JPS61160415A - Acrylic yarn having improved mechanical strength and production thereof - Google Patents

Acrylic yarn having improved mechanical strength and production thereof

Info

Publication number
JPS61160415A
JPS61160415A JP88385A JP88385A JPS61160415A JP S61160415 A JPS61160415 A JP S61160415A JP 88385 A JP88385 A JP 88385A JP 88385 A JP88385 A JP 88385A JP S61160415 A JPS61160415 A JP S61160415A
Authority
JP
Japan
Prior art keywords
yarn
molecular weight
polymer
spinning
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88385A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
宏佳 田中
Hiroshi Tamaoki
廣志 玉置
Fujio Ueda
上田 冨士男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP88385A priority Critical patent/JPS61160415A/en
Publication of JPS61160415A publication Critical patent/JPS61160415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled yarn having improved mechanical strength, spinning and yarn-forming performances free from bonding between single yarn, by spinning an acrylonitrile polymer having high intrinsic viscosity and a narrow molecular weight distribution by a specific method under a specified condition and drawing the yarn under a specific condition. CONSTITUTION:Firstly, a solution of an acrylonitrile polymer having >=2.5 intrinsic viscosity and <=3.5Mw/Mn ratio between the number-average molecular weight and the weight-average molecular weight is extruded once from the holes of spinneret to air or an inert atmosphere, and the extruded yarn is introduced into a coagulating bath, and coagulated. Then,the prepared coagulated yarn is washed usually with hot water, etc., and drawn in such a way that total draw ratios become >=10 times, to give the aimed yarn having >=10g/d tensile strength. Preferably the raw material polymer is obtained by subjecting a monomer consisting essentially of acrylonitrile to solution polymerization in dimethyl sulfoxide while regulating the polymerization temperature and concentration of an initiator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械的強度に優れたアクリル系繊維およびそ
の製造法に係わり、さらに詳しくは、染色性、耐光性、
風合などのアクリル系繊維が有する繊維特性を保有し、
しかもその機械的強度の著しく改良されたアクリル系繊
維およびその製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an acrylic fiber with excellent mechanical strength and a method for producing the same, and more specifically, it relates to an acrylic fiber with excellent mechanical strength and a method for producing the same.
Possesses the fiber characteristics of acrylic fibers such as texture,
Moreover, the present invention relates to an acrylic fiber with significantly improved mechanical strength and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、アクリル系繊維は、その優れた染色特性、耐光性
、独特の風合などにより、衣料用、インテリア用として
大量に生産、販売されている。
Conventionally, acrylic fibers have been produced and sold in large quantities for clothing and interior design due to their excellent dyeing properties, light resistance, and unique texture.

ところで近年、セメント補強用として、大量に使用され
てきたアスベストが発癌性を存していることが明らかに
なり、その法的な使用規制ないし使用制限が実施される
ようになったために、このアスベストに代わる繊維素材
の提供が強く要望されている。そこでこのアスベスト代
替繊維として、セメントスラリー中またはその養生中に
おける耐アルカリ性、耐水性に優れ、セメントに対する
混和性、接着性、分散性などの良好なアクリル系繊維が
注目され、該アクリル系繊維の欠点であった機械的強度
、特に弾性率を改良したアクリル系繊維が種々提寓され
ている(たとえば、特開昭57=161117号公報、
米国特許第4,446,206号明細書)。
However, in recent years, it has become clear that asbestos, which has been used in large quantities for cement reinforcement, is carcinogenic, and legal regulations and restrictions on its use have been implemented. There is a strong demand for alternative fiber materials. Therefore, acrylic fibers, which have excellent alkali resistance and water resistance in cement slurry or during its curing, and have good miscibility, adhesion, and dispersibility in cement, are attracting attention as fibers to replace asbestos. Various acrylic fibers with improved mechanical strength, especially elastic modulus, have been proposed (for example, Japanese Patent Application Laid-Open No. 161117,
(U.S. Pat. No. 4,446,206).

このAN系繊維の機械的強度を改良するために、分子量
の大きいアクリロニトリル系重合体(以下、AN系ポリ
マという)を使用する試みが注目され、たとえば特開昭
59−199809号公報には、40万以上の高分子量
AN系ポリマを用い、このポリマ溶液を乾・湿式紡糸し
、高倍率の延伸を施すことによって20g/d以上とい
う引張り強度を有する超高強度AN系繊維を製造する方
法が提案されている。
In order to improve the mechanical strength of these AN-based fibers, attempts to use acrylonitrile-based polymers (hereinafter referred to as AN-based polymers) with large molecular weights have attracted attention. A method has been proposed for producing ultra-high strength AN-based fibers with a tensile strength of 20 g/d or more by using a high-molecular-weight AN-based polymer with a molecular weight of 10,000 or more, dry/wet spinning this polymer solution, and subjecting it to high-strength stretching. has been done.

そして本発明者らも、極限粘度が2.5以上という通常
の衣料用アクリル系繊維を構成する重合体に比べると重
合度がかなり大きいAN系ポリマを使用し、このAN系
ポリマ溶液を乾・湿式紡糸という紡糸手段を採用すると
、得られた未延伸糸条の延伸性が優れているために延伸
倍率を大きくすることができ、結果として機械的強度、
特に初期弾性率のみならず引張り強度および結節強度も
極めて大きいアクリル系繊維かえられることを見出し提
案した。
The present inventors also used an AN-based polymer, which has an intrinsic viscosity of 2.5 or more, which has a considerably higher degree of polymerization than the polymers that make up ordinary acrylic fibers for clothing, and dried and dried this AN-based polymer solution. When a spinning method called wet spinning is adopted, the resulting undrawn yarn has excellent drawability, so the draw ratio can be increased, and as a result, mechanical strength and
In particular, it was discovered and proposed that acrylic fibers can be used that have extremely high tensile strength and knot strength as well as initial elastic modulus.

しかしながら、AN系繊維の製造に一般的に採用されて
いる湿式、乾式および乾・湿式紡糸法においては、いず
れもポリマをその溶剤に溶解し、得られた溶液を紡糸す
る手段が採用されるが、AN系ポリマの分子量の増大は
、この溶液の粘度を急激に増加させ紡糸性を悪化させる
し、この溶液粘度の増大を避けるために、溶液のポリマ
濃度を低下させると凝固性が低下し同様に紡糸性が低下
する。したがって、たとえば極限粘度が6を超える高分
子量のAN系ポリマから繊維を製造することは、その紡
糸性の低下が著しく低下し、工業的規模で安定に該ポリ
マ溶液を紡糸することが困難となるから、実際上不可能
であり、加えてこのような高分子量のA、N系ポリマの
製造そのものが工業的ないし商業的規模で入手または製
造ができないという制約がある。特に、乾・湿式紡糸を
採用するときは、単糸間融者の発生が著しくなり、実際
上、マルチフィラメント糸条を得ることが極めて難しい
という問題があった。
However, in the wet, dry, and dry/wet spinning methods that are commonly used to produce AN fibers, a method is adopted in which a polymer is dissolved in a solvent and the resulting solution is spun. , an increase in the molecular weight of the AN-based polymer rapidly increases the viscosity of this solution and deteriorates the spinnability, and in order to avoid this increase in solution viscosity, lowering the polymer concentration of the solution lowers the coagulability. Spinnability decreases. Therefore, for example, when producing fibers from a high molecular weight AN-based polymer with an intrinsic viscosity of more than 6, the spinnability of the fiber decreases significantly, making it difficult to stably spin the polymer solution on an industrial scale. Therefore, it is practically impossible, and in addition, there is a restriction that the production of such a high molecular weight A,N-based polymer itself cannot be obtained or produced on an industrial or commercial scale. In particular, when dry/wet spinning is employed, the occurrence of single filament fusion particles becomes significant, and there is a problem in that it is actually extremely difficult to obtain multifilament yarns.

そこで、本発明者らは、この機械的強度の極めて優れた
アクリル系繊維について、さらに検討を進めた結果、極
限粘度で表示されるAN系ポリマの重合体が2.5以上
、特に3.0を越える高重合度ポリマにおいてはその乾
・湿式紡糸性および未延伸糸条の延伸性などの紡糸、製
糸性能および単糸間の接着しやすさ等は、該AN系ポリ
マの分子量分布に影響されることが大きいことを見出し
本発明を為すにいたったものである。
Therefore, the present inventors further investigated this acrylic fiber, which has extremely excellent mechanical strength, and found that the intrinsic viscosity of the AN-based polymer was 2.5 or more, especially 3.0. For polymers with a high degree of polymerization exceeding We have discovered that there are many important things that can be done, and have come up with the present invention.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

本発明の目的は、紡糸、製糸性能にすぐれ、単糸間接着
のないマルチフィラメント糸であり、かつ機械的強度に
優れたアクリル系繊維を工業的に有利に製造する方法を
提供するにある。
An object of the present invention is to provide an industrially advantageous method for producing acrylic fibers that are multifilament yarns with excellent spinning and spinning performance, no adhesion between single yarns, and excellent mechanical strength.

〔問題点を解決するための手段) このような本発明の目的は、極限粘度が少なくとも2.
5、前記M−とMnとの比が3.5以下であるアクリロ
ニトリル系重合体からなる引張り強度が少なくともLo
g/d以上である優れた機械的強度を有するアクリル系
繊維を得ることにあり、また、本発明は極限粘度が少な
くとも2.5、上記比Mw/Mnが3.5以下であるア
クリロニトリル系重合体の溶液を紡糸原液とし、該紡糸
原液を紡糸口金を通して空気または不活性雰囲気中に吐
出した後、凝固浴中に導入して凝固せしめ、この凝固糸
条を全体延伸倍率が少なくとも10倍の延伸糸条とする
ことによって引張り強度がLog/d以上の延伸糸条に
することによって達成することができる。
[Means for Solving the Problems] The object of the present invention is to reduce the intrinsic viscosity to at least 2.
5. The acrylonitrile polymer having a ratio of M- to Mn of 3.5 or less has a tensile strength of at least Lo
The object of the present invention is to obtain an acrylic fiber having an excellent mechanical strength of at least g/d. The combined solution is used as a spinning dope, and the spinning dope is discharged through a spinneret into air or an inert atmosphere, then introduced into a coagulation bath to coagulate, and the coagulated yarn is stretched at an overall draw ratio of at least 10 times. This can be achieved by forming a drawn yarn with a tensile strength of Log/d or more.

ここで、極限粘度は次の測定法によって求められる値で
ある。
Here, the intrinsic viscosity is a value determined by the following measurement method.

「極限粘度の測定法」 75■の乾燥したポリマ(サンプル)を25m1のフラ
スコに入れ、0. I Nチオシアン酸ソーダを含むジ
メチルホルムアミドを加えて完全に溶解する。
"Method for measuring intrinsic viscosity" Put 75 ml of dried polymer (sample) into a 25 ml flask, and put 0. Add dimethylformamide containing IN sodium thiocyanate and dissolve completely.

得られた溶液を、オストワルド粘度計を用いて20℃で
比粘度を測定し、次式により求める。
The specific viscosity of the obtained solution was measured at 20° C. using an Ostwald viscometer, and determined by the following formula.

本発明の特徴は、従来市販されているアクリル系繊維は
もちろん、公知のアクリル系繊維を構成するAN系重合
体に比較しても相対的に重合度が著しく大きいAN系重
合体、すなわち極限粘度で表示して少なくとも2.5と
いう値を有すること、さらに、AN系ポリマの分子量分
布を表わすMw/Mnが3.5以下という値を有するこ
とにあり、このような高重合度ポリマから繊維が構成さ
れているために、約10g/d以上の引張り強度を有す
るのみならず結節強度、ループ強度等の他の機械的性質
も極めて大きい値を示し、単糸間接着のないマルチフィ
ラメントを得ることができる。
The feature of the present invention is to use an AN-based polymer that has a significantly higher degree of polymerization than conventionally commercially available acrylic fibers as well as AN-based polymers constituting known acrylic fibers. Furthermore, Mw/Mn, which represents the molecular weight distribution of the AN-based polymer, must be at least 3.5. To obtain a multifilament that not only has a tensile strength of about 10 g/d or more but also exhibits extremely high values of other mechanical properties such as knot strength and loop strength, and has no adhesion between single filaments. I can do it.

すなわち、従来のアクリル系繊維においては、繊維を構
成するポリマの重合度の増加は紡糸原液粘度の増加をも
たらし、紡糸が困難となるため、ポリマ濃度を低下させ
る必要がある。
That is, in conventional acrylic fibers, an increase in the degree of polymerization of the polymer constituting the fiber causes an increase in the viscosity of the spinning dope, making spinning difficult, so it is necessary to reduce the polymer concentration.

一方、紡糸原液のポリマ濃度を低下させると、糸条形成
後に多量の脱溶媒を伴うために、繊維構造が多孔化、失
透しやすくなり、高強度化を達成できない。
On the other hand, if the polymer concentration of the spinning dope is lowered, a large amount of solvent is removed after yarn formation, which makes the fiber structure more likely to become porous and devitrified, making it impossible to achieve high strength.

また、アクリル系繊維のように、ポリマをそのまま溶融
紡糸するのではなくて、通常ポリマを各種の溶剤に溶解
し、このポリマを溶剤に溶解した溶液を紡糸ドープとし
て使用し、湿式・乾式あるいは乾・湿式紡糸などの手段
を採用して繊維化する場合には、脱溶媒が必要である。
In addition, unlike acrylic fibers, the polymer is not melt-spun as is, but the polymer is usually dissolved in various solvents, and the solution of this polymer dissolved in the solvent is used as a spinning dope, and the spinning process is carried out using wet, dry or dry methods.・When making fibers by means such as wet spinning, it is necessary to remove the solvent.

通常は水溶液を用いて脱溶媒を行なうが、脱溶媒に伴い
容積収縮が追随できないためボイドを生成する。
Usually, an aqueous solution is used to remove the solvent, but voids are generated because the volume shrinkage cannot be followed by the removal of the solvent.

このボイドをなくすため乾燥緻密化が行なわれるが、繊
維学会誌Vo1.29. Na 8 (1973)に示
されているように、ポリマ濃度が低くなるとボイドの多
い凝固糸が得られるため、乾燥工程を経てもボイドが消
失し難り、強伸度的性質も低いものとなる。
In order to eliminate these voids, drying and densification is performed, but the Journal of the Japanese Society of Textile Technology Vol. 1.29. As shown in Na 8 (1973), when the polymer concentration is low, a coagulated thread with many voids is obtained, so the voids are difficult to disappear even after the drying process, and the strength and elongation properties are also low. .

一方、重合度を高めることは、重合体を溶媒に溶解した
時の原液粘度が高くなることになり、原液の安定性、曳
糸性の点から、ポリマ濃度を低下せざるを得ない。
On the other hand, increasing the degree of polymerization increases the viscosity of the stock solution when the polymer is dissolved in a solvent, and the polymer concentration must be reduced in terms of stability and spinnability of the stock solution.

したがって、重合度の高いポリマではポリマ濃度低下に
よる悪影響のため、緻密化が困難となり、また、単糸間
接着を生し易いため、特にマルチフィラメントでは必ず
しも高強度糸が得られない。
Therefore, with a polymer having a high degree of polymerization, densification is difficult due to the adverse effect of a decrease in polymer concentration, and since adhesion between single yarns is likely to occur, high-strength yarns cannot necessarily be obtained, especially in multifilaments.

本発明になるアクリル系繊維は、極限粘度が少なくとも
2.5、好ましくは3.0、Mw/Mnが3.5以下、
好ましくは1.1〜3.0、更に好ましくは1.2〜2
.0という高重合度ポリマからなる点に基本的特徴があ
り、これによってその機械的強度、たとえば引張り強度
がLog/d以上、好ましくは12g/d以上、ループ
強度4.5 g/d以上、好ましくは5.0g/d以上
という卓越した物性を示し、単糸間接着のない、開繊性
の良好なマルチフィラメントを得ることが可能となる。
The acrylic fiber according to the present invention has an intrinsic viscosity of at least 2.5, preferably 3.0, and a Mw/Mn of 3.5 or less,
Preferably 1.1-3.0, more preferably 1.2-2
.. The basic feature is that it is made of a polymer with a high degree of polymerization of 0, and thereby has a mechanical strength, such as a tensile strength of Log/d or higher, preferably 12 g/d or higher, and a loop strength of 4.5 g/d or higher, preferably exhibits excellent physical properties of 5.0 g/d or more, making it possible to obtain a multifilament with good spreadability and no adhesion between single filaments.

このように優れた物性を有する本発明の繊維の製造方法
としては、前述したように、繊維を構成するポリマの重
合度が著しく高く、しかも該ポリマを繊維軸方向に高度
に配向させる必要があるために、アクリル系繊維の製造
方法として最も広(工業的に採用されている湿式あるい
は乾式紡糸方法によっては製造が困難であり、以下に詳
述する乾・湿式紡糸方法、すなわちAN系重合体をその
溶剤に溶解して得られた紡糸溶液を紡糸口金孔を通して
一旦空気もしくは不活性気体、好ましくは空気中に吐出
し、この吐出糸条を気体の微小空間を経由して凝固液浴
中に導き凝固せしめる方法を採用し、さらに、以下に詳
述する特定の製造プロセスおよび条件を採用することに
よってはじめて本発明の超高強度アクリル系繊維を得る
ことが可能になるのである。
As mentioned above, the method for manufacturing the fiber of the present invention having such excellent physical properties requires that the polymer constituting the fiber has a significantly high degree of polymerization and that the polymer is highly oriented in the fiber axis direction. Therefore, it is the most widely used method for producing acrylic fibers (manufacturing is difficult depending on the industrially adopted wet or dry spinning methods, and the dry/wet spinning method described in detail below, that is, AN-based polymers) is the most widely used method. The spinning solution obtained by dissolving in the solvent is once discharged into air or an inert gas, preferably air, through the spinneret hole, and the discharged thread is introduced into the coagulation liquid bath via the gas microspace. It is possible to obtain the ultra-high strength acrylic fiber of the present invention only by employing a coagulation method and further employing the specific manufacturing process and conditions detailed below.

以下、本発明になる超高強度アクリル系繊維の製造方法
について詳細に説明する。
Hereinafter, the method for producing the ultra-high strength acrylic fiber according to the present invention will be explained in detail.

まず、本発明に用いられるAN系重合体は、ANを少な
くとも90モル%、好ましくは95〜100モル%と該
ANに対して共重合性を存するビニル化合物5モル%以
下、好ましくは0〜5モル%とからなるANホモポリマ
もしくはAN共重合体であり、ビニル化合物の共重合割
合が5モル%を越えると、得られる繊維の耐熱性および
緻密性が低下し、本発明の目的達成の上で好ましくない
First, the AN-based polymer used in the present invention contains at least 90 mol% of AN, preferably 95 to 100 mol%, and 5 mol% or less, preferably 0 to 5 mol% of a vinyl compound copolymerizable with the AN. If the copolymerization ratio of the vinyl compound exceeds 5 mol%, the heat resistance and denseness of the resulting fiber will decrease, and it will not be possible to achieve the objective of the present invention. Undesirable.

上記ビニル化合物としては、公知の各種ANに対して共
重合性を存する化合物であればよ(、特に限定されない
が、好ましい共重合成分としては、アクリル酸、イタコ
ン酸、アクリル酸メチル、メタクリル酸メチル、酢酸ビ
ニル、アリルスルホン酸ソーダ、メタリルスルホン酸ソ
ーダ、p−スチレンスルホン酸ソーダなどを例示するこ
とができる。
The above-mentioned vinyl compound may be any compound that is copolymerizable with various known ANs (although not particularly limited, preferred copolymerizable components include acrylic acid, itaconic acid, methyl acrylate, and methyl methacrylate). , vinyl acetate, sodium allylsulfonate, sodium methallylsulfonate, sodium p-styrenesulfonate, and the like.

また重合方法は特に限定されないが、重合中の各時間に
おいて、モノマー濃度とラジカル濃度の比ができるだけ
一定となるように、重合温度をコントロールすることに
よってMw/Mnが3.5以下のポリマを得ることがで
きる。
Although the polymerization method is not particularly limited, a polymer with Mw/Mn of 3.5 or less can be obtained by controlling the polymerization temperature so that the ratio of monomer concentration to radical concentration is as constant as possible at each time during polymerization. be able to.

また、極限粘度が2.5以上のポリマを得るためには、
上記ラジカル濃度に対するモノマ濃度をコンスタントに
高い値に維持できるよう、開始剤濃度と重合温度を調節
することが必要である。
In addition, in order to obtain a polymer with an intrinsic viscosity of 2.5 or more,
It is necessary to adjust the initiator concentration and polymerization temperature so that the monomer concentration relative to the radical concentration can be maintained at a constantly high value.

上記、極限粘度が少なくとも2.5であり、Mw/Mn
が3.5以下のAN系重合体の製造法としては、公知の
懸濁重合、乳化重合及び溶液重合などが、いずれも用い
られるが、好ましくは、均−系での溶液重合により重合
するのがよ(、特にDMS。
The above, the intrinsic viscosity is at least 2.5, and Mw/Mn
As a method for producing an AN-based polymer having a polymerization ratio of 3.5 or less, any of known suspension polymerization, emulsion polymerization, solution polymerization, etc. can be used, but it is preferable to polymerize by homogeneous solution polymerization. Gayo(, especially DMS.

中での溶液重合が最もよい。solution polymerization is best.

ここで、該AN系重合体はその重合度が大きいために、
溶解性が低下し、紡糸安定性の良好な紡糸原液が得られ
ないことがあるから、溶剤の選択が重要である。この溶
剤としては、たとえば、ジメチルスルホキシド(DMS
O) 、ジメチルホルムアミド(DMA) 、ジメチル
アセトアミド(DMAc)、ロダンソーダ、塩化亜鉛の
水溶液、硝酸などがあるが、好ましくは、DMSO,D
MA。
Here, since the AN-based polymer has a high degree of polymerization,
The selection of the solvent is important because the solubility may decrease and a spinning dope with good spinning stability may not be obtained. Examples of this solvent include dimethyl sulfoxide (DMS
O), dimethylformamide (DMA), dimethylacetamide (DMAc), rhodan soda, an aqueous solution of zinc chloride, nitric acid, etc., but preferably DMSO, D
M.A.

DMF、特にDMSOが最良である。DMF is best, especially DMSO.

ここで極限粘度が2.5未満の場合は、得られる繊維の
強度物性の同上に限界があり、たとえば引張り強度で1
08/d以上、好ましくは12g/d以上のものを製造
することが困難となり好ましくない。
If the intrinsic viscosity is less than 2.5, there is a limit to the strength and physical properties of the obtained fiber, for example, the tensile strength is 1.
This is not preferable since it becomes difficult to produce a product with a weight of 0.8 g/d or more, preferably 12 g/d or more.

また、Mw/Mnが3.5を越える場合には、紡糸性が
不良となったり、単糸間接着を生じ易(なり高強度のマ
ルチフィラメントを工業的に製造することが困難となる
Moreover, when Mw/Mn exceeds 3.5, spinnability becomes poor or adhesion between single filaments tends to occur (as a result, it becomes difficult to industrially produce a high-strength multifilament).

また、ポリマ濃度としては、ポリマの極限粘度や溶媒の
種類によるが、45℃における溶媒粘度が少なくとも2
000ボイズ、好ましくは、3000〜10000ボイ
ズの範囲内がよく、好ましくはポリマ濃度が約15〜2
0重量%の範囲内のものがよい。この粘度が2000ボ
イズよりも小さくなると、ポリマ濃度が低すぎるため強
伸度的性質が低下するし、製造コスト面でも不利になる
The polymer concentration depends on the intrinsic viscosity of the polymer and the type of solvent, but the solvent viscosity at 45°C is at least 2.
000 voids, preferably within the range of 3,000 to 10,000 voids, preferably with a polymer concentration of about 15 to 2
It is preferably within the range of 0% by weight. If the viscosity is less than 2000 voids, the polymer concentration will be too low, resulting in poor strength and elongation properties, and will also be disadvantageous in terms of manufacturing cost.

また、粘度が大きすぎると、紡糸性が低下し、生産性が
低下するので原液加温し、口金前の粘度を500〜30
00ボイズにするのがよい。
In addition, if the viscosity is too high, the spinnability will decrease and the productivity will decrease, so the stock solution is heated and the viscosity before the spinneret is adjusted to 500 to 30.
It is better to set it to 00 voice.

このような極限粘度、分子量分布および溶液粘度を有す
る紡糸原液は、凝固浴面上に設置された紡糸口金を通し
て吐出され、吐出糸条は一定の不活性雰囲気中、たとえ
ば、空気中を走行した後、凝固浴中に導かれる。ここで
、吐出糸条が不活性雰囲気中を走行する距離(口金面か
ら凝固浴面までの距離)は、紡糸原液の溶媒、粘度など
により異なるが、通常1〜20頗、好ましくは、2〜1
00に設定するのがよい。
The spinning dope having such an intrinsic viscosity, molecular weight distribution, and solution viscosity is discharged through a spinneret placed on the surface of the coagulation bath, and the discharged yarn is run in a certain inert atmosphere, for example, in air. , led into a coagulation bath. Here, the distance that the discharged yarn travels in the inert atmosphere (distance from the spinneret surface to the coagulation bath surface) varies depending on the solvent and viscosity of the spinning stock solution, but is usually 1 to 20 mm, preferably 2 to 20 mm. 1
It is recommended to set it to 00.

特に、本発明の高強度繊維を安定的に製造するためには
、上記不活性雰囲気走行距離が1fl以下では好ましく
ないし、他方20寵を越えると紡糸安定性が低下し、一
定品質の製造が得られなくなるので好ましくない。
In particular, in order to stably produce the high-strength fiber of the present invention, it is undesirable for the above-mentioned inert atmosphere running distance to be less than 1 fl; on the other hand, if it exceeds 20 fl, spinning stability decreases and production of a certain quality cannot be achieved. This is not desirable as it will prevent you from doing so.

凝固浴としては、湿式紡糸法と同様にポリマの溶剤と共
通の溶剤水溶液が用いられ、ここで凝固した糸条は、熱
水中および/または蒸熱下で洗浄、脱溶媒されながら2
〜10倍に延伸される。
As the coagulation bath, an aqueous solution of the same solvent as the polymer solvent is used as in the wet spinning method, and the coagulated thread is washed and desolvated in hot water and/or steam, and then
Stretched ~10 times.

更に乾燥緻密化を行った後、乾熱で少なくとも1.1倍
好ましくは、1.5倍の延伸を行い、全延伸倍率を10
倍好ましくは12倍以上とする。乾熱延伸温度としては
、160〜270℃、好ましくは200〜250℃がよ
い。
After further dry densification, dry heat stretching is performed by at least 1.1 times, preferably 1.5 times, to bring the total stretching ratio to 10.
It is preferably 12 times or more. The dry heat stretching temperature is preferably 160 to 270°C, preferably 200 to 250°C.

繊維の単糸デニールは特に限定されないが、通常は3d
以下の糸条を容易に得ることができる。
The single yarn denier of the fiber is not particularly limited, but it is usually 3d.
The following yarns can be easily obtained.

かくして得られる本発明のAN系繊維は、引張り強度が
少なくともlog/d 、結節強度が2.5 g/d以
上という極めて優れた機械的性質を有している。
The AN-based fiber of the present invention thus obtained has extremely excellent mechanical properties such as a tensile strength of at least log/d and a knot strength of 2.5 g/d or more.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高度の繊維物性、特に機械的強度をを
する、AN系繊維を相対的に高重合度のAN系ポリマか
ら安定して得ることができ、衣料用途はもちろんのこと
、工業用または産業用、繊維強化用として多くの分野、
具体的にはキャンパス、アスベスト代替、縫糸、ホース
などに使用することが可能であり、その有用性は極めて
大きい。
According to the present invention, AN-based fibers having high fiber properties, especially mechanical strength, can be stably obtained from AN-based polymers with a relatively high degree of polymerization, and can be used not only for clothing but also for industrial purposes. In many fields, such as industrial or industrial use, fiber reinforcement, etc.
Specifically, it can be used for canvas, asbestos substitutes, sewing thread, hoses, etc., and its usefulness is extremely large.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、M n / M wの測定は次の方法によって求
めたものである。
Note that the measurement of M n /M w was obtained by the following method.

GPC法により、下記の測定装置及び条件を用いて測定
したGPC曲線より、分子量分布曲線を求め、Mn、M
−を算出した。
The molecular weight distribution curve was determined from the GPC curve measured using the following measuring device and conditions by the GPC method, and Mn, M
− was calculated.

装  置 二   ケル浸シ整クロマトグラフ、GPC
:  244(WATER5)カラム:  TSK−G
EL−GMH,、(2)溶媒:  DMF(0,0IN
−LiC1)流速:  1ml/n+in 温度:25℃ 試料濃度:0.1χ(wt/vol) 試料濾過:0.5μmFHLP FILTER(MIL
LIPORE)注入量4 0.5ml 検出器; 示差屈折率検出器R−401(WATER5
)なお、ポリアクリロニトリルの分子量校正曲線は、基
準として単分散ポリスチレンを用い、ユニバーサルキャ
リブレーションカーブ法により求めた。
Equipment: Two-layer immersion chromatograph, GPC
: 244 (WATER5) column: TSK-G
EL-GMH, (2) Solvent: DMF (0,0IN
-LiC1) Flow rate: 1ml/n+in Temperature: 25°C Sample concentration: 0.1χ (wt/vol) Sample filtration: 0.5μm FHLP FILTER (MIL
LIPORE) Injection volume 4 0.5ml Detector; Differential refractive index detector R-401 (WATER5
) The molecular weight calibration curve for polyacrylonitrile was determined by the universal calibration curve method using monodisperse polystyrene as a reference.

なお、ポリスチレンからPANへの分子量変換は、次式
の各係数を用いて行った。
In addition, the molecular weight conversion from polystyrene to PAN was performed using each coefficient of the following formula.

〔η)−KM” ’I’ ・=M、Zinbo等 J、Chromato
gr、 55.55(’71)* * ・−・R,L、
C1eland等 J、Polym、 Sci、 17
.473(’55)〈実施例1〜4.比較例1〜3〉 DMSO中の溶液重合および水系乳化重合によって、M
n、Mwの異なるアクリルホモポリマを作成した。DM
SO中の溶液重合の場合、開始剤としてはアゾビスジメ
チルバルロニトリルヲ用い、水系乳化重合体の場合は開
始剤として過硫酸アンモニウムを用いた。
[η)-KM” 'I' ・=M, Zinbo etc. J, Chromato
gr, 55.55 ('71) * * ・-・R,L,
C1eland et al. J, Polym, Sci, 17
.. 473 ('55) <Examples 1 to 4. Comparative Examples 1 to 3> By solution polymerization in DMSO and aqueous emulsion polymerization, M
Acrylic homopolymers with different n and Mw were created. DM
In the case of solution polymerization in SO, azobisdimethylvallonitrile was used as an initiator, and in the case of aqueous emulsion polymers, ammonium persulfate was used as an initiator.

第1表に示すように、得られたポリマを夫々DMSOに
溶解し、45℃の粘度が2500ボイズとなるようにポ
リマ濃度を調整した。
As shown in Table 1, each of the obtained polymers was dissolved in DMSO, and the polymer concentration was adjusted so that the viscosity at 45° C. was 2500 voids.

得られた原液を夫々65℃に加温し、3000ホールの
口金を用いて、乾・湿式紡糸を行った。
The obtained stock solutions were heated to 65° C. and subjected to dry and wet spinning using a 3000-hole spinneret.

紡糸口金と凝固浴液面間の距離は5鶴に設定し、凝固浴
としては15℃の50%DMSO水溶液を用いた。
The distance between the spinneret and the liquid level of the coagulation bath was set to 5, and a 50% DMSO aqueous solution at 15° C. was used as the coagulation bath.

得られた凝固糸条を夫々熱水中で5倍に延伸し、水洗後
、110℃で緊張乾燥し、さらにホットプレートで乾熱
二次延伸を行った。最大延伸倍率の90%で延伸し、得
られた繊維の物性と単糸間接着状態を第1表にまとめた
Each of the obtained coagulated threads was stretched 5 times in hot water, washed with water, strain-dried at 110°C, and further subjected to dry heat secondary stretching on a hot plate. The fibers were drawn at a maximum draw ratio of 90%, and the physical properties and adhesion between the filaments are summarized in Table 1.

(本頁以下余白) 第  1  表(Margins below this page) Table 1

Claims (1)

【特許請求の範囲】 1、極限粘度が少なくとも2.5、数平均分子量(Mn
)と重量平均分子量(Mw)との比(Mw/Mn)が3
.5以下であるアクリロニトリル系重合体からなり、少
なくとも10g/dの引張り強度を有する機械的強度に
優れたアクリル系繊維。 2、極限粘度が少なくとも2.5、数平均分子量(Mn
)と重量平均分子量(Mw)との比(Mw/Mn)が3
.5以下であるアクリロニトリル系重合体溶液を紡糸口
金孔を通して一旦空気または不活性雰囲気中に吐出し、
吐出糸条を凝固浴中に導いて凝固せしめ、得られた凝固
糸条を延伸し、全延伸倍率が少なくとも10倍の延伸糸
条とすることを特徴とする機械的強度に優れたアクリル
系繊維の製造法。
[Scope of Claims] 1. Intrinsic viscosity is at least 2.5, number average molecular weight (Mn
) and the weight average molecular weight (Mw) (Mw/Mn) is 3
.. 5 or less, and has excellent mechanical strength and has a tensile strength of at least 10 g/d. 2. The intrinsic viscosity is at least 2.5, the number average molecular weight (Mn
) and the weight average molecular weight (Mw) (Mw/Mn) is 3
.. 5 or less is once discharged into air or an inert atmosphere through a spinneret hole,
An acrylic fiber with excellent mechanical strength, characterized in that the discharged yarn is guided into a coagulation bath and coagulated, and the obtained coagulated yarn is drawn to obtain a drawn yarn with a total stretching ratio of at least 10 times. manufacturing method.
JP88385A 1985-01-09 1985-01-09 Acrylic yarn having improved mechanical strength and production thereof Pending JPS61160415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88385A JPS61160415A (en) 1985-01-09 1985-01-09 Acrylic yarn having improved mechanical strength and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88385A JPS61160415A (en) 1985-01-09 1985-01-09 Acrylic yarn having improved mechanical strength and production thereof

Publications (1)

Publication Number Publication Date
JPS61160415A true JPS61160415A (en) 1986-07-21

Family

ID=11486067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88385A Pending JPS61160415A (en) 1985-01-09 1985-01-09 Acrylic yarn having improved mechanical strength and production thereof

Country Status (1)

Country Link
JP (1) JPS61160415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235313U (en) * 1985-08-16 1987-03-02
JPS63190012A (en) * 1987-01-28 1988-08-05 Toray Ind Inc Hollow yarn film of polyacrylonitrile and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122820A (en) * 1977-03-31 1978-10-26 Anic Spa Method of producing high modulus oriented polymer
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122820A (en) * 1977-03-31 1978-10-26 Anic Spa Method of producing high modulus oriented polymer
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235313U (en) * 1985-08-16 1987-03-02
JPS63190012A (en) * 1987-01-28 1988-08-05 Toray Ind Inc Hollow yarn film of polyacrylonitrile and production thereof

Similar Documents

Publication Publication Date Title
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5109936B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
US4902452A (en) Process for producing an acrylic fiber having high fiber characteristics
KR880000287B1 (en) Acrylic wef spinning process
JP2010053468A (en) Method for producing carbon fiber precursor fiber
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPS61160415A (en) Acrylic yarn having improved mechanical strength and production thereof
JP2004027396A (en) Method for producing acrylic precursor for carbon fiber
US4661572A (en) Process for producing acrylonitrile-based precursors for carbon fibers
JPS61119708A (en) High-tenacity acrylic fiber and production thereof
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
EP0201908B1 (en) Acrylonitrile spinning solution and process for producing fibers therewith
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
WO2024024654A1 (en) Production method for carbon fiber precursor fibers
JPS61167013A (en) Acrylonitrile fiber
JPH0657524A (en) Production of acrylic fiber
JPH01104818A (en) Production of high-strength acrylic fiber
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same
JPH05132813A (en) Acrylonitrile precursor fiber
JPS61152811A (en) High tenacity acrylic fiber yarn and production thereof
JPH06228810A (en) Production of precursor fiber carbon fiber
JPH07243121A (en) Production of high-strength acrylic fiber