JPS60202703A - Carbon membrane - Google Patents

Carbon membrane

Info

Publication number
JPS60202703A
JPS60202703A JP59056248A JP5624884A JPS60202703A JP S60202703 A JPS60202703 A JP S60202703A JP 59056248 A JP59056248 A JP 59056248A JP 5624884 A JP5624884 A JP 5624884A JP S60202703 A JPS60202703 A JP S60202703A
Authority
JP
Japan
Prior art keywords
membrane
layer
carbon
porous layer
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59056248A
Other languages
Japanese (ja)
Other versions
JPH0468967B2 (en
Inventor
Takashi Kawai
孝 河合
Tatsuo Nogi
野木 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59056248A priority Critical patent/JPS60202703A/en
Publication of JPS60202703A publication Critical patent/JPS60202703A/en
Publication of JPH0468967B2 publication Critical patent/JPH0468967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled carbon membrane having the most excellent resistance to heat and chemicals and excellent separation effect, mechanical strength, and shape stability by combining a porous layer having separative power with a layer having voids whose maximum pore diameter is regulated to a value higher than the specified value and used for controlling permeatioi velocity. CONSTITUTION:A void-structure membrane is obtained by quickening the solidification velocity of a polyacrylonitrile polymer with a wet membrane forming process. The membrane is made resistant to flames without being drawn in an acidic atmosphere, and then carbonized at high temps. in an inert atmosphere. The obtained carbon membrane is composed of dense layers 1 and 2 having separative power and a porous layer 3 having voids whose maximum pore diameter is regulated to >=5mu and used for controlling permeation velocity.

Description

【発明の詳細な説明】 (発明技術分野) 本発明は、炭素で構成された形態安定性、耐久性にすぐ
れた高性能分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a high-performance separation membrane made of carbon and excellent in form stability and durability.

(従来技術とその問題点〉 従来から、炭素で構成された繊維、布帛、フィルムなど
はそのすぐれた繊維物性、電気特性ならびに耐熱性によ
り、F’RP材、導電材、断熱材などの産業用素材とし
て広(用いられている。
(Prior art and its problems) Carbon fibers, fabrics, films, etc. have traditionally been used for industrial purposes such as F'RP materials, conductive materials, and heat insulation materials due to their excellent fiber properties, electrical properties, and heat resistance. Widely used as a material.

しかし、かかる炭素材料はいずれも高強度、高剛性を追
求したものが主であり、ボイドなどの欠陥がある炭素材
料は劣悪品として考えられていた。
However, all such carbon materials are mainly made in pursuit of high strength and high rigidity, and carbon materials with defects such as voids were considered to be inferior products.

場合も、たとえば特開Fi!57−166354号のよ
うに、単に濾紙の構成IIとして用いられるにすぎなか
った。すなわち、液体や気体の分離をすることはできず
、せいぜい固体と液体を分離する程度のものでしかなか
った。
For example, in the case of Tokkai Fi! No. 57-166354, it was merely used as structure II of filter paper. In other words, it was not possible to separate liquids and gases, and at most it could only separate solids and liquids.

一方、特公昭51−5090号には表面積の大きな炭素
材料、すなわち、炭素体中にボイドを形成し、気体や液
体中の微量物質を吸着する機能をもたせた中空繊維が記
載されている。この[tはフェノール樹脂を溶融紡糸し
て得た中実繊維を架橋剤で一部架橋し、次いで未架橋部
分を溶媒で溶出して得られた中空繊維を炭化する方法で
製造する。そのため、微多孔性の緻密層を有さず、一番
緻密である表面付近にも比較的大きなボイドがあるため
、極めてもろく、形態安定性も成形性も劣悪であり、実
用中の線圧によっても形態が崩れ易い欠点を有するもの
である。さらに、かかるラフな構造の、炭素材料を用い
ても分離膜の機能は達成されず、いわゆる通常の濾紙を
やや精度アップさらに、特開昭54−151622には
流体分離用の無機中空l!雑があり、これは繊維軸に垂
直な方向に変化しているという意味で非等方的に巨大ボ
イドを有している無機中空繊維である。しかし、これは
いわゆるニッケル、鉄などの金属、あるいはそれら金属
の酸化物などのセラミックスの中空繊維であり、通常無
機か有機かの議論の対象になる炭素の中空IIではない
。すなわち、ダイヤモンドを除いた炭素物は一般的な無
機物のような結晶構造ではなく、グラファイト構造とよ
ばれる6炭素環が連なってできる平面状分子からなって
いる点で明確に異なっている。そして、その構造である
がゆえに、炭素物では層間化合物ができたり、一般的な
無機物に比べて比重が小さく重量あたりの機械特性が優
れているという特徴を生かして電気材料あるいは補強材
料として使われていることはよく知られている。そして
、このように特徴的な構造を取る炭素からなる分111
1tl#の例はこれまでにない。
On the other hand, Japanese Patent Publication No. 51-5090 describes a carbon material with a large surface area, that is, a hollow fiber that forms voids in the carbon body and has the function of adsorbing trace substances in gases and liquids. This [t is produced by a method in which a solid fiber obtained by melt-spinning a phenolic resin is partially crosslinked with a crosslinking agent, and then the uncrosslinked portion is eluted with a solvent and the resulting hollow fiber is carbonized. Therefore, it does not have a microporous dense layer and has relatively large voids even near the densest surface, making it extremely brittle, with poor form stability and formability, and due to the linear pressure in practical use. It also has the disadvantage of easily losing its shape. Furthermore, even if a carbon material with such a rough structure is used, the function of a separation membrane cannot be achieved, and the accuracy of so-called ordinary filter paper has been slightly improved. Furthermore, JP-A-54-151622 discloses an inorganic hollow L membrane for fluid separation. This is an inorganic hollow fiber that has giant voids anisotropically in the sense that the direction changes perpendicular to the fiber axis. However, this is a hollow fiber of ceramics such as so-called metals such as nickel and iron, or oxides of these metals, and is not a hollow fiber of carbon, which is usually the subject of debate as to whether it is inorganic or organic. In other words, carbon materials other than diamond do not have a crystalline structure like general inorganic materials, but are clearly different in that they consist of planar molecules made up of six-carbon rings connected in a graphite structure. Because of their structure, carbon materials can form intercalation compounds, and they are used as electrical materials or reinforcing materials by taking advantage of their low specific gravity and superior mechanical properties per weight compared to general inorganic materials. It is well known that And, the fraction 111 made of carbon that has a characteristic structure like this
There has never been an example of 1tl#.

本発明は、かかる従来技術に鑑み、分離能を有する多孔
質層と透過速度を制御する多孔質層が複合されてなる炭
素膜が、極めて優れた分離機能を発揮する事実を究明し
、本発明に到達した。
In view of such prior art, the present invention has investigated the fact that a carbon membrane composed of a porous layer having separation ability and a porous layer that controls permeation rate exhibits an extremely excellent separation function. reached.

(発明の目的) 本発明は、卓抜した耐熱性、耐薬品性、耐圧強度を有し
、しかも、低圧損で溶媒と溶質の分離あるいは混合流体
の分離が可能な炭素膜を提供することを目的とする。
(Object of the invention) The object of the present invention is to provide a carbon membrane that has outstanding heat resistance, chemical resistance, and pressure resistance, and is also capable of separating solvent and solute or mixed fluid with low pressure loss. shall be.

(発明の構成) (1〉 分離能を有する多孔質層と、最大孔径が5μ以
上であるボイドを有する透過速度を制御する多孔質層が
複合されてなる炭素膜。
(Structure of the Invention) (1) A carbon membrane comprising a composite of a porous layer having separation ability and a porous layer controlling permeation rate having voids with a maximum pore diameter of 5 μ or more.

(構成の説明) 本発明の炭素膜は、たとえば、気体分離、逆浸透、超濾
過、透析、限外濾過などに用いることができる。
(Description of Structure) The carbon membrane of the present invention can be used, for example, in gas separation, reverse osmosis, ultrafiltration, dialysis, ultrafiltration, and the like.

本発明でいう分離能を有する多孔質層(以下層1という
)とは分離機能を発揮する程度の緻密度を有する多孔性
層であればよく、通常、平均孔径が1μ以下、好ましく
は0.5μ以下、さらに好ましくは0.1μ以下である
孔からなる微多孔性の緻密層であるが、好適には、かか
る緻密層は気体透過性またーは液体透過性である範囲た
とえば平均孔径が人単位のものであり、通常、数100
Å以下で、気体の場合には、その拡散速度が問題になる
自由体積の大きさまでの範囲のいずれかの孔で構成され
ているものが、分離能の点から好ましい。また、層1は
必ずしも均一である必要はなく、膜の厚さ方向に移動す
るにつれて平均孔径が変化するものであってもよい。そ
して、一番緻密な層の厚さは、その層の平均孔径以上あ
れば薄ければ薄いほど好ましい。
In the present invention, the porous layer having separation ability (hereinafter referred to as layer 1) may be any porous layer having a density sufficient to exhibit the separation function, and usually has an average pore diameter of 1 μm or less, preferably 0.5 μm or less. A microporous dense layer consisting of pores of 5μ or less, more preferably 0.1μ or less, but preferably such a dense layer has a gas permeable or liquid permeable range, e.g. It is a unit, usually number 100.
From the viewpoint of separation ability, it is preferable that the pores be comprised of pores in the range of 1.5 Å or less, and in the case of gases, up to the size of the free volume in which the diffusion rate becomes an issue. Further, the layer 1 does not necessarily have to be uniform, and the average pore size may change as it moves in the thickness direction of the film. The thickness of the densest layer is preferably equal to or greater than the average pore diameter of that layer.

一方、本発明でいう透過速度を制御する多孔質層(以下
層2という)とは機械的強度には大きく貢献するが、分
離能には関係なくしかも圧力損失がなく流体が移動でき
る程度の多孔度を有する多孔質層であればよいが、通常
、最大孔径が5μ以上、好ましくは10μ以上のボイド
を含むものがよい。一方、ボイドの形状には特に制限は
ないが、細管状(円錐形も含む)のものが好ましい。そ
して、層2の形状としては、好適には細管状のボイドが
その長手方向が膜の厚さ方向に平行に並んで構成された
ものが、膜の機械的強度の低下が少なくて、透過速度を
大きく改善できるという点で好ましい。 本発明の特徴
は、層1と層2が・複合してなる膜構造にある。層1が
ない膜では分離作用に限界があり、精度的にも劣悪であ
るばかりでなく、膜の機械的強度や実用性の点でも、も
ろくて耐久性に劣る欠点がある。かかる層1は1層あれ
ばよく、好ましくはその厚さは、全膜厚の1/2以下、
さらに好ましくは1/3以下であり、薄くとも膜厚の1
150.好ましくは1/30以上であると共に、分離能
ならびに機械的特性の点から、少なくとも500人、好
ましくは0.1μ以上、さらに好ましくは1μ以上であ
る。かかる要件は所望する分離能ならびに膜特性に応じ
て適宜決定することができる。
On the other hand, the porous layer that controls the permeation rate (hereinafter referred to as layer 2) in the present invention is a porous layer that greatly contributes to mechanical strength, but is not related to separation ability and is porous to the extent that fluid can move without pressure loss. Although any porous layer may be used as long as the porous layer has a porosity, it is usually a porous layer containing voids with a maximum pore size of 5 μm or more, preferably 10 μm or more. On the other hand, the shape of the void is not particularly limited, but a tubular shape (including a conical shape) is preferable. The shape of layer 2 is preferably one in which tubular voids are arranged in parallel to the thickness direction of the membrane, since this reduces the decrease in mechanical strength of the membrane and increases the permeation rate. This is preferable in that it can greatly improve . The feature of the present invention lies in the membrane structure formed by combining layer 1 and layer 2. A membrane without layer 1 has a limited separation effect and is not only poor in accuracy, but also has the drawbacks of being brittle and having poor durability in terms of mechanical strength and practicality. It is sufficient that there is only one layer 1, and the thickness thereof is preferably 1/2 or less of the total film thickness,
More preferably, it is 1/3 or less, and at least 1/3 of the film thickness.
150. It is preferably 1/30 or more, and from the viewpoint of separation ability and mechanical properties, it is at least 500 people, preferably 0.1 μ or more, more preferably 1 μ or more. Such requirements can be determined as appropriate depending on the desired separation ability and membrane properties.

本発明ではかかる層1が膜の表裏面に存在するのが、い
ずれの方向からの分離にも使うことができ、しかもいず
れの方向への折り曲げに対しても強いという点で好まし
い。
In the present invention, it is preferable that the layer 1 is present on the front and back surfaces of the membrane because it can be used for separation from any direction and is strong against bending in any direction.

一方、層2の厚さは、薄くとも膜厚の115以上、好ま
しくは1/2以上、好適には層1を除く全領域を占める
ものが好ましい。かかる層を有する膜では該層のない膜
に比べて大幅に透過速度が改良される。
On the other hand, the thickness of the layer 2 is preferably at least 115 or more, preferably 1/2 or more of the film thickness, and preferably occupies the entire area excluding the layer 1. Membranes with such a layer have significantly improved permeation rates compared to membranes without such a layer.

本発明にお【プる層1を除く層は、層2を含めて、層1
の平均孔径以上大きさの孔からなる多孔性層でなければ
ならない。
Layers other than layer 1 included in the present invention include layer 2, layer 1
It must be a porous layer consisting of pores with a size greater than or equal to the average pore diameter of the material.

本発明でいう炭素分離膜とは実質的に炭素で構成された
平膜ならびに中空膜であり、炭化躾ならびに黒鉛化膜の
いずれをも包含するものである。
The carbon separation membrane as used in the present invention refers to flat membranes and hollow membranes substantially composed of carbon, and includes both carbonized membranes and graphitized membranes.

なかでも中空繊維膜はモジュールとして使う場合単位体
積当りの膜面積が大きくできるという点で平膜よりもす
ぐれている。通常外径が10μ〜1Qmmで、中空率(
系全体に対して中空部が占める体積割合)が10〜90
%であるが、外径が50μ〜lll1mで、中空率50
〜80%であるものが分’ 1lllit□、工よ、ア
よ、。、。
Among these, hollow fiber membranes are superior to flat membranes in that when used as a module, the membrane area per unit volume can be increased. Usually the outer diameter is 10μ to 1Qmm, and the hollow rate (
The volume ratio occupied by the hollow part to the entire system is 10 to 90.
%, but the outer diameter is 50 μ to 1 m and the hollow ratio is 50
~80% is 1lllit□, engineering, ayo. ,.

本発明の分離膜は、かかる炭素構造体であるが、さらに
該構造体上に分離機能を改善、向上する他種の膜、たと
えば高分子膜などをコーティングすることも目的に応じ
てできる。
Although the separation membrane of the present invention is such a carbon structure, it is also possible to further coat the structure with another type of membrane, such as a polymer membrane, which improves the separation function, depending on the purpose.

本発明を図面により説明する。第1図は本発明の炭素膜
の1例であり、その断面形状を示す顕微鏡写真(200
0倍)である。図中1.2は層1.3は層2であり、全
体的に観察するとダンボール構造を有する。
The present invention will be explained with reference to the drawings. Figure 1 is an example of the carbon membrane of the present invention, and a micrograph (200 mm) showing its cross-sectional shape is shown.
0 times). In the figure, layer 1.2 is layer 2, and when observed as a whole, it has a cardboard structure.

本発明の炭素分離膜の製造方法について、以下説明する
The method for manufacturing the carbon separation membrane of the present invention will be explained below.

本発明の炭素膜の原料膜を得るための重合体として、た
とえば、セルロース、セルロースエステル、ポリアミド
、ポリエステル、ポリウレタン、ポリウレア、ポリイミ
ン、ポリイミド、ポリエーテル、ポリスルフィド、ポリ
スルホン、ポリオレフィン、ポリスチレン、ポリフェニ
レン、ポリアセチレン、ポリビニルアルコール、ポリア
クリロニトリル、ピッチ等があげられるが、なかでも焼
成後の膜強度、形態安定性の点からポリアクリロニトリ
ル系重合体が好ましい。
Examples of polymers for obtaining the raw material membrane for the carbon membrane of the present invention include cellulose, cellulose ester, polyamide, polyester, polyurethane, polyurea, polyimine, polyimide, polyether, polysulfide, polysulfone, polyolefin, polystyrene, polyphenylene, polyacetylene, Examples include polyvinyl alcohol, polyacrylonitrile, pitch, etc., but polyacrylonitrile polymers are particularly preferred from the viewpoint of film strength and morphological stability after firing.

本発明は、かかる重合体を各重合体に適合した製yA(
製糸)条件のもとに適宜製膜してボイド構造の膜を得る
。たとえば、ポリアクリロニトリル系では湿式製膜で凝
固速度を速くすることによりボイドが生成する。
The present invention is directed to manufacturing yA (
A membrane with a void structure is obtained by forming a membrane under appropriate conditions (thread spinning). For example, in the case of polyacrylonitrile, voids are generated by increasing the solidification rate during wet film formation.

このようにして1qたボイドを含んだ膜を延伸せずに炭
化するが、炭化は通常の方法に従っておこなう。たとえ
ば、ポリアクリロニトリルを原料ポリマとする場合、炭
化処理には500〜2000℃の温度が適用されるが、
その前に炭化を安定に達成するために耐炎化と呼ばれる
酸化処理が行なわれるっ耐炎化は酸性雰囲気下で150
〜400℃、好ましくは200〜300℃の条件下で行
なわれる。
The film containing 1 q of voids thus obtained is carbonized without being stretched, and the carbonization is carried out according to a conventional method. For example, when polyacrylonitrile is used as a raw material polymer, a temperature of 500 to 2000°C is applied to the carbonization treatment.
Before that, an oxidation treatment called flame resistance is performed to achieve stable carbonization.Flame resistance is 150% in an acidic atmosphere.
It is carried out under conditions of -400°C, preferably 200-300°C.

炭化は、通常、窒素やアルゴンなどの不活性雰囲気下で
行なわれるものである。かかる炭化の後に、さらに、不
活性雰囲気下で2000〜3000℃という高温で熱処
理して黒鉛化することもできる。
Carbonization is usually carried out under an inert atmosphere such as nitrogen or argon. After such carbonization, graphitization can be carried out by further heat treatment at a high temperature of 2000 to 3000° C. in an inert atmosphere.

(発明の効果) 本発明は耐熱性、耐薬品性が卓越している。(Effect of the invention) The present invention has excellent heat resistance and chemical resistance.

しかも、炭素は通常の無機物からなる膜に比べて多孔度
が任意に変えられるという特徴があるうえに、その分離
効果ならびに機械的特性、形態安定性にすぐれており、
成形時ならびに実用時の膜構造の崩れの心配がなく、分
離操作が安定して行なえ、かつ耐久性にも優れたもので
ある。
Furthermore, compared to ordinary inorganic membranes, carbon has the characteristic that its porosity can be changed arbitrarily, and it also has excellent separation effects, mechanical properties, and morphological stability.
There is no fear of the membrane structure collapsing during molding or practical use, the separation operation can be performed stably, and it has excellent durability.

以下本発明について実施例をあげてさらに説明する。The present invention will be further explained below with reference to Examples.

実施例 1 アクリル酸メチル2.0モル%、アリルスルホン酸ソー
ダ1.0モル%を共重合させたポリアクリロニトリルに
、アクリロニトリル含量が27重量%であるアクリロニ
トリル−スチレン共重合体を10重量%混合した混合物
のジメチルスルホキシド溶液を、中空糸用芯鞘型口金を
用いて湿式紡糸して未延伸中空フィラメントを得た。こ
のフィラメントはボイドを含んでいた。
Example 1 10% by weight of an acrylonitrile-styrene copolymer having an acrylonitrile content of 27% by weight was mixed with polyacrylonitrile copolymerized with 2.0% by mole of methyl acrylate and 1.0% by mole of sodium allylsulfonate. A dimethyl sulfoxide solution of the mixture was wet-spun using a core-sheath type die for hollow fibers to obtain undrawn hollow filaments. This filament contained voids.

この中空糸を金枠に固定して、収縮率10.2%の制限
収縮状態で、260℃で1時間熱風処理して耐炎化した
。得られた耐炎化中空糸の外径/内径は870μ/79
0μであった。
This hollow fiber was fixed to a metal frame and subjected to hot air treatment at 260° C. for 1 hour in a limited shrinkage state with a shrinkage rate of 10.2% to make it flame resistant. The outer diameter/inner diameter of the obtained flame-resistant hollow fiber is 870μ/79
It was 0μ.

この糸をさらにアルゴン雰囲気下、1200±5℃で4
5分間焼成して炭化したが、この炭化中21.8%の収
縮を示し、外径/内径は680μ/620μとなった。
This thread was further heated at 1200±5°C for 4 hours under an argon atmosphere.
Carbonization was performed by firing for 5 minutes, but during carbonization it showed a shrinkage of 21.8%, and the outer diameter/inner diameter was 680μ/620μ.

この炭素分離膜の断面を電子顕微鏡で観察したところ、
第1図のように膜の外表面に極めて緻密な層1、内表面
には薄い緻密層を表面に持つ多孔質の層1を有し、かつ
その間に長さが約20μ、太さが約8μの細管状のボイ
ドが放射状に並んだ層2を有していた。1I11.密層
1の厚さは1.0μであり、多孔質層2の表面の緻密層
は20OAであった。
When we observed the cross section of this carbon separation membrane using an electron microscope, we found that
As shown in Figure 1, the membrane has an extremely dense layer 1 on its outer surface, and a porous layer 1 with a thin dense layer on its inner surface, with a length of approximately 20μ and a thickness of approximately It had a layer 2 in which 8 micron tubular voids were arranged radially. 1I11. The thickness of the dense layer 1 was 1.0 μm, and the dense layer on the surface of the porous layer 2 was 20 OA.

この炭素膜を用いて各種気体の透過速度を0゜5−・C
11l−2の圧で測定した。結果を下記に示す。
Using this carbon membrane, the permeation rate of various gases can be reduced to 0°5-・C.
Measured at a pressure of 11 l-2. The results are shown below.

P (1−1e )=6.’9×、10−4cm3−c
m−2・’sea −1−cmf−1g−1 P(N2)−4,1x10− 4cm& −am−2−
8ec ”’ 1 −cIlll−1g −1P(02
>−3,7X10− 4co+3 −cm−2−8eC
−1−cml−1”” I P (CO2> −3,3X10−4cm3−cm−2
−sec −1−cm)Ig −1 であった。
P(1-1e)=6. '9x, 10-4cm3-c
m-2・'sea -1-cmf-1g-1 P(N2)-4,1x10- 4cm& -am-2-
8ec ”' 1 -cIllll-1g -1P(02
>-3,7X10-4co+3-cm-2-8eC
-1-cml-1"" I P (CO2> -3,3X10-4cm3-cm-2
-sec-1-cm)Ig-1.

【図面の簡単な説明】 第1図は本発明の炭素膜の断面構造の1例を示す電子顕
微鏡写真(2000倍)である。 図中 1:層1(表面部) 2:層1 (It曲面部 3:層2 特許出願人 東 し 株 式 会 社 手 続 補 正 書(方式) %式% 1、事件の表示 昭和59年特許願第56248号 2、発明の名称 炭素膜 3、補正をする者 事件との関係 特許出願人 任 所 東京都中央区日本橋室町2丁目2番地5、補正
により増加する発明の数 なし6、補正の対象 (1)本願明細書第12頁第9行の[炭素膜の断面構造
の1例」を[炭素膜の1例である繊維の形状」と補正す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an electron micrograph (2000x magnification) showing an example of the cross-sectional structure of the carbon film of the present invention. In the diagram, 1: Layer 1 (surface part) 2: Layer 1 (It curved part 3: Layer 2 Patent applicant Toshi Co., Ltd. Company procedure amendment (method) % formula % 1, Incident display 1982 Patent Application No. 56248 2, Name of the invention Carbon Film 3, Relationship with the case of the person making the amendment Patent applicant location 2-2-5 Nihonbashi Muromachi, Chuo-ku, Tokyo Number of inventions increased by amendment None 6, Amendment Subject (1) "An example of a cross-sectional structure of a carbon film" in line 9 of page 12 of the present specification is corrected to "shape of a fiber that is an example of a carbon film."

Claims (1)

【特許請求の範囲】[Claims] (1)分離能を有する多孔質層と、最大孔径が5μ以上
であるボイドを有する透過速度を制御する多孔質層が複
合されてなる炭素膜。
(1) A carbon membrane comprising a composite of a porous layer with separation ability and a porous layer with voids having a maximum pore size of 5 μm or more and controlling permeation rate.
JP59056248A 1984-03-26 1984-03-26 Carbon membrane Granted JPS60202703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056248A JPS60202703A (en) 1984-03-26 1984-03-26 Carbon membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056248A JPS60202703A (en) 1984-03-26 1984-03-26 Carbon membrane

Publications (2)

Publication Number Publication Date
JPS60202703A true JPS60202703A (en) 1985-10-14
JPH0468967B2 JPH0468967B2 (en) 1992-11-04

Family

ID=13021784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056248A Granted JPS60202703A (en) 1984-03-26 1984-03-26 Carbon membrane

Country Status (1)

Country Link
JP (1) JPS60202703A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287408A (en) * 1985-06-10 1986-12-17 ル・カルボンヌ・ロレ−ヌ Support of mineral membrane for separation technique and itsproduction
JPS6455383A (en) * 1987-07-24 1989-03-02 State Obu Isuraeru Atom Energ Carbon film and its procuction
US5160616A (en) * 1988-12-12 1992-11-03 Public Health Laboratory Service Board Filtering apparatus
JPH04326930A (en) * 1991-04-24 1992-11-16 Agency Of Ind Science & Technol Production of molecular sieve carbon membrane
US5746200A (en) * 1990-10-19 1998-05-05 Draenert; Klaus Trabecula nasal filter having both macropores and micropores
US5993716A (en) * 1990-10-19 1999-11-30 Draenert; Klaus Material and process for its preparation
KR100325343B1 (en) * 1997-12-24 2002-05-09 신현준 Process for producing carbon membrane
JP2007054693A (en) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology Particulate-dispersed tubular membrane and its manufacturing method
KR20170036682A (en) * 2014-07-24 2017-04-03 도레이 카부시키가이샤 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464083A (en) * 1977-10-31 1979-05-23 Mitsubishi Rayon Co Ltd High performance semipermeable membrane and its manufacture
JPS5545866A (en) * 1978-09-27 1980-03-31 Mitsubishi Rayon Co Ltd Production of hollow carbon fiber
JPS5898413A (en) * 1981-11-30 1983-06-11 Asahi Medical Kk Production of hollow fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464083A (en) * 1977-10-31 1979-05-23 Mitsubishi Rayon Co Ltd High performance semipermeable membrane and its manufacture
JPS5545866A (en) * 1978-09-27 1980-03-31 Mitsubishi Rayon Co Ltd Production of hollow carbon fiber
JPS5898413A (en) * 1981-11-30 1983-06-11 Asahi Medical Kk Production of hollow fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287408A (en) * 1985-06-10 1986-12-17 ル・カルボンヌ・ロレ−ヌ Support of mineral membrane for separation technique and itsproduction
JPH04689B2 (en) * 1985-06-10 1992-01-08 Lorraine Carbone
JPS6455383A (en) * 1987-07-24 1989-03-02 State Obu Isuraeru Atom Energ Carbon film and its procuction
US5160616A (en) * 1988-12-12 1992-11-03 Public Health Laboratory Service Board Filtering apparatus
US5746200A (en) * 1990-10-19 1998-05-05 Draenert; Klaus Trabecula nasal filter having both macropores and micropores
US5993716A (en) * 1990-10-19 1999-11-30 Draenert; Klaus Material and process for its preparation
JPH04326930A (en) * 1991-04-24 1992-11-16 Agency Of Ind Science & Technol Production of molecular sieve carbon membrane
KR100325343B1 (en) * 1997-12-24 2002-05-09 신현준 Process for producing carbon membrane
JP2007054693A (en) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology Particulate-dispersed tubular membrane and its manufacturing method
KR20170036682A (en) * 2014-07-24 2017-04-03 도레이 카부시키가이샤 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
JPWO2016013676A1 (en) * 2014-07-24 2017-07-20 東レ株式会社 Fluid separation carbon membrane, fluid separation membrane module, and method for producing fluid separation carbon membrane

Also Published As

Publication number Publication date
JPH0468967B2 (en) 1992-11-04

Similar Documents

Publication Publication Date Title
KR101989901B1 (en) Filter media, method for manufacturing thereof and Filter module comprising the same
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JP6623758B2 (en) Solvent-resistant separation membrane
JPS61209027A (en) Gas permselective membrane
JPS60202703A (en) Carbon membrane
JPH0588B2 (en)
JPH0525529B2 (en)
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JPH04326930A (en) Production of molecular sieve carbon membrane
JP2899347B2 (en) Porous hollow fiber membrane
JP2899352B2 (en) Porous hollow fiber membrane
Askari et al. Parametric optimization of poly (ether sulfone) electrospun membrane for effective oil/water separation
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
TW200950877A (en) Hollow filament-membrane and preparation methods thereof
JPS62102801A (en) Selective permeable hollow composite fiber
JPH02277529A (en) Separating membrane for permeation-vaporization method and separation therewith
KR100454153B1 (en) A hollow fiber membrane made of polyacrylonitrile and a preparation method thereof
JP2016036776A (en) Solvent-resistant separation film
JPH0364176B2 (en)
JP2954327B2 (en) Porous hollow fiber membrane
JP2002306936A (en) High heat-resistant porous tubular membrane and method for manufacturing the same
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
JPH0696105B2 (en) Method for producing aromatic polysulfone hollow fiber membrane
JPS6240042B2 (en)