JP2550543B2 - Polyacrylonitrile-based hollow fiber membrane and method for producing the same - Google Patents

Polyacrylonitrile-based hollow fiber membrane and method for producing the same

Info

Publication number
JP2550543B2
JP2550543B2 JP61267749A JP26774986A JP2550543B2 JP 2550543 B2 JP2550543 B2 JP 2550543B2 JP 61267749 A JP61267749 A JP 61267749A JP 26774986 A JP26774986 A JP 26774986A JP 2550543 B2 JP2550543 B2 JP 2550543B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polyacrylonitrile
acrylonitrile
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61267749A
Other languages
Japanese (ja)
Other versions
JPS63123403A (en
Inventor
昌弘 辺見
和実 田中
政治 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61267749A priority Critical patent/JP2550543B2/en
Publication of JPS63123403A publication Critical patent/JPS63123403A/en
Application granted granted Critical
Publication of JP2550543B2 publication Critical patent/JP2550543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高性能のポリアクリロニトリル系限外過用
中空糸膜さらに詳しくは透水性が高く、しかも孔径が小
さく孔径分布が狭い高性能ポリアクリロニトリル系限外
過用中空糸膜およびその製造法に関する。
TECHNICAL FIELD The present invention relates to a high-performance polyacrylonitrile-based ultrafiltration hollow fiber membrane, more specifically, high-performance polyacrylonitrile having high water permeability, a small pore size, and a narrow pore size distribution. TECHNICAL FIELD The present invention relates to a hollow fiber membrane for ultrafiltration and a method for producing the same.

(従来の技術) 従来、食品工業、医療分野、電子工業分野など数々の
分野で有効成分の濃縮あるいは回収、または造水など
に、セルロースアセテート,ポリアクリロニトリル,ポ
リオレフィンなどの限外過膜を用いる方法が検討され
ている。限外過膜に要求される性能としては、特に透
水性が大きいこと,溶質の分離能が高いこと,などであ
る。その中でポリアクリロニトリル系限外過膜は、セ
ルロースアセテートより化学的安定性にすぐれ、機械特
性も良く疎水性材料でありながら水に濡れ易いという特
徴を持っており、優れた限外過膜が形成されることが
例えば特公昭52−15072号公報,特公昭53−31106号公報
に記されている。
(Prior Art) Conventionally, a method using an ultra-permeation membrane such as cellulose acetate, polyacrylonitrile, or polyolefin for concentration or recovery of active ingredients or water production in various fields such as food industry, medical field, and electronic industry field. Is being considered. The performance required for the ultrafiltration membrane is particularly high water permeability and high solute separation ability. Among them, polyacrylonitrile-based ultrapermeability membrane has superior chemical stability than cellulose acetate, has good mechanical properties, is a hydrophobic material, and has the characteristic of being easily wet with water. The formation is described in, for example, Japanese Patent Publication Nos. 52-15072 and 53-31106.

前者は、いわゆる緻密層を持たず、傾斜型多孔質層と
網状多孔質構造体とからなるものであり、後者は、比較
的重合体濃度の高い溶液を用いる製造法である。しか
し、いずれの膜も分離能力または過能力が不十分で、
さらに向上することが要求されている。
The former has a so-called dense layer and is composed of a graded porous layer and a reticulated porous structure, and the latter is a production method using a solution having a relatively high polymer concentration. However, neither membrane has sufficient separation or overcapacity,
Further improvement is required.

本発明者らは、かかる現状に鑑み鋭意研究を進めた結
果、本発明をなすに至った。
The inventors of the present invention have completed the present invention as a result of earnest researches in view of the present situation.

(発明が解決しようとする問題点) すなわち、本発明の目的は、従来のポリアクリロニト
リル系限外過用中空糸膜に比較して分離能力および
過能力が高く、両者のバランスが取れた中空糸膜を提供
するにある。
(Problems to be Solved by the Invention) That is, the object of the present invention is a hollow fiber having a high separation capacity and a high capacity as compared with a conventional polyacrylonitrile-based ultra-use hollow fiber membrane, and a well-balanced hollow fiber. To provide a membrane.

(問題点を解決するための手段) 本発明は、次の構成を有する。(Means for Solving Problems) The present invention has the following configurations.

(1)超高重合度のアクリロニトリル系重合体と親水性
基を含むアクリロニトリル系共重合体とのブレンド体か
らなることを特徴とするポリアクリロニトリル系中空糸
膜。
(1) A polyacrylonitrile-based hollow fiber membrane comprising a blend of an acrylonitrile-based polymer having an ultrahigh degree of polymerization and an acrylonitrile-based copolymer containing a hydrophilic group.

(2)超高重合度のアクリロニトリル系重合体の極限粘
度が2.0以上である特許請求の範囲第(1)項に記載の
ポリアクリロニトリル系中空糸膜。
(2) The polyacrylonitrile-based hollow fiber membrane according to claim (1), wherein the acrylonitrile-based polymer having an ultrahigh degree of polymerization has an intrinsic viscosity of 2.0 or more.

(3)超高重合度のアクリロニトリル系重合体と親水性
基を含むアクリロニトリル系共重合体とのブレンド体か
らなり、かつ全重合体濃度が5〜15重量%である有機溶
媒溶液を用いて製糸することを特徴とするポリアクリロ
ニトリル系中空糸膜の製造法。
(3) Spinning using an organic solvent solution consisting of a blend of an acrylonitrile-based polymer having an ultrahigh degree of polymerization and an acrylonitrile-based copolymer containing a hydrophilic group and having a total polymer concentration of 5 to 15% by weight A method for producing a polyacrylonitrile-based hollow fiber membrane, which comprises:

(4)製糸が乾湿式法により行なわれる特許請求の範囲
第(3)項に記載のポリアクリロニトリル系中空糸膜の
製造法。
(4) The method for producing a polyacrylonitrile-based hollow fiber membrane according to claim (3), wherein the spinning is performed by a dry-wet method.

本発明の特徴は、超高重合度のアクリロニトリル系重
合体(以下AN系重合体と略称する)を用い、低い重合体
濃度で製糸することにある。
A feature of the present invention is that an acrylonitrile-based polymer (hereinafter, abbreviated as AN-based polymer) having an ultra-high degree of polymerization is used and yarn is formed at a low polymer concentration.

超高重合度のAN系重合体の有機溶媒溶液は、凝固する
際に緻密な層を形成しやすく、さらに、該溶液の重合体
濃度が低ければ、緻密層は薄くなりその内側は比較的大
きな孔径の多孔質または網状の構造を持つようになる。
このような膜構造を持つものは、限外過速度(UFR)
が大きくなり、溶媒の透過性が高く、かつ緻密層が存在
するために分離能力も優れ、十分な機械的強度を保持し
ている。
An organic solvent solution of an AN polymer with an ultra-high degree of polymerization easily forms a dense layer when solidifying, and if the polymer concentration of the solution is low, the dense layer becomes thin and the inside is relatively large. It has a porous or network structure with a pore size.
Those with such a membrane structure have an ultra fast velocity (UFR)
Is large, the solvent permeability is high, and the presence of the dense layer also provides excellent separation ability, and maintains sufficient mechanical strength.

本発明の中空糸膜は、第1図〜第3図に示すような構
造を有している。すなわち、膜表面に0.1〜0.3μmの緻
密層(スキン層)を持ち、その内側数μmは多孔質構
造、さらにその内側は巨大ボイドを有する網状構造であ
り、それ故、高い分離能力と過能力を合わせ持ち、か
つ十分な機械的強度を保持しているのである。
The hollow fiber membrane of the present invention has a structure as shown in FIGS. That is, the membrane surface has a dense layer (skin layer) of 0.1 to 0.3 μm, a few μm inside is a porous structure, and the inside is a network structure with huge voids, and therefore high separation ability and overcapacity. And has sufficient mechanical strength.

本発明における主成分として含む超高重合度のAN系重
合体とは、極限粘度が2.0以上、好ましくは2.5〜3.6、
さらに好ましくは2.9〜3.3という特定の重合度を有する
ものである。さらに該重合体は、ANを少くとも90モル
%,好ましくは95〜100モル%と該ANに対して共重合性
を有するビニル化合物5モル%以下、好ましくは0〜5
モル%とからなるANホモポリマもしくはAN系共重合体で
ある。
The AN-based polymer having an ultra-high degree of polymerization as a main component in the present invention has an intrinsic viscosity of 2.0 or more, preferably 2.5 to 3.6,
More preferably, it has a specific degree of polymerization of 2.9 to 3.3. Further, the polymer contains at least 90 mol% of AN, preferably 95 to 100 mol% and not more than 5 mol% of a vinyl compound having copolymerizability with the AN, preferably 0 to 5 mol%.
It is an AN homopolymer or AN-based copolymer composed of 1 mol%.

上記ビニル化合物としては、公知の各種ANに対して共
重合性を有する化合物であればよく、特に限定されない
が、好ましい共重合成分としては、アクリル酸,イタコ
ン酸,アクリル酸メチル,メタクリン酸メチル,酢酸ビ
ニル,アリルスルホン酸ソーダ,メタリルスルホン酸ソ
ーダ,P−スチレンスルホン酸ソーダなどを例示すること
ができる。
The vinyl compound may be any known compound having copolymerizability with various ANs, and is not particularly limited, but preferable copolymerization components include acrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, Examples thereof include vinyl acetate, sodium allyl sulfonate, sodium methallyl sulfonate, and sodium P-styrene sulfonate.

本発明において、AN系重合体を溶解する有機溶媒は、
ANに使用される溶剤であればよく、ジメチルスルホキシ
ド(DMSO),ジメチルホルムアミド(DMF),ジメチル
アセトアミド(DMAC),エチレンカーボネート,ブチル
ラクトンなどを例示することができるが、特にDMSOが好
ましく選択され得られた重合体溶液が紡糸原液として使
用される。
In the present invention, the organic solvent that dissolves the AN polymer is
Any solvent can be used as long as it is used for AN, and dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAC), ethylene carbonate, butyl lactone and the like can be exemplified, but DMSO can be particularly preferably selected. The obtained polymer solution is used as a spinning dope.

しかしながら、この紡糸原液の全重合体濃度は、約5
〜15重量%、好ましくは8〜13%の範囲内のものがよ
く、全重合体濃度が5%よりも低くなると、緻密層を形
成しにくくなるばかりでなく、機械的強度が不十分で使
用に耐えなくなる。一方、全重合体濃度が15%を超える
と、緻密層が厚くなりすぎたり、多孔質層・網状構造層
の孔径が小さくなったりして、過能力が著しく低下
し、また粘度が高くなることによって紡糸性が悪くなる
ため好ましくない。
However, the total polymer concentration of this spinning dope is about 5
-15% by weight, preferably 8-13%, and if the total polymer concentration is lower than 5%, not only will it be difficult to form a dense layer, but the mechanical strength will be insufficient. Can not stand. On the other hand, if the total polymer concentration exceeds 15%, the dense layer becomes too thick, or the pore diameter of the porous layer / mesh structure layer becomes small, resulting in a marked decrease in overcapacity and an increase in viscosity. Therefore, the spinnability is deteriorated, which is not preferable.

本発明において、超高重合度のAN系重合体に親水基を
含むAN系共重合体をブレンドする目的としては、紡糸性
を良くすること,凝固性を変えることによって分離能力
を制御すること,高い親水性を必要とする分野に用いる
ことができるようにすること,などが例示できる。該AN
系共重合体とは、アクリロニトリル50重量%以上、アク
リロニトリルと共重合可能な公知の単量体1種又は2種
以上0〜50重量%からなる重合体である。本発明におけ
る親水性基を含むアクリロニトリル系共重合体に該親水
性基を付与する方法としては、アクリロニトリルと共重
合せしめる他の親水性基を含むビニルモノマー類と共重
合させる方法が挙げられる。かかる親水性基を含むビニ
ルモノマー類としては、 ヒドロキシエチルメタクリレート,アクリルアミド,メ
タクリルアミド,N−メチロールアクリルアミド,N−ビニ
ル−2−オキサゾリドン,ビニルピロリドン,ジメチル
アミノエチルメタクリレート,およびアクリル酸,メタ
クリル酸,イタコン酸,アクリルスルホン酸,メタリル
スルホン酸,ビニルベンゼンスルホン酸,2−アクリルア
ミド−2−メチルプロパンスルホン酸あるいはこれらの
塩を挙げるこどができるが、何らこれらに限定されるも
のではない。さらにかかる親水性基を含むビニルモノマ
ー類を加えた上で、さらに、その他のポリマー特性を調
整するためにエチルアクリレート,メチルアクリレー
ト,メチルメタクリレート,酢酸ビニル,プロピオン酸
ビニル,塩化ビニル,塩化ビニリデン,スチレン,ブタ
ジエン,イソプレン等の大きな親水性を有しない成分を
加えることも何等差し支えない。該AN系共重合体のブレ
ンド率は、80重量%以下,好ましくは60%以下,さらに
好ましくは40%以下であり、あまり高すぎると超高重合
度のAN系重合度の比率が下がって機械的強度が不十分に
なり、機械的強度を高めるために全重合体濃度を高める
と過能力が低下するため好ましくない。
In the present invention, the purpose of blending an AN-based copolymer containing a hydrophilic group with an AN-based polymer having an ultra-high degree of polymerization is to improve the spinnability and control the separation ability by changing the coagulability, For example, it can be used in a field requiring high hydrophilicity. The AN
The system copolymer is a polymer composed of 50% by weight or more of acrylonitrile and one or more known monomers of 0 to 50% by weight which are copolymerizable with acrylonitrile. Examples of the method of imparting the hydrophilic group to the acrylonitrile-based copolymer containing a hydrophilic group in the present invention include a method of copolymerizing with a vinyl monomer containing another hydrophilic group to be copolymerized with acrylonitrile. Vinyl monomers containing such hydrophilic groups include hydroxyethyl methacrylate, acrylamide, methacrylamide, N-methylol acrylamide, N-vinyl-2-oxazolidone, vinylpyrrolidone, dimethylaminoethyl methacrylate, and acrylic acid, methacrylic acid, and itacone. Examples of the acid include acrylic acid, acrylic sulfonic acid, methallyl sulfonic acid, vinylbenzene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and salts thereof, but the invention is not limited thereto. Furthermore, after adding vinyl monomers containing such a hydrophilic group, ethyl acrylate, methyl acrylate, methyl methacrylate, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, styrene for adjusting other polymer properties. There is no problem in adding components that do not have great hydrophilicity, such as butadiene, butadiene, and isoprene. The blending ratio of the AN copolymer is 80% by weight or less, preferably 60% or less, more preferably 40% or less. However, if the total polymer concentration is increased in order to increase the mechanical strength, the supercapacity decreases, which is not preferable.

また、透水量を高めるために、重合体溶液に水,アル
コール類,無機塩,またはポリエチレングリコール,ポ
リビニルピロリドンなどの他の高分子を加えても良い。
In addition, water, alcohols, inorganic salts, or other polymers such as polyethylene glycol and polyvinylpyrrolidone may be added to the polymer solution in order to increase the water permeability.

以下、本発明のポリアクリロニトリル系中空糸膜の製
法について述べる。
Hereinafter, the method for producing the polyacrylonitrile-based hollow fiber membrane of the present invention will be described.

本発明におけるポリアクロニトリル系中空糸膜は、極
限粘度2.0以上の超高重合度のアクリロニトリルを含む
アクリロニトリル系重合体を、前記有機溶媒を用いて全
重合体濃度を5〜15重量%の範囲内で紡糸原液を作製
し、これを乾湿式法によって紡糸することによって製造
できる。
The polyacrylonitrile-based hollow fiber membrane in the present invention is an acrylonitrile-based polymer containing acrylonitrile having an intrinsic viscosity of 2.0 or more and an ultra-high degree of polymerization, and the total polymer concentration using the organic solvent is within the range of 5 to 15% by weight. It can be produced by preparing a spinning dope in (1) and spinning it by a dry-wet method.

すなわち、具体的には、該溶液を鞘芯型中空糸用口金
を用いて鞘部より吐出し、芯部より気体または凝固液を
吐出して、気相中で0〜20分間有機溶媒を蒸発させ、こ
れを水と有機溶媒の混合液に浸漬し、ついで40℃未満の
温度にある水または水と非溶媒混合液中で処理を行い製
造する。水と有機溶媒の混合比は、有機溶媒が多すぎる
と凝固が遅く膜の内部まで緻密化し過能力が低下する
ため、40:60〜100:0の間で選択される。該混合液の温度
は、あまり高すぎると膜の収縮がおこり過能力が低下
するため、0℃〜70℃の間で選択される。
That is, specifically, the solution is discharged from the sheath using a sheath-core type hollow fiber die, and a gas or coagulating liquid is discharged from the core to evaporate the organic solvent in the gas phase for 0 to 20 minutes. Then, this is immersed in a mixed solution of water and an organic solvent, and then treated in water or a mixed solution of water and a non-solvent at a temperature of less than 40 ° C. to manufacture. The mixing ratio of water and the organic solvent is selected from 40:60 to 100: 0, because if the amount of the organic solvent is too large, coagulation is slowed down and the inside of the film is densified and the supercapacity is lowered. If the temperature of the mixed solution is too high, the shrinkage of the film will occur and the supercapacity will be lowered, so that the temperature is selected from 0 ° C to 70 ° C.

以下、実施例を示すが、これに限定されるものではな
い。
Examples will be shown below, but the invention is not limited thereto.

実施例における透水量(UFR)とは、中空糸膜の中空
部に水あるいは水溶液を流し、その際中空糸の膜を通し
て外部へ出てくる水の量を膜の有効面積,時間および圧
力で単位換算したものである。ここで、水−UFRは純水,
Alb−UFRは牛血清アルブミン(FractionV)水溶液を用
いた時の透水量を表わす。さらに、阻止率(Rjと略す)
とは、牛血清アルブミン等の溶質を含む水溶液(濃度C
i)を中空糸膜の内部に流し、膜を通して出てくる溶液
の濃度(Cd)を測定して次式より算出される値である。
The water permeability (UFR) in the examples means the amount of water flowing out through the hollow fiber membrane to the outside when the water or the aqueous solution is flown through the hollow portion of the hollow fiber membrane in units of effective area, time and pressure of the membrane. It is converted. Where water-UFR is pure water,
Alb-UFR represents the amount of water permeation when a bovine serum albumin (Fraction V) aqueous solution was used. Furthermore, the rejection rate (abbreviated as R j )
Is an aqueous solution containing a solute such as bovine serum albumin (concentration C
It is a value calculated by the following equation by flowing i) into the hollow fiber membrane and measuring the concentration (Cd) of the solution flowing out through the membrane.

また、重合体の極限粘度は、Journal of Polymer Sci
ence(A−1)第6巻,第147〜157頁(1968年)に記載
されている測定法に準じて、ジメチルホルムアミド(DM
F)を溶剤に使用し、30℃で測定した値である。
In addition, the intrinsic viscosity of the polymer is
ence (A-1) Vol. 6, pp. 147-157 (1968), according to the measuring method described in dimethylformamide (DM
It is a value measured at 30 ° C using F) as a solvent.

(実施例) 実施例1 アクリロニトリル100モル%[η]=3.2の重合体をDMSO
中で重合した、ポリマ濃度15.5重量%のものと,アクリ
ロニトリル97モル%,アクリル酸メチル2モル%,アリ
ルスルホン酸ソーダ1モル%,[η]=1.2の共重合体
をDMSO中で重合しポリマ濃度22.4重量%にしたものと
を、重合体と共重合体の比が8:2になるように混合し、D
MSOで希釈して全重合体濃度11.5重量%の紡糸原液を得
た。この原液を内径0.25mm,スリット巾0.075mmの鞘芯型
中空糸用口金を用いて鞘部よりこの紡糸原液を1.3cc/mi
nの速度で吐出した以外は実施例1と同様に、芯部に水
を注入して紡糸した。
(Example) Example 1 A polymer of acrylonitrile 100 mol% [η] = 3.2 was DMSO.
Polymerized in DMSO with a polymer having a polymer concentration of 15.5% by weight and a copolymer of acrylonitrile 97 mol%, methyl acrylate 2 mol%, sodium allylsulfonate 1 mol% and [η] = 1.2. 22.4 wt% concentration was mixed so that the ratio of polymer to copolymer was 8: 2, and D
It was diluted with MSO to obtain a spinning dope having a total polymer concentration of 11.5% by weight. The stock solution was spun at 1.3 cc / mi from the sheath using a sheath-core type hollow fiber spinneret with an inner diameter of 0.25 mm and a slit width of 0.075 mm.
Water was injected into the core and spinning was performed in the same manner as in Example 1 except that the liquid was discharged at a speed of n.

得られた中空糸の寸法は、内径220μm,膜厚55μm
で、微細構造は実施例1と同様であった。水−UFRは540
ml/h・mmHg・m2,Rj99.4%で5%Alb−UFRは84ml/h・mm
Hg・m2と非常に優れていた。
The dimensions of the obtained hollow fiber are: inner diameter 220μm, film thickness 55μm
The microstructure was the same as in Example 1. Water-UFR is 540
ml / h ・ mmHg ・ m 2 , R j 99.4% and 5% Alb-UFR is 84 ml / h ・ mm
It was very good with Hg · m 2 .

比較例1 アクリロニトリル97モル%,アクリル酸メチル2モル
%,アリルスルホン酸ソーダ1モル%,[η]=1.18の
共重合体をDMSO中で重合してポリマ濃度22.6%の紡糸原
液を得た。この原液を内径1.6mm,スリット巾0.2mmの鞘
芯型中空糸用口金を用いて、鞘部より0.8cc/minの速度
で吐出し、芯部に25mm水柱圧で窒素を導入して紡糸温度
60℃で吐出し、空気中(室温)を5mm通過させた後、30
℃の水中に導いて凝固させ、次いで水洗し巻き取った。
Comparative Example 1 A copolymer containing 97 mol% of acrylonitrile, 2 mol% of methyl acrylate, 1 mol% of allyl sulfonate and [η] = 1.18 was polymerized in DMSO to obtain a spinning dope having a polymer concentration of 22.6%. This stock solution was discharged at a rate of 0.8 cc / min from the sheath portion using a sheath-core type hollow fiber spinneret with an inner diameter of 1.6 mm and a slit width of 0.2 mm, and nitrogen was introduced into the core portion at a water column pressure of 25 mm to produce a spinning temperature.
Discharge at 60 ° C, pass 5 mm in air (room temperature), then 30
It was introduced into water at 0 ° C to solidify, then washed with water and wound up.

得られた中空糸膜の内径は225μm,膜厚は32μmで、
微細構造は緻密層を持たず、ほぼ均一な多孔質構造であ
り、水−UFRは105ml/h・mmHg・m2,Rj99.5%で5%Alb
−UFRが27ml/h・mmHg・m2と過性能はあまり良くなか
った。
The obtained hollow fiber membrane had an inner diameter of 225 μm and a membrane thickness of 32 μm.
The microstructure is a uniform porous structure without a dense layer, and water-UFR is 105 ml / h · mmHg · m 2 , R j 99.5% and 5% Alb.
-UFR was 27 ml / h · mmHg · m 2 and overperformance was not very good.

比較例2 アクリロニトリル97モル%,アクリル酸メチル2モル
%,アリルスルホン酸ソーダ1モル%,[η]=1.16の
共重合体をDMSO中で重合し希釈してポリマ濃度16.0%の
紡糸原液を得た。この原液を用いて実施例1と同様の方
法で紡糸した。得られた中空糸膜の寸法は、内径が215
μmで、厚い緻密層を持ち、水−UFR208ml/h・mmHg・
m2,Rj=99.8%で5%Alb−UFRは17ml/h・mmHg・m2
過性能はあまり良くなかった。
Comparative Example 2 A copolymer of acrylonitrile 97 mol%, methyl acrylate 2 mol%, sodium allyl sulfonate 1 mol%, [η] = 1.16 was polymerized in DMSO and diluted to obtain a spinning stock solution having a polymer concentration of 16.0%. It was Using this stock solution, spinning was carried out in the same manner as in Example 1. The dimensions of the obtained hollow fiber membrane are 215
μm, with a thick dense layer, water-UFR 208 ml / h ・ mmHg ・
With m 2 and R j = 99.8%, 5% Alb-UFR was 17 ml / h · mmHg · m 2 and the overperformance was not very good.

(発明の効果) 本発明のポリアクリロニトリル系中空糸膜は、分離能
力および過能力にすぐれ、かつ両者のバランスのとれ
た、限外過性能を有する。
(Effects of the Invention) The polyacrylonitrile-based hollow fiber membrane of the present invention has excellent separation performance and supercapacity, and also has a well-balanced ultraperformance.

特に、従来の中空糸膜以上に各種の産業分野に適用で
きる。たとえば、医療分野,食品分野,製薬関係,微生
物関連分野,電子工業,原子力発電,などの水処理分野
が挙げられる。
In particular, it can be applied to various industrial fields more than conventional hollow fiber membranes. Examples include water treatment fields such as medical fields, food fields, pharmaceutical fields, microbial fields, electronics industry, and nuclear power generation.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は、実施例1で得た中空糸膜繊維を超薄
切片法によって試料調整し、透過型電子顕微鏡によって
中空糸膜繊維の形状を観察したものであり、同じ部分を
それぞれ10,000倍,20,000倍,40,000倍で撮影したもので
ある。 一番内側の緻密な層は、厚さ0.1〜0.3μmで、200〜300
Åの微細な孔が存在している。さらに、数μmにわたっ
て比較的大きな孔を持った多孔質構造層が存在し、その
外側は巨大ボイドを含む網状構造層となり、一番内側の
層は他の部分と構造が異なっている。
1 to 3 show the hollow fiber membrane fibers obtained in Example 1, which were sample-adjusted by the ultrathin section method, and the shape of the hollow fiber membrane fibers was observed by a transmission electron microscope. These images were taken at 10,000x, 20,000x, and 40,000x, respectively. The innermost dense layer has a thickness of 0.1-0.3 μm and a thickness of 200-300
There are Å fine holes. Further, there is a porous structure layer having relatively large pores over several μm, the outside thereof is a network structure layer containing giant voids, and the innermost layer has a different structure from other parts.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超高重合度のアクリロニトリル系重合体と
親水性基を含むアクリロニトリル系共重合体とのブレン
ド体からなることを特徴とするポリアクリロニトリル系
中空糸膜。
1. A polyacrylonitrile-based hollow fiber membrane comprising a blend of an acrylonitrile-based polymer having an ultrahigh degree of polymerization and an acrylonitrile-based copolymer containing a hydrophilic group.
【請求項2】超高重合度のアクリロニトリル系重合体の
極限粘度が2.0以上である特許請求の範囲第(1)項に
記載のポリアクリロニトリル系中空糸膜。
2. A polyacrylonitrile-based hollow fiber membrane according to claim 1, wherein the acrylonitrile-based polymer having an ultrahigh degree of polymerization has an intrinsic viscosity of 2.0 or more.
【請求項3】超高重合度のアクリロニトリル系重合体と
親水性基を含むアクリロニトリル系共重合体とのブレン
ド体からなり、かつ全重合体濃度が5〜15重量%である
有機溶媒溶液を用いて製糸することを特徴とするポリア
クリロニトリル系中空糸膜の製造法。
3. An organic solvent solution comprising a blend of an acrylonitrile polymer having an ultrahigh degree of polymerization and an acrylonitrile copolymer having a hydrophilic group and having a total polymer concentration of 5 to 15% by weight is used. A method for producing a polyacrylonitrile-based hollow fiber membrane, which comprises:
【請求項4】製糸が乾湿式法により行なわれる特許請求
の範囲第(3)項に記載のポリアクリロニトリル系中空
糸膜の製造法。
4. The method for producing a polyacrylonitrile-based hollow fiber membrane according to claim 3, wherein the spinning is carried out by a dry-wet method.
JP61267749A 1986-11-12 1986-11-12 Polyacrylonitrile-based hollow fiber membrane and method for producing the same Expired - Fee Related JP2550543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61267749A JP2550543B2 (en) 1986-11-12 1986-11-12 Polyacrylonitrile-based hollow fiber membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61267749A JP2550543B2 (en) 1986-11-12 1986-11-12 Polyacrylonitrile-based hollow fiber membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63123403A JPS63123403A (en) 1988-05-27
JP2550543B2 true JP2550543B2 (en) 1996-11-06

Family

ID=17449041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61267749A Expired - Fee Related JP2550543B2 (en) 1986-11-12 1986-11-12 Polyacrylonitrile-based hollow fiber membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2550543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852743A1 (en) 2006-05-01 2007-11-07 FUJIFILM Corporation Method for manufacturing photosensitive resin composition and relief pattern using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080775B1 (en) * 2006-10-18 2015-07-29 Toray Industries, Inc. Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
US8674045B2 (en) 2008-04-11 2014-03-18 Toray Industries, Inc. Carbon-fiber precursor fiber, carbon fiber, and processes for producing these
JP4957632B2 (en) * 2008-04-11 2012-06-20 東レ株式会社 Method for producing carbon fiber precursor fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590616A (en) * 1978-12-23 1980-07-09 Nippon Zeon Co Ltd Production of hollow acrylonitrile fiber
JPS569424A (en) * 1979-07-04 1981-01-30 Nippon Zeon Co Ltd Hollow acrylonitrile fiber and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852743A1 (en) 2006-05-01 2007-11-07 FUJIFILM Corporation Method for manufacturing photosensitive resin composition and relief pattern using the same

Also Published As

Publication number Publication date
JPS63123403A (en) 1988-05-27

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
JP3232117B2 (en) Polysulfone porous hollow fiber
US5049276A (en) Hollow fiber membrane
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
US4317729A (en) Ethylene-vinyl alcohol copolymer hollow fiber membranes and method of producing same
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP2550543B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPS6039404B2 (en) Hollow fibrous membrane and its manufacturing method
JPS62102801A (en) Selective permeable hollow composite fiber
JPS6328406A (en) Network porous hollow yarn membrane
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
KR100454153B1 (en) A hollow fiber membrane made of polyacrylonitrile and a preparation method thereof
US4678581A (en) Polymethyl methacrylate hollow fiber type ultrafiltration membrane and process for preparation of the same
JPS63145345A (en) Production of porous polyacrylonitrile material
JPH0653976B2 (en) Manufacturing method of polyacrylonitrile-based hollow fiber membrane
JP2004305953A (en) Method of manufacturing hollow fiber membrane
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPS60202701A (en) Separation membrane
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JP3250808B2 (en) Polysulfone porous membrane and method for producing the same
JPS59132904A (en) Hollow yarn membrane with selective permeability and preparation thereof
JPS60241904A (en) Hollow fiber-seaped porous membrane
JP2899348B2 (en) Porous hollow fiber
JPH1170326A (en) Polyacrylonitrile-based membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees