっても大きく変化するが、一般には0.3cr11
.〜50CrrL水柱圧程度の極微圧が用いられる。
The introduction pressure varies greatly depending on the viscosity of the spinning dope, the shape of the sheath-core nozzle, etc., but is generally 0.3cr11.
.. Extremely low pressure on the order of ~50 CrrL water column pressure is used.

もちろんノズル形状によっては、これ以上の導入圧を用
いることができる場合もある。
Of course, depending on the nozzle shape, it may be possible to use a higher introduction pressure.

中空繊維の製造にあたって芯部に空気又は不活性ガスを
導入する技術は湿式紡糸による中空糸の製造法に於ては
未だ知られていない。
A technique for introducing air or an inert gas into the core during the production of hollow fibers is not yet known in the production of hollow fibers by wet spinning.

これは原液性状やポリマー溶液の凝固挙動等から芯材と
し′C気体を用い所望とする形状、構造の中空繊維を作
ることがむつかしいことによるものと推定されるが、先
に説明したように原液粘度、空気導入圧等を調整するこ
とによって、中空化が可能なことが明らかとなった。
This is presumed to be because it is difficult to make hollow fibers with the desired shape and structure using C gas as the core material due to the properties of the stock solution and the coagulation behavior of the polymer solution. It has become clear that hollowing can be achieved by adjusting the viscosity, air introduction pressure, etc.

又、従来の内部に凝固剤を導入する技術と比較すると本
発明の場合は、内表面に形成される緻密層が非常にうす
く、全膜厚の1/3以下であり、実質的に100Å以上
の空孔を有しておらずしかも均一であるのに対し内部に
凝固剤を導入する従来技術では緻密層が厚く、しかも不
均一で極端な場合は緻密層中に局所的にボイドが存在し
ており、これをまったくなくすことは製造技術的に不可
能に近い。
Furthermore, compared to the conventional technique of introducing a coagulant into the interior, in the case of the present invention, the dense layer formed on the inner surface is very thin, less than 1/3 of the total film thickness, and substantially more than 100 Å. In contrast, with conventional technology that introduces a coagulant inside, the dense layer is thick and uneven, and in extreme cases, voids may exist locally in the dense layer. It is nearly impossible to eliminate this completely due to manufacturing technology.

特に有機溶剤を用いた湿式紡糸の場合は、原液の安定性
の点で、ある温度以上に保温して紡糸する必要があるが
、ノズル形状からいって内部凝固剤だけを低温に保持す
ることはむつかしく、従って緻密構造が得られにくい傾
向を示すことになる。
In particular, in the case of wet spinning using organic solvents, it is necessary to keep the spinning solution above a certain temperature in order to maintain the stability of the stock solution, but considering the nozzle shape, it is not possible to keep only the internal coagulant at a low temperature. This is difficult and therefore tends to make it difficult to obtain a dense structure.

このことは、得られる中空繊維の限外口過性能に非常に
大きな影響を与えている。
This has a very large effect on the ultrafiltration performance of the hollow fibers obtained.

即ち、繰り返し述べているように、限外口過膜性能とし
ては、透水性が高いことと、限外口過精度が良いこと(
物質分離能が高いこと)の2つが基本的に要求されるが
、本発明の中空糸の如く厚さが全膜厚の1/3以下とく
に5μ以下であり、100Å以上の空孔を有さない均一
で斑のない緻密層を有する繊維は、この2つの条件を共
に満足し、従来の内部凝固剤を用いた繊維に比較しては
るかに優れている。
In other words, as has been repeatedly stated, the performance of the ultrafiltration membrane is that it has high water permeability and good ultrafiltration accuracy (
The two basic requirements are that the hollow fiber of the present invention has a thickness of 1/3 or less of the total membrane thickness, especially 5 μ or less, and has pores of 100 Å or more. A fiber having a dense layer that is uniform and free from unevenness satisfies both of these two conditions and is far superior to fibers using conventional internal coagulants.

以上、説明してきたように、本発明の中空繊維状膜は、
内部に緻密層を有する限外口過性能の優れたものであり
、しかもその製造法は湿式紡糸法で芯部に空気又は不活
性ガスを導入するといった画期的な技術に関するもので
あり、その工業的価値は極めて太きい。
As explained above, the hollow fibrous membrane of the present invention is
It has a dense layer inside and has excellent ultrafiltration performance, and its manufacturing method involves an innovative technology that involves introducing air or inert gas into the core using a wet spinning method. The industrial value is extremely large.

以下実施例により、本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

尚、実施例中の%は全て重量基準である。Note that all percentages in the examples are based on weight.

実施例 1 アクリロニトリル94%、アクリル酸メチル6%からな
る比粘度0.16.(25℃、ジメチルホルムアミド中
で1 g/ 100rnlで測定)の共重合体をジメチ
ルアセトアミドに溶解し、26%の紡糸原液を調製した
Example 1 Consisting of 94% acrylonitrile and 6% methyl acrylate, specific viscosity 0.16. A 26% spinning stock solution was prepared by dissolving the copolymer (measured at 1 g/100 rnl in dimethylformamide at 25°C) in dimethylacetamide.

紡糸原液の粘度は80℃で280ポイズであった。The viscosity of the spinning dope was 280 poise at 80°C.

第1図に示した鞘芯型ノズルを用い、鞘部よりこの紡糸
原液を送入し芯部より10m71L水柱圧という微圧で
空気を導入した。
Using the sheath-core type nozzle shown in FIG. 1, this spinning dope was fed through the sheath, and air was introduced through the core at a micropressure of 10 m71 L water column pressure.

この芯部に空気を含んだ状態で紡糸口金より50℃の6
0%ジメチルアセトアミド水溶液中に紡糸して、凝固せ
しめ、さらにこの凝固糸状を98°Cの熱水中で洗浄し
た。
With this core containing air, the spinneret is heated to 6
It was spun into a 0% dimethylacetamide aqueous solution and coagulated, and the coagulated thread was washed in hot water at 98°C.

得られた中空繊維は外径400μ、内径310μで、内
部に緻密層、外部に多孔質層を有していた。
The obtained hollow fiber had an outer diameter of 400 μm and an inner diameter of 310 μm, and had a dense layer inside and a porous layer outside.

緻密層の厚さは平均066μであった。The average thickness of the dense layer was 066μ.

又、内圧法による透水性の測定(1気圧)を行なった所
23 gfd(gallon /feet2. day
)という大きな透水性を示した。
In addition, the water permeability was measured by the internal pressure method (1 atm) at 23 gfd (gallon/feet2. day).
) showed a high water permeability.

次にその限外口過性能をデキストリン水溶液を用いて行
なった所、分子量3.800のデキストリンは97%除
去されるという優れた結果を与えた。
Next, the ultrafiltration performance was tested using an aqueous dextrin solution, and an excellent result was obtained in which 97% of dextrin with a molecular weight of 3.800 was removed.

実施例 2 アクリロニトリル90%、酢酸ビニル7%、アクリルア
ミド3%、比粘度0.18の共重合体をジメチルホルム
アミドに溶解し28%の紡糸原液を調製した。
Example 2 A copolymer containing 90% acrylonitrile, 7% vinyl acetate, 3% acrylamide and a specific viscosity of 0.18 was dissolved in dimethylformamide to prepare a 28% spinning stock solution.

紡糸原液の粘度は95°Cで600ポイズであった。The viscosity of the spinning dope was 600 poise at 95°C.

図1の鞘芯型ノズルの鞘部よりこの原液を吐出し、芯部
より15mm水柱圧の微圧空気を送入した。
This stock solution was discharged from the sheath of the sheath-core type nozzle shown in FIG. 1, and slightly pressurized air at a water column pressure of 15 mm was introduced from the core.

芯部に空気を含んだ状態で吐出された糸状は、空気中(
室温)を通過した後、40℃70%ジメチルホルムアミ
ド水溶液からなる凝固浴中に導き、外部からの凝固を完
結せしめた。
The filamentous material discharged with air in its core is suspended in the air (
After passing through (room temperature), it was introduced into a coagulation bath consisting of a 70% dimethylformamide aqueous solution at 40°C to complete external coagulation.

引き続き、沸とう水中で洗浄と同時に1.3倍延伸した
Subsequently, the film was washed in boiling water and stretched 1.3 times at the same time.

得られた中空繊維は、内部に100Å以上の空孔を有し
ていない緻密層(緻密層の厚さ/全膜厚−1/155)
が存在する。
The obtained hollow fiber has a dense layer that does not have pores of 100 Å or more inside (thickness of dense layer/total film thickness - 1/155)
exists.

この透水性は25gfd(1気圧)で且つ分子量400
00のデキストランは99.5%除去分離された。
This water permeability is 25 gfd (1 atm) and the molecular weight is 400.
00 dextran was removed and separated by 99.5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の中空繊維状膜の製造に用いられる鞘
芯型ノズルの縦断面図である。 1は原液供給口、2は芯部空気又は不活性ガスの供給口
、3は成形ノズル、4は空気又は不活性ガスの導入パイ
プ、5は空気又は不活性ガスの導入路、6は原液吐出路
を示す。
FIG. 1 is a longitudinal sectional view of a sheath-core type nozzle used for manufacturing the hollow fibrous membrane of the present invention. 1 is a stock solution supply port, 2 is a core air or inert gas supply port, 3 is a molding nozzle, 4 is an air or inert gas introduction pipe, 5 is an air or inert gas introduction path, and 6 is a stock solution discharge Show the path.

Claims (1)

【特許請求の範囲】 1 アクリロニトリル50重量%以上からなり、内表面
に実質的に100Å以上の空孔を含まない緻密層を有し
、しかもこの緻密層の厚さが5μ以下であることを特徴
とする中空繊維状膜。 2 鞘芯型ノズルを用いて、鞘部より粘度200ポイズ
以上のアクリロニトリル50%以上の重合体からなる紡
糸原液を導入し、芯部より微圧の空気又は不活性ガスを
送入して、湿式紡糸することを特徴とする内表面に実質
的に100Å以上の空孔を有していない緻密層を有する
中空繊維状膜の製造方法。
[Scope of Claims] 1. It is characterized by comprising 50% by weight or more of acrylonitrile, having a dense layer on the inner surface that does not substantially contain pores of 100 Å or more, and furthermore, the thickness of this dense layer is 5 μ or less. Hollow fibrous membrane. 2 Using a sheath-core type nozzle, a spinning stock solution consisting of a polymer of 50% or more acrylonitrile with a viscosity of 200 poise or more is introduced from the sheath part, and air or inert gas at a slight pressure is introduced from the core part to perform a wet process. A method for producing a hollow fibrous membrane having a dense layer substantially free of pores of 100 Å or more on its inner surface, the method comprising spinning the membrane.
JP11918777A 1977-10-04 1977-10-04 Hollow fibrous membrane and its manufacturing method Expired JPS5932562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11918777A JPS5932562B2 (en) 1977-10-04 1977-10-04 Hollow fibrous membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11918777A JPS5932562B2 (en) 1977-10-04 1977-10-04 Hollow fibrous membrane and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21966885A Division JPS61222504A (en) 1985-10-02 1985-10-02 Hollow fibrous membrane

Publications (2)

Publication Number Publication Date
JPS5455623A JPS5455623A (en) 1979-05-02
JPS5932562B2 true JPS5932562B2 (en) 1984-08-09

Family

ID=14755058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11918777A Expired JPS5932562B2 (en) 1977-10-04 1977-10-04 Hollow fibrous membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5932562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456268A (en) * 1987-08-04 1989-03-03 Daimler Benz Ag Tandem master cylinder for hydraulic two circuit brake gear of street car
JPH0423720Y2 (en) * 1985-09-17 1992-06-03
US7238423B2 (en) 2004-12-20 2007-07-03 Kimberly-Clark Worldwide, Inc. Multicomponent fiber including elastic elements

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132904A (en) * 1983-01-20 1984-07-31 Toray Ind Inc Hollow yarn membrane with selective permeability and preparation thereof
JPS59223308A (en) * 1983-06-01 1984-12-15 Mitsubishi Rayon Co Ltd Hydrophilic hollow acrylic yarn
SE8501111L (en) * 1985-03-07 1986-03-03 Gambro Dialysatoren SET TO MAKE A SEMIPERMEABLE HALFIBER
JP2873967B2 (en) * 1989-04-17 1999-03-24 旭メディカル株式会社 Polyacrylonitrile-based hollow fiber membrane and method for producing the same
EP0574699A2 (en) * 1992-05-20 1993-12-22 Akzo Nobel N.V. Cellulose acetate dialysis membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423720Y2 (en) * 1985-09-17 1992-06-03
JPS6456268A (en) * 1987-08-04 1989-03-03 Daimler Benz Ag Tandem master cylinder for hydraulic two circuit brake gear of street car
US7238423B2 (en) 2004-12-20 2007-07-03 Kimberly-Clark Worldwide, Inc. Multicomponent fiber including elastic elements

Also Published As

Publication number Publication date
JPS5455623A (en) 1979-05-02

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPS6214642B2 (en)
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
JPH06114249A (en) Asymmetrical semi-permeable membrane for dialysis and ultrafiltration and its production
JPS6029282B2 (en) Semipermeable membrane and its manufacturing method
JPH0569571B2 (en)
JP2899352B2 (en) Porous hollow fiber membrane
JPH0274615A (en) Carbon fiber-based porous hollow fiber membrane and production thereof
JPH03258330A (en) Porous hollow fiber membrane
JPS6051363B2 (en) Semipermeable composite membrane
JPH0468967B2 (en)
JP2867043B2 (en) Carbon fiber-based porous hollow fiber membrane and method for producing the same
JP2550543B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPS61222504A (en) Hollow fibrous membrane
JPS6320339A (en) Production of porous membrane
JPS62102801A (en) Selective permeable hollow composite fiber
JPH02221404A (en) Porous hollow fiber and production thereof
JPH0822934B2 (en) Method for producing polyacrylonitrile-based porous body
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
JPH07213879A (en) Hydrophilic laminated porous membrane and its production
JPH04277023A (en) Production of heat-resistant porous hollow fiber membrane
JPS63331A (en) Preparation of porous fluororesin membrane
JPS6365904A (en) Porous hollow yarn membrane
JPS6039402B2 (en) High performance semipermeable membrane and its manufacturing method