JPS6039402B2 - High performance semipermeable membrane and its manufacturing method - Google Patents

High performance semipermeable membrane and its manufacturing method

Info

Publication number
JPS6039402B2
JPS6039402B2 JP52130605A JP13060577A JPS6039402B2 JP S6039402 B2 JPS6039402 B2 JP S6039402B2 JP 52130605 A JP52130605 A JP 52130605A JP 13060577 A JP13060577 A JP 13060577A JP S6039402 B2 JPS6039402 B2 JP S6039402B2
Authority
JP
Japan
Prior art keywords
membrane
solution
semipermeable membrane
layer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52130605A
Other languages
Japanese (ja)
Other versions
JPS5464083A (en
Inventor
健資 鎌田
徹 武村
好和 藤永
晴彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP52130605A priority Critical patent/JPS6039402B2/en
Publication of JPS5464083A publication Critical patent/JPS5464083A/en
Publication of JPS6039402B2 publication Critical patent/JPS6039402B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile

Description

【発明の詳細な説明】 本発明は機械的強度の大きい、取扱い性容易な、ピンホ
ール亀裂等の欠陥のない、かつ透水性に優れた高性能ア
クリロニトリル系半透膜並びにその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-performance acrylonitrile semipermeable membrane that has high mechanical strength, is easy to handle, has no defects such as pinhole cracks, and has excellent water permeability, and a method for producing the same. be.

近年半透膜は廃水処理、造水、医薬品工業、食品工業、
バクテリャ、酵母、ビールス等の分離に応用研究が進み
、広く活用されるようになって釆た。
In recent years, semipermeable membranes have been used in wastewater treatment, water production, pharmaceutical industry, food industry,
Applied research has progressed in the separation of bacteria, yeast, viruses, etc., and it has come to be widely used.

工業的に広く利用され、大型化してくるに伴い、分離の
精度向上、処理量の向上、耐久性の向上が望まれている
。従来の半透膜は然官旨にばらつきが大きく、とくに使
用膜面積が増大すると品質の均一性が保証し難い場合が
多い。この原因の大部分は半透膜の機械的強度が弱いた
め、半透膜の輸送や装置内への装着、さらに運転中に於
ける透水性回復のための物理的、化学的洗浄などで加え
られる異常な力によって陰に亀裂や破れが生じるためと
考えられる。さらにもう1つの原因は、従来の製膜法で
は、製膜時に局所的な欠陥や目に見えないピンホールが
膜に存在する。これらの原因によって膜に欠陥が生じる
と、血液分離、ビールス、バクテリャ等の除去、超純水
の造水分野等高精度の分離性を必要とする分野には使用
に耐えない。又一般的水処理分野でも、半透膜の性能の
信頼性が薄いと、正確な装置設計が出釆ない。本発明者
らはこれらの欠点をなくすべく鋭意検討した結果、機械
的強度の大きい、かつ欠陥のない透水性に優れた信頼性
の高い膜を工業的に得ることの出来る本発明に到達した
。アクリロニトリルを主成分とする共重合体から、半透
性の優れた半透膜を得る方法については、柊公開48−
86163号、特公開49−278び号、特公開49−
43878号、特公開50一78576号等に既に開示
されている。
As they are widely used industrially and become larger, improvements in separation precision, throughput, and durability are desired. Conventional semipermeable membranes vary widely in nature, and uniformity of quality is often difficult to guarantee, especially as the membrane area used increases. This is mostly due to the weak mechanical strength of the semipermeable membrane, which is caused by the transportation of the semipermeable membrane, installation into the equipment, and physical and chemical cleaning to restore water permeability during operation. This is thought to be due to cracks and tears occurring in the shadows due to the abnormal force applied. Yet another reason is that in conventional film forming methods, local defects and invisible pinholes exist in the film during film forming. If defects occur in the membrane due to these causes, the membrane cannot be used in fields that require high-precision separation, such as blood separation, removal of viruses, bacteria, etc., and ultrapure water production. Also, in the general water treatment field, if the performance of semipermeable membranes is unreliable, accurate equipment design is not possible. As a result of intensive studies aimed at eliminating these drawbacks, the present inventors have arrived at the present invention, which makes it possible to industrially obtain a highly reliable membrane with high mechanical strength, no defects, and excellent water permeability. Regarding the method of obtaining a semipermeable membrane with excellent semipermeability from a copolymer mainly composed of acrylonitrile, please refer to Hiiragi Publications 48-
No. 86163, Special Publication No. 49-278, Special Publication No. 49-
It has already been disclosed in No. 43878, Japanese Patent Publication No. 50-178576, etc.

これらの方法によれば、重合体を溶剤に熔解し、この重
合体溶液をガラス板あるいは金属板等の平面に流延し、
非溶剤中で凝固ゲル化させることによって半透膜が得ら
れる。これらの方法から得られる半透膜は、厚さ100
〜200rを有し、全体がゲル状半透膜であるため機械
的な強度が小さく破れやすい。一方半透膜に強度を賦与
するために織布を膜の支持体として用し、る製膜法がセ
ルロース・アセテートを中心とした膜について、特公昭
52−15398号に開示されている。しかしながら、
この方法を透水性の大きいポリアクリロニトリル系半透
膜の製造に適用した場合、次の諸欠点に遭遇した。1
ピンホールが膜に発生すること このピンホールは肉眼では確認することの出来ない小さ
いもので、たとえば織布の内面に膜を形成させた直径2
4側のチューブ膜の場合、チューブ膜の一端を封じ他端
よりチューブ膜内部に0.2k9/cその加圧空気を送
り、チューブ膜内部を加圧状態にして水に浸贋すると、
欠陥がある場所から小さな気泡が発生することにより容
易に確認出来る。
According to these methods, a polymer is dissolved in a solvent, the polymer solution is cast onto a flat surface such as a glass plate or a metal plate, and
A semipermeable membrane is obtained by coagulation and gelation in a non-solvent. The semipermeable membrane obtained from these methods has a thickness of 100
~200r, and since the entire membrane is a gel-like semipermeable membrane, its mechanical strength is low and it is easily torn. On the other hand, Japanese Patent Publication No. 15398/1983 discloses a membrane manufacturing method based on cellulose acetate in which a woven fabric is used as a membrane support to impart strength to the semipermeable membrane. however,
When this method was applied to the production of polyacrylonitrile semipermeable membranes with high water permeability, the following drawbacks were encountered. 1
Pinholes are generated in the membrane. These pinholes are small and cannot be seen with the naked eye. For example, pinholes are small that cannot be seen with the naked eye.
In the case of the tube membrane on the 4th side, seal one end of the tube membrane and send pressurized air of 0.2k9/c into the tube membrane from the other end to pressurize the inside of the tube membrane and immerse it in water.
This can be easily confirmed by the appearance of small bubbles from the defective location.

2 支持体が不織布の場合、長時間の使用で不織布の単
繊維が脱落し、膜の強度が低下し、膜が破れ易くなる。
2. When the support is a nonwoven fabric, single fibers of the nonwoven fabric fall off after long-term use, reducing the strength of the membrane and making it more likely to tear.

3 支持体が織布の場合、薄い織布が得られないため勝
全体の厚みが大きくなり、取扱い性が悪し、。前記1)
の欠点に対しては、公知の製膜法では不織布あるいは織
布上に膜形成用ポリマー溶液を直接流延して製膜を行な
うため、不織布等膜支持体の地合いむらや毛羽が膜の小
さな欠陥を形成させる。
3. When the support is made of woven fabric, it is not possible to obtain a thin woven fabric, resulting in an increase in the overall thickness of the fabric, resulting in poor handling. 1) above
In order to solve the drawbacks of the film, known film forming methods involve directly casting a film-forming polymer solution onto a non-woven fabric or woven fabric. cause defects to form.

又これらの支持体の繊維間に含まれる気体が流延溶液中
に気泡として残り、膜欠陥を発生さるものと考えられる
。2)の欠点に対しては、膜と支持体の接着性が悪いこ
とが考えられる。
It is also believed that the gas contained between the fibers of these supports remains as bubbles in the casting solution, causing film defects. The defect 2) is considered to be due to poor adhesion between the membrane and the support.

3)に関しては出釆るだけ表面の平滑な薄い不織布を用
いることによって解決されよう。
Regarding 3), it may be solved by using a thin non-woven fabric with a smooth surface.

以上の観点から本発明者等は検討した結果、膜支持体と
して不織布を用い、2段製膜を行なうことによってこれ
らの欠点を解決した。即ち1段目は比較的ポリマー濃度
の薄い2〜15wt%、望ましくは4〜1肌t%の溶液
を用いて不織布内部に腹を形成させる。この場合、該溶
液中に不織布を含浸させ、含浸俗より取り出し、非溶剤
中へ浸潰しゲル化させることにより、容易に不織布内部
に膜が形成される。同時に不織布の表面及び裏面にも薄
い膜が形成される。この膜はピンホールが多数存在し透
水速度が非常に大きいため、粗い炉過膜としては使用出
来るが、精密な炉週たとえは限外炉過膜などには使用出
来ない。ゲル化した膜を70〜100ooの温水中で処
理し、次いで乾燥することによって第1段の製膜を終了
する。この膜を以下プレカーサー膜と呼ぶ。第2段目の
製膜はこのプレカーサ−膜の表面に、プレカーサ−膜の
製造に用いたと同一のポリマーの比較的濃度の高い、5
〜25M%、望ましくは8〜23れ%の溶液を適当なノ
ズルあるいはダイスを用いて均一な厚みに流延し、非溶
剤中へ浸潰してゲル化させることによって達成される。
高性能半透膜に要求される性能としては、前述した機械
的強度や性能の安定性はもとより、透水速度が大きく、
かつ漆質の阻止率に優れていなければならない。
As a result of studies from the above viewpoints, the present inventors solved these drawbacks by using a nonwoven fabric as a membrane support and performing two-stage membrane formation. That is, in the first step, a solution having a relatively low polymer concentration of 2 to 15 wt %, preferably 4 to 1 t % is used to form a belly inside the nonwoven fabric. In this case, a film can be easily formed inside the nonwoven fabric by impregnating the nonwoven fabric in the solution, taking it out from the impregnation tube, and immersing it in a non-solvent to gel it. At the same time, a thin film is formed on the front and back surfaces of the nonwoven fabric. This membrane has many pinholes and has a very high water permeation rate, so it can be used as a rough filtration membrane, but it cannot be used as a precise filtration membrane or an ultrafiltration membrane. The gelled membrane is treated in 70-100 oo warm water and then dried to complete the first stage of membrane formation. This film is hereinafter referred to as a precursor film. In the second stage of film formation, the surface of this precursor film is coated with a relatively high concentration of the same polymer used in the production of the precursor film.
This is achieved by casting a solution of ~25 M%, preferably 8-23 M%, to a uniform thickness using an appropriate nozzle or die, and immersing it in a non-solvent to gel it.
The performance required of a high-performance semipermeable membrane is not only the mechanical strength and performance stability mentioned above, but also a high water permeation rate.
It must also have excellent lacquer rejection.

これらの性能は、製膜時のポIJマー濃度、ゲル化の条
件によって大きく変化する。本発明によって得られた半
透膜の断面電子顕微鏡写真を図1〜5に示す。図1の写
真は膜断面の全体写真であり、図2は膜表面付近の断面
の拡大写真である。図3は膜表面付近をさらに拡大して
観察した写真であり、図4は膿内部のミクロボィドの拡
大写真である。図5は膜裏面付近の断面拡大写真である
。これらの写真より、本発明の膜は4層構造を有してい
ることがわかる。即ち膜の表面から裏面へ向けて表面繊
密層、勾配型ミクロボィド層、マクロボィド層、補強マ
クロボィド層である。図3は表面繊密層の拡大図である
が、ここに存在する孔(ボィドと呼ぶ)の大きさは50
0A以下で非常に小さく、この層に於て溶質が阻止され
るものと考えられる。一方溶媒分子は4・さいため、こ
のポィドの間を通過する。従って膜の透水速度(溶媒が
水の場合)を大きくするためには、この繊密層の厚みを
出来るだけ薄くする必要があり、実用的な半透膜となす
ためには2仏以下になすべきである。次に図2,図3に
見られるごとく表面繊密層に接して、膜内部へ進むに従
って直径が徐々に大きくなるボィドを有する勾配型ミク
ロボィド層を有する。即ち表面繊密層付近では数百Aの
孔径を有するが、内部へ進むに従って平均孔律約200
0Aのボィドとなる。図4にみられるような2000A
前後の小さなボイドを本明細書ではミクロボイドと呼ぶ
ことにする。この勾配型ミクロボィド層には後で説明す
るマクロボィドは存在しない。この層の役目は表面の薄
い繊密層を支える働きをするものと考えられる。勾配型
ミクロボィド層内部のボーィトの大きさは小さいため、
水の透過に対してかなりの抵抗を示すため、比較的に薄
い方が好ましい。即ち20仏以下が望ましい。勾配型ミ
クロボィド層に接して図1,図2に見られるごとくマク
ロボーィド層が存在する。マクロボィド層は図2から明
らかなように、ミクロボィド層内に直径5仏以上の大き
なボィドを多数含んでいる層である。本明細書では直径
5.仏以上のボィドをマクロボィドと呼ぶことにする。
このマクロボィド層の存在は腹の透水速度向上に大きな
役目を果す。しかしながら他方で膜の強度を低下させる
。限外炉過膜として使用する場合、高々数k9/仇の操
作圧であるが、長時間の使用でマクロボイドがつぶれて
透水速度の低下をもたらす。本発明の膜横造の大きな特
徴は、このマクロボーィド層に接して単繊維で補強した
補強マクロボィド層を形成させたことである。図5はこ
の層の拡大図であるが、単機紙が膜を構成するミクロボ
ィドの内部に包埋され、膜と固く結合している。さらに
透水性向上に役立つマクロボィドや単綴維間に形成され
ている。このような構造を有した膜では補強単繊縦が膜
から剥離せず、長時間安定に使用することが可能となる
。この補強マクロポィド層は、図1の写真では全マクロ
ボィド層の約1/2を占め、一端は膜の裏面を形成して
いる。補強マクロボィド層が膜の裏面を形成することは
、膜が一般に通水性の大きい多孔性支持体上で加圧され
て使用されることを考慮すれば非常に望ましいことであ
る。この補強マクロボィド層の厚みは薄すぎると膜の補
強効果が発揮出来ないし、又厚すぎると膜に柔軟性が乏
しくなり、取扱いが不便となる。全膜厚の14〜34の
厚みを有するものが望ましい。図6は比較のために市販
の、不織布支持体で強化された半透膜の断面写真である
。図1の本発明の膜構造と著しく相異することがわかる
。即ち図6の公知の膜ではマクロボィド層が存在しない
こと並びに不織布単繊維と膜は、その境界では固く結合
しているが、膜の裏面付近ではその膜との結合性が悪い
。このような膜は水処理用膜として長時間使用すると、
単繊維が膜から離脱し、腰の強度が著しく低下し、破れ
やすくなる。図1に示したような構造を有する半透膜は
前述した2段製膜法によって得られる。
These performances vary greatly depending on the polymer concentration during film formation and gelation conditions. Cross-sectional electron micrographs of semipermeable membranes obtained according to the present invention are shown in FIGS. 1 to 5. The photograph in FIG. 1 is an overall photograph of the cross section of the membrane, and FIG. 2 is an enlarged photograph of the cross section near the membrane surface. FIG. 3 is a further enlarged photograph of the vicinity of the membrane surface, and FIG. 4 is an enlarged photograph of microvoids inside the pus. FIG. 5 is an enlarged cross-sectional photograph of the vicinity of the back surface of the membrane. From these photographs, it can be seen that the film of the present invention has a four-layer structure. That is, from the front surface to the back surface of the membrane, there are a surface dense layer, a gradient microvoid layer, a macrovoid layer, and a reinforcing macrovoid layer. Figure 3 is an enlarged view of the surface dense layer, and the size of the pores (called voids) that exist here is 50
It is very small below 0A, and it is thought that solutes are blocked in this layer. On the other hand, since the solvent molecules are 4.0 cm in size, they pass between these poids. Therefore, in order to increase the water permeability rate of the membrane (when the solvent is water), it is necessary to make the thickness of this dense layer as thin as possible, and to make it a practical semipermeable membrane, it should be less than 2 mm. Should. Next, as seen in FIGS. 2 and 3, in contact with the surface dense layer, there is a gradient microvoid layer having voids whose diameter gradually increases as the film progresses into the interior of the membrane. In other words, the pore size near the surface dense layer is several hundred amps, but as it goes inside, the average pore size decreases to about 200 amps.
It becomes a void of 0A. 2000A as seen in Figure 4
The small voids at the front and rear are referred to as microvoids in this specification. There are no macrovoids, which will be explained later, in this gradient microvoid layer. The role of this layer is thought to be to support the thin dense layer on the surface. Since the size of the voids inside the gradient microvoid layer is small,
Relatively thinner materials are preferred, as they offer significant resistance to water penetration. In other words, it is desirable that it is 20 Buddhas or less. As seen in FIGS. 1 and 2, a macrovoid layer exists in contact with the gradient microvoid layer. As is clear from FIG. 2, the macrovoid layer is a layer containing many large voids with a diameter of 5 mm or more within the microvoid layer. In this specification, diameter 5. A void larger than a Buddha will be called a macro void.
The presence of this macrovoid layer plays a major role in increasing the water permeability rate in the belly. However, on the other hand it reduces the strength of the membrane. When used as an ultra-furnace filtration membrane, the operating pressure is a few k9/min at most, but macrovoids collapse after long-term use, resulting in a decrease in water permeation rate. A major feature of the horizontal membrane structure of the present invention is that a reinforcing macrovoid layer reinforced with single fibers is formed in contact with this macrovoid layer. FIG. 5 is an enlarged view of this layer, showing that the paper is embedded within the microvoids that make up the membrane and is firmly bonded to the membrane. Furthermore, macrovoids and single fibers are formed which help improve water permeability. In a membrane having such a structure, the reinforcing single fibers do not peel off from the membrane, making it possible to use it stably for a long time. This reinforcing macropoid layer occupies about 1/2 of the total macrovoid layer in the photograph of FIG. 1, and one end forms the back surface of the membrane. It is highly desirable for the reinforcing macrovoid layer to form the back surface of the membrane, considering that the membrane is generally used under pressure on a highly water-permeable porous support. If the reinforcing macrovoid layer is too thin, the reinforcing effect of the membrane cannot be exhibited, and if it is too thick, the membrane will lack flexibility, making handling inconvenient. It is desirable that the film has a total thickness of 14 to 34 mm. FIG. 6 is a cross-sectional photograph of a commercially available semipermeable membrane reinforced with a nonwoven fabric support for comparison. It can be seen that the film structure is significantly different from the film structure of the present invention shown in FIG. That is, in the known membrane shown in FIG. 6, there is no macrovoid layer, and although the nonwoven fabric single fibers and the membrane are firmly bonded at their boundaries, the bonding properties with the membrane are poor near the back surface of the membrane. When such a membrane is used for a long time as a water treatment membrane,
Single fibers separate from the membrane, significantly reducing the strength of the waist and making it more likely to tear. A semipermeable membrane having the structure shown in FIG. 1 can be obtained by the two-stage membrane forming method described above.

さらに透水性の優れた半透膜を得るためには、第1段製
膜時に使用するポリマー溶液Aのポリマー濃度を、第2
段製膜時に使用するポリマー溶液Bのポリマー濃度より
小さくすることが望ましい。さらにプレカーサー膜上に
ポリマー溶液Bが均一に流延され、プレカーサー膜を段
2段製膜によって得られる膜が連続したミクロボーィド
層で結合され得るためには溶液AとBのポリマーを同一
のものに選ぶことが好ましい。膜形成用アクリロニトリ
ル系ポリマーとしては、80モル%以上のアクリロニト
リル残基を含んでいることが望ましい。
Furthermore, in order to obtain a semipermeable membrane with excellent water permeability, the polymer concentration of the polymer solution A used in the first stage membrane formation must be adjusted to the second stage.
It is desirable that the polymer concentration be lower than the polymer concentration of polymer solution B used during step film formation. Furthermore, in order for polymer solution B to be uniformly cast onto the precursor film and for the film obtained by forming the precursor film in two stages to be bonded with a continuous microvoid layer, the polymers in solutions A and B must be the same. It is preferable to choose. The acrylonitrile polymer for film formation preferably contains 80 mol% or more of acrylonitrile residues.

アクリロニトリル成分が80モル%以下になると、表面
繊密層の形成が困難となったり、膜内部に開孔型のミク
ロボーィドが発達せず、閉孔型のボィドが多数発生する
。前者は膜の透水速度を著しく増大させるが、膜の半透
性を著しく損なう。後者は膜の透水速度を著しく低下さ
せる。これらの現象はアクリロニトリルとの共重合成分
の種類やゲル化条件によって種々変化する。しかしなが
らアクリロニトリル成分が80モル%以上含む共重合体
を用いると、ほぼ本発明の構造を有した透水性の優れた
、かつ半透性の良い膜を得ることが出来る。アクリロニ
トリルと共重合体を構成するコモノマーとしてはアクリ
ロニトリルと共重合可能な公知のものを用いることが出
来る。又共重合成分モノマーは一種類以上用いることが
出来る。これらのモノマーとしては非イオン性モノマー
として、アクリルアミド、Nーピニル−2ーピロリドン
、アクリル酸ェステル類、酢酸ビニル、スチレン等を用
いることが出来る。またイオン性モノマーとしてはアク
リル酸、メタアクリル酸、メタリルスルホン酸、ビニル
ベンゼンスルホン酸およびこれらの塩類、2−ビニル及
び4−ビニルピリヂン、メタクリル酸ジメチルアミノェ
チル等の第3級アミン類、さらにこれらをアルキル化し
た第4級アンの塩類などがある。これらの重合体を用い
て、製膜用溶液A,Bを形成させるための溶剤としては
、ジメチルホルムアミド、ジメチルアセトアミド、ジメ
チルスルホオキシド、rープチロラクトン等の有機溶剤
が望ましい。硝酸やロダン酸ナトリウム濃厚水溶液等の
無機系溶剤も存在するが、均一な溶液を調整すること、
および補強用単繊総間に溶液を均一に、気泡の混入ない
こ導入させるためには、表面張力の小さい有機系の溶剤
が望ましい。ゲル化非溶剤としては溶剤と水の混合水溶
液を用いることが望ましい。
If the acrylonitrile component is less than 80 mol %, it becomes difficult to form a dense surface layer, or open-pore microvoids do not develop inside the membrane, resulting in a large number of closed-pore voids. The former significantly increases the water permeation rate of the membrane, but significantly impairs the semipermeability of the membrane. The latter significantly reduces the water permeation rate of the membrane. These phenomena vary depending on the type of copolymerized component with acrylonitrile and gelation conditions. However, if a copolymer containing 80 mol % or more of an acrylonitrile component is used, it is possible to obtain a membrane with excellent water permeability and good semipermeability, having a structure similar to that of the present invention. As the comonomer constituting the copolymer with acrylonitrile, known comonomers that can be copolymerized with acrylonitrile can be used. Moreover, one or more types of copolymerization component monomers can be used. As these monomers, acrylamide, N-pynyl-2-pyrrolidone, acrylic acid esters, vinyl acetate, styrene, etc. can be used as nonionic monomers. Ionic monomers include acrylic acid, methacrylic acid, methallylsulfonic acid, vinylbenzenesulfonic acid and salts thereof, tertiary amines such as 2-vinyl and 4-vinylpyridine, dimethylaminoethyl methacrylate, and more. There are salts of quaternary ammonium salts obtained by alkylating these. As a solvent for forming film forming solutions A and B using these polymers, organic solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and r-butyrolactone are preferable. Inorganic solvents such as nitric acid and concentrated aqueous sodium rhodanate solutions also exist, but it is important to prepare a uniform solution.
In order to uniformly introduce the solution between all of the reinforcing single fibers, including air bubbles, it is desirable to use an organic solvent with a low surface tension. As the gelling non-solvent, it is desirable to use a mixed aqueous solution of a solvent and water.

ゲル化させた膜は水洗してそのまま使用出来るが、目的
によっては温水中で熱処理し使用することも出来る。熱
処理によって膜の透水速度は低下するが、溶質の阻止率
が向上すると共に、乾燥状態で取扱い可能な半透膜とな
る。本発明の膜に用いられる不織布としては公知の不織
布を用いることが出来る。
The gelled membrane can be washed with water and used as is, but depending on the purpose, it can also be used after heat treatment in warm water. Although the water permeation rate of the membrane is reduced by heat treatment, the solute rejection rate is improved and the membrane becomes a semipermeable membrane that can be handled in a dry state. As the nonwoven fabric used in the membrane of the present invention, known nonwoven fabrics can be used.

また不織布として定義出来ないような、繊維からなる紙
状のシート状構造体、即ちシート状繊維集合体を用いる
ことが出来る。水処理を対象とした分野に膜を適用する
場合、合成繊維より形成された不織布又はシート状繊維
集合体がセルロース繊維からなる紙あるいは不織布より
も好ましい。合成繊維からなる不織布としては、ポリエ
ステル、ナイロン、ポリプロピレン等を素材としたもの
が耐薬品性の面から望ましい。本発明の膜の形態として
は平膜状のもの、およびチューブ状のものが含まれる。
In addition, a paper-like sheet-like structure made of fibers that cannot be defined as a non-woven fabric, that is, a sheet-like fiber aggregate can be used. When the membrane is applied to the field of water treatment, nonwoven fabrics or sheet-like fiber aggregates made of synthetic fibers are preferred over paper or nonwoven fabrics made of cellulose fibers. The nonwoven fabric made of synthetic fibers is preferably one made of polyester, nylon, polypropylene, etc. from the viewpoint of chemical resistance. The form of the membrane of the present invention includes a flat membrane and a tube.

チューブ状のものはチューブ内面と外面に第2段製膜を
行なう2つの方法が考えられる。チューブの直径として
は3脚以上が安定に製膜可能であり、これ以下の直径は
製膜困難となる。チューブ内面に第2段製膜を行なった
膜は、彼処理液をチューブ内部へ加圧導入して、チュー
ブ外壁より処理水を得ることが出来る。このような内圧
方式チューブラーモジュールでは、チューブ膜外蓬とチ
ューブラーモジュールのチューブ内径が等しく一致して
いないと膜に異常な圧力がかなり膜が破れる。本発明に
よって得られる膜は強度が大きいため、このような使用
法に於てその効力を発揮するものである。以下実施例を
用いて本発明をさらに詳しく説明する。実施例 1ポリ
エステル不織布を支持体としてアクリロニトリルを主成
分とする共重合体を用いて、欠陥のない強度のある、透
水性の優れた半透膜を得た。
For tube-shaped tubes, there are two possible methods of forming a second-stage film on the inner and outer surfaces of the tube. As for the diameter of the tube, it is possible to stably form a film with three or more legs, and it becomes difficult to form a film with a diameter smaller than this. With the membrane formed on the inner surface of the tube in the second stage, the treated liquid can be introduced into the tube under pressure and treated water can be obtained from the outer wall of the tube. In such an internal pressure type tubular module, if the tube inner diameter of the tube membrane and the tube inner diameter of the tubular module are not equal, abnormal pressure on the membrane may cause the membrane to rupture. Since the membrane obtained by the present invention has high strength, it exhibits its effectiveness in such usage. The present invention will be explained in more detail below using Examples. Example 1 A semipermeable membrane with no defects, strength, and excellent water permeability was obtained using a polyester nonwoven fabric as a support and a copolymer containing acrylonitrile as a main component.

アクリロニトリル95モル%、メチルアクリレート5モ
ル%を含む重合体5M%の濃度になるようジメチルアセ
トアミド(DMAC)に均一に熔解した。該溶液に目付
け40夕/〆、厚み110Aのポリエステル不織布を含
浸し、室温の水に浸潰してゲル化させ、75o0の温水
中で熱処理を行ない、さらに13000の熱風乾燥機中
で乾燥して第1段製膜を行なった。次に上記重合体を2
肌t%含むDMAC溶液を調整し、第1段製腰によって
得られたプレカーサー膜の片面に流延し、直ちにDMA
Cと水の混合非溶剤中へ浸潰してゲル化させ、ゲル化の
完了した候を水洗して目的とする半透膜を得た。得られ
た半透膜のピンホールテストを以下の手法で行なった。
半透膜を8肌×30弧の長方形に切り、膜周囲を金枠に
はめて固定し、膜の表(即ち第2製膜の行なわれた面)
は加圧空気が導入される密閉した部屋に接し、膜の裏面
は水と接触させた。密閉室へ0.2k9/洲の加圧空気
を送り、水面と接触する腹表面を観察した結果、腰欠陥
にもとづく気泡の発生は見られなかった。次に膜の強度
を引っぱり試験機により測定した結果、破断強度は1.
23(kg′の)で非常に大きかった。さらに膜の透水
速度を限外炉過装置で求めた所、0.190(机上/地
、mln,stm)であった。また0.1wt%の卵ア
ルプミンを含む水溶液を原液として炉遇した所、溶質の
阻止率は100%であった。実施例 2 アクリロニトリル96モル%、酢酸ビニル4モル%から
なる重合体を用いて、実施例1と同様にして第1段製膜
によりプレカーサー膜を得た。
A polymer containing 95 mol% of acrylonitrile and 5 mol% of methyl acrylate was uniformly dissolved in dimethylacetamide (DMAC) to a concentration of 5M%. A polyester non-woven fabric with a basis weight of 40mm/cm and a thickness of 110A was impregnated with the solution, soaked in water at room temperature to gel, heat-treated in 75o0 hot water, and dried in a hot air dryer at 13,000mm. One-stage film formation was performed. Next, add 2 of the above polymers.
A DMAC solution containing t% of the skin was prepared and cast on one side of the precursor film obtained by the first stage production process, and immediately the DMA
The mixture was immersed in a non-solvent mixture of C and water to form a gel, and the gelled product was washed with water to obtain the desired semipermeable membrane. A pinhole test of the obtained semipermeable membrane was performed using the following method.
The semi-permeable membrane was cut into a rectangle of 8 skins x 30 arcs, and the membrane was fixed in a metal frame around the membrane, and the surface of the membrane (i.e. the side where the second membrane was formed) was cut.
was in contact with a closed chamber into which pressurized air was introduced, and the back side of the membrane was in contact with water. Pressurized air of 0.2 k9/h was sent into the sealed chamber and the ventral surface in contact with the water surface was observed, and no bubbles were observed due to the waist defect. Next, the strength of the membrane was measured using a tensile tester, and the breaking strength was 1.
It was very large at 23 (kg'). Furthermore, the water permeation rate of the membrane was determined using an ultrafiltration device and was found to be 0.190 (desktop/ground, mln, stm). Furthermore, when an aqueous solution containing 0.1 wt% egg albumin was treated as a stock solution, the solute rejection rate was 100%. Example 2 A precursor film was obtained in the same manner as in Example 1 using a polymer consisting of 96 mol % of acrylonitrile and 4 mol % of vinyl acetate.

次に上記重合体を1榊t%含むDMAC溶液を調整し「
プレカーサー膜の片面に均一に流延し、DMACと水の
混合非溶剤へ浸澄してゲル化させ、チューブの内面に製
膜された内径24肋のチューブ状半透膜を得た。このよ
うにして得られた半透膜の構造は図1〜図5の構造を有
していた。チューブ膜を3仇の長さに切断し、チューブ
内部より0.2k9′地の加圧空気を送り、チューブ膜
を水中に浸潰してピンホールテストを行なったが、気泡
の発生によるピンホールは3肌の長さに於て1ケ所もな
かった。又膜の強度を引っぱり試験機により測定した結
果、破断強度は1.02(k9/柵)と非常に大きかっ
た。さらにこのチューブ膜を暁結樹脂及び外筒よりなる
チューブ状モジュールに装着し、内部より加圧水をポン
プで送り、膜外壁より透過してくる水の透水速度を求め
た所、0.250(泌/彬,mln,sin)であった
。また0.1M%の卵アルプミンを含む水溶液を原液と
して炉適した所、藩貿の阻止率は100%であった。比
較実施例 1 実施例1で用いたポリエステル不織布を用いて、実施例
2の第1段製膜を行なわずに直接第2段製膜を行なった
Next, a DMAC solution containing 1 t% of the above polymer was prepared.
The mixture was uniformly cast on one side of the precursor membrane, immersed in a non-solvent mixture of DMAC and water, and gelled, thereby obtaining a tubular semipermeable membrane with an inner diameter of 24 ribs formed on the inner surface of the tube. The structure of the semipermeable membrane thus obtained had the structure shown in FIGS. 1 to 5. The tube membrane was cut into 3 lengths, pressurized air of 0.2K9' was sent from inside the tube, and the tube membrane was immersed in water for a pinhole test. 3 There was no spot in the length of the skin. Furthermore, as a result of measuring the strength of the membrane using a tensile tester, the breaking strength was extremely high at 1.02 (k9/fence). Furthermore, this tube membrane was attached to a tube-shaped module made of dawn resin and an outer cylinder, and pressurized water was pumped from inside, and the water permeation rate of water permeating through the membrane outer wall was determined to be 0.250 (secretion/ Akira, mln, sin). In addition, when an aqueous solution containing 0.1 M% egg albumin was used as a stock solution in the furnace, the inhibition rate of clan trade was 100%. Comparative Example 1 Using the polyester nonwoven fabric used in Example 1, the second stage film formation was directly performed without performing the first stage film formation of Example 2.

即ちポリエステル不織布に直接1榊t%のポリマーを含
む溶液を流延し実施例2と同様にチューブ状半透膜を得
た。この膜のピンホールテストを実施例2と同様に実施
した結果、3仇の長さで13ケの気泡発生箇所が存在し
た。この膜の透水速度及び卵ァルブミンの阻止率を同様
に求めた結果、0.285(夕/地,mln,atm)
及び93%の阻止率であった。小さな膜欠陥のため阻止
率は100%とはならなかった。実施例 3実施例2で
得たチューブ状半透膜を焼結体及び外筒よりなるチュー
ブ状モジュール内へ装着し、ビル排水の炉過より再生水
を得る実験を6ケ月間行なった。
That is, a tubular semipermeable membrane was obtained in the same manner as in Example 2 by directly casting a solution containing 1 t% of the polymer onto a polyester nonwoven fabric. A pinhole test of this film was carried out in the same manner as in Example 2, and as a result, there were 13 bubble generation locations with a length of 3 mm. The water permeability rate and egg albumin rejection rate of this membrane were determined in the same manner and were found to be 0.285 (Y/J, mln, atm)
and the inhibition rate was 93%. The rejection rate was not 100% due to small film defects. Example 3 The tubular semipermeable membrane obtained in Example 2 was installed in a tubular module consisting of a sintered body and an outer cylinder, and an experiment was conducted for 6 months to obtain recycled water from a furnace filtering building wastewater.

比較のために図6に示した構造を有する市販の半透膜を
同時にテストした。運転結果を表1に示す。表 1 市販チュ−ブ膜は6ケ月運転後、モジュールから取り出
し調べた所、膜支持体の脱落が多く部分的に膜が破れて
いた。
For comparison, a commercially available semipermeable membrane having the structure shown in FIG. 6 was simultaneously tested. The operation results are shown in Table 1. Table 1 A commercially available tube membrane was removed from the module after 6 months of operation and examined, and it was found that many of the membrane supports had fallen off and the membrane was partially torn.

実施例 4 実施例1で得た半透膜を75oCの温水中で熱処理した
Example 4 The semipermeable membrane obtained in Example 1 was heat treated in hot water at 75oC.

得られた膜を60ごCの熱風乾燥機内で乾燥し、乾燥状
半透膜を得た。実施例1と同様にして透水速度を求めた
結果0.115(机【/係,mln,atm)であった
The obtained membrane was dried in a hot air dryer at 60 °C to obtain a dry semipermeable membrane. The water permeation rate was determined in the same manner as in Example 1, and the result was 0.115 (Desk, mln, atm).

また0.1wt%のチトクロームCを含む水溶液を原液
として限外炉過した所、溶質の阻止率は100%であっ
た。なお、この膜は湿潤状態と乾燥状態で性能の変化は
なかつた。
Further, when an aqueous solution containing 0.1 wt% of cytochrome C was passed through an ultra-furnace as a stock solution, the solute rejection rate was 100%. Note that there was no change in performance of this membrane between wet and dry conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明によって得られた半透膜断面の走査型電子
顕微鏡写真である。 図2は図1の膜表面付近の断面拡大写真である。図3は
膜表面付近の断面の透過型電子顕微鏡による拡大写真で
ある。図4は膜内部断面の透過型電子顕微鏡による拡大
写真である。図5は膿裏面付近断面の拡大写真である。
図6は参考のために示した市販支持体つき半透膜の断面
写真である。図′ 図2 図3 ,図4 図; 図6
FIG. 1 is a scanning electron micrograph of a cross section of a semipermeable membrane obtained according to the present invention. FIG. 2 is an enlarged cross-sectional photograph of the vicinity of the membrane surface in FIG. FIG. 3 is an enlarged photograph of a cross section near the membrane surface taken with a transmission electron microscope. FIG. 4 is an enlarged photograph of the internal cross section of the membrane taken with a transmission electron microscope. FIG. 5 is an enlarged photograph of a cross section near the back surface of the pus.
FIG. 6 is a cross-sectional photograph of a commercially available semipermeable membrane with a support shown for reference. Figure' Figure 2 Figure 3 , Figure 4 Figure; Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 膜表面に厚み2μ以下の緻密層を有し、これに続き
厚み2μ以上20μ以下の、膜内部へ進むに従つて孔径
の大きくなる勾配型ミクロボイド層を有し、該勾配型ミ
クロボイド層に続き、マクロボイド層を有し、該マクロ
ボイド層に続き、単繊維がマクロボイド層に包埋された
補強マクロボイド層の膜の表面まで有することを特徴と
するアクリロニトリル系半透膜2 マクロボイド層に於
けるマクロボイドの直径が5μ以上であることを特徴と
する特許請求の範囲第1項記載の半透膜3 アクリロニ
トリル成分を80モル%以上含む共重合体を用いること
を特徴とする特許請求の範囲第1項記載の半透膜4 内
径3mm以上のチユーブ状形態を有し、チユーブの内側
に緻密層を有し、外側に補強マクロボイド層を有するこ
とを特徴とする特許請求の範囲第1項記載の半透膜5
不織布又はシート状繊維集合体にアクリロニトリル系重
合体の溶液Aを含浸ないしは流延した後、非溶剤中に浸
漬しゲル化させ、温水中で熱処理し、乾燥して第1段製
膜を行ない、次に該膜上に溶液Aと同一の重合体を含む
溶液Bを流延し、非溶剤中に浸漬してゲル化させること
を特徴とする半透膜の製造法6 溶液Aの重合体濃度が
溶液Bの重合体濃度よりも低いことを特徴とする特許請
求の範囲第5項記載の半透膜の製造法7 溶液A,Bを
構成する溶剤が有機溶剤であることを特徴とする特許請
求の範囲第5項記載の半透膜の製造法8 不織布又はシ
ート状繊維集合体を構成する単繊維は、重合体溶液A,
Bの溶液A,Bの溶剤に溶解しないものを用いることを
特徴とする特許請求の範囲第5項記載の半透膜の製造法
1 Having a dense layer with a thickness of 2μ or less on the membrane surface, followed by a gradient type microvoid layer with a thickness of 2μ or more and 20μ or less, with the pore size increasing as it goes inside the membrane, and following the gradient type microvoid layer. , an acrylonitrile-based semipermeable membrane 2, characterized in that it has a macrovoid layer, and continues to the macrovoid layer and has a reinforcing macrovoid layer extending to the surface of the membrane in which single fibers are embedded in the macrovoid layer.Macrovoid layer A semipermeable membrane 3 according to claim 1, characterized in that the diameter of the macrovoids in the membrane is 5μ or more.A claim characterized in that a copolymer containing 80 mol% or more of an acrylonitrile component is used. Semipermeable membrane 4 according to claim 1, characterized in that it has a tube-like shape with an inner diameter of 3 mm or more, has a dense layer on the inside of the tube, and has a reinforcing macrovoid layer on the outside. Semipermeable membrane 5 according to item 1
After impregnating or casting the solution A of the acrylonitrile polymer on a nonwoven fabric or sheet-like fiber aggregate, immersing it in a non-solvent to gel it, heat treating it in warm water, and drying it to perform the first stage film formation, Next, solution B containing the same polymer as solution A is cast onto the membrane, and the membrane is immersed in a non-solvent to gel. Method 6 for producing a semipermeable membrane Polymer concentration of solution A is lower than the polymer concentration of solution B. Method 7 for producing a semipermeable membrane according to claim 5. A patent characterized in that the solvents constituting solutions A and B are organic solvents. Method 8 for producing a semipermeable membrane according to claim 5 The single fibers constituting the nonwoven fabric or sheet-like fiber aggregate are made of polymer solution A,
The method for manufacturing a semipermeable membrane according to claim 5, characterized in that solution A of B and solution B that do not dissolve in the solvent are used.
JP52130605A 1977-10-31 1977-10-31 High performance semipermeable membrane and its manufacturing method Expired JPS6039402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52130605A JPS6039402B2 (en) 1977-10-31 1977-10-31 High performance semipermeable membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52130605A JPS6039402B2 (en) 1977-10-31 1977-10-31 High performance semipermeable membrane and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5464083A JPS5464083A (en) 1979-05-23
JPS6039402B2 true JPS6039402B2 (en) 1985-09-05

Family

ID=15038199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52130605A Expired JPS6039402B2 (en) 1977-10-31 1977-10-31 High performance semipermeable membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6039402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004769A1 (en) * 1991-09-03 1993-03-18 Daicel Chemical Industries, Ltd. Permselective polyacrylonitrile copolymer membrane and production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202703A (en) * 1984-03-26 1985-10-14 Toray Ind Inc Carbon membrane
JPH03131330A (en) * 1989-10-16 1991-06-04 Kanai Jiyuuyou Kogyo Kk Composite liquid filter and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004769A1 (en) * 1991-09-03 1993-03-18 Daicel Chemical Industries, Ltd. Permselective polyacrylonitrile copolymer membrane and production thereof

Also Published As

Publication number Publication date
JPS5464083A (en) 1979-05-23

Similar Documents

Publication Publication Date Title
EP0764461B1 (en) Porous polysulfone membrane and process for producing the same
US4061821A (en) Semipermeable composite membranes
JP4757311B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
US4810384A (en) Hydrophilic PVDF semipermeable membrane
JPH02151636A (en) Preparation of isotropic microporous polysulfone film
JP5424145B1 (en) Polymer porous flat membrane sheet
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JP5292705B2 (en) Composite separation membrane and method for producing the same
WO1997022405A1 (en) Hollow fiber type filtration membrane
JPS5856378B2 (en) Acrylonitrile polymer dry membrane and its manufacturing method
CN115041024A (en) Preparation method of asymmetric regenerated cellulose virus-removing flat filter membrane and product
JPS6214642B2 (en)
JPS5831204B2 (en) polysulfone semipermeable membrane
JPS6039402B2 (en) High performance semipermeable membrane and its manufacturing method
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPS6051363B2 (en) Semipermeable composite membrane
US20200055006A1 (en) Microporous film
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
CN113634140B (en) Internal support polyvinylidene fluoride hollow dry film and preparation method thereof
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPS62102801A (en) Selective permeable hollow composite fiber
JPWO2019172368A1 (en) Polyvinylidene fluoride microporous membrane
Yang et al. Preparation of thin film nanofibrous composite NF membrane based on EDC/NHS modified PAN-AA nanofibrous substrate
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane