JPS6318866B2 - - Google Patents

Info

Publication number
JPS6318866B2
JPS6318866B2 JP55113712A JP11371280A JPS6318866B2 JP S6318866 B2 JPS6318866 B2 JP S6318866B2 JP 55113712 A JP55113712 A JP 55113712A JP 11371280 A JP11371280 A JP 11371280A JP S6318866 B2 JPS6318866 B2 JP S6318866B2
Authority
JP
Japan
Prior art keywords
substrate
cmos
samos
layer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55113712A
Other languages
Japanese (ja)
Other versions
JPS5737878A (en
Inventor
Hiroshi Momose
Norio Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11371280A priority Critical patent/JPS5737878A/en
Publication of JPS5737878A publication Critical patent/JPS5737878A/en
Publication of JPS6318866B2 publication Critical patent/JPS6318866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0925Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明は相補型MOSトランジスタとフローテ
イングゲートを有するMOSトランジスタとを同
一半導体基板上に形成する半導体集積回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit in which a complementary MOS transistor and a MOS transistor having a floating gate are formed on the same semiconductor substrate.

一般に、フローテイングゲートを有するNチヤ
ネルSAMOS(Stacked Gate Type MOS)を記
憶素子とするEPROM(Erasable Programmable
Read Only Memory)の周辺回路は、Nチヤネ
ルMOSトランジスタからなる書き込み回路、セ
ンスアンプなどから構成されているが、上記周辺
回路は現在の高密度集積化、高速化、低消費電力
化の要求から、本来高速、低消費電力のCMOS
(相補型MOS)構成へと移行しつつあり、現在一
部製品化も行なわれている。ところがCMOSに
は、本来外部雑音電流(電圧)によりCMOS内
部に構成される寄生サイリスタのターンオンによ
り異常電流が流れるという現象(ラツチアツプ現
象)があり、この異常電流により誤動作、破壊な
どという問題がある。一方、SAMOSにおいて
は、データを書き込み時にそのドレイン近傍から
多数キヤリア(P型基板ならホール)が発生し、
基板中を流れる。それ故CMOSとSAMOSを同一
基板上に構成し、より有機的なデバイスを作成す
るにあたり、SAMOSから流れ出た基板電流によ
るCMOSのラツチアツプ現象が問題となり、そ
の対策が検討されている。
In general, EPROM (Erasable Programmable
The peripheral circuit of a Read Only Memory (Read Only Memory) consists of a write circuit made of N-channel MOS transistors, a sense amplifier, etc. However, due to the current demands for higher density integration, higher speed, and lower power consumption, the peripheral circuits mentioned above are CMOS with inherently high speed and low power consumption
(complementary MOS) configuration, and some products are currently being commercialized. However, in CMOS, there is a phenomenon in which an abnormal current flows (latch-up phenomenon) due to external noise current (voltage) turning on a parasitic thyristor formed inside the CMOS, and this abnormal current causes problems such as malfunction and destruction. On the other hand, in SAMOS, when data is written, many carriers (holes in the case of a P-type substrate) are generated near the drain.
Flows through the substrate. Therefore, when configuring CMOS and SAMOS on the same substrate to create a more organic device, the CMOS latch-up phenomenon caused by the substrate current flowing from SAMOS becomes a problem, and countermeasures are being considered.

第1図はNチヤネルSAMOS、NウエルCMOS
で生じる上記ラツチアツプ現象の具体的説明図で
ある。図中1はP型シリコン基板で、その比抵抗
は例えば10Ω−cmである。2はNウエル層、3は
基板1及びNウエル層2に形成されたCMOSイ
ンバータ、4はこのインバータ3のPチヤネル型
トランジスタ、5はNチヤネル型トランジスタ、
6はPチヤネルトランジスタ4のソース層、7は
ドレイン層、8はゲート(ポリシリコン)、9は
Nウエル層2を電源VDD電位に保持するためのN+
層である。10はNチヤネル型トランジスタ5の
ソース層、11はドレイン層、12はゲート、1
3はP基板1を電源VSS電位に保持するためのP+
層である。15はSAMOS14のソース、16は
ドレイン、17はコントロールゲート(ポリシリ
コン)、18はフローテイングゲート(ポリシリ
コン)である。
Figure 1 shows N-channel SAMOS and N-well CMOS.
FIG. 2 is a concrete explanatory diagram of the latch-up phenomenon that occurs in FIG. In the figure, 1 is a P-type silicon substrate, and its specific resistance is, for example, 10 Ω-cm. 2 is an N-well layer, 3 is a CMOS inverter formed on the substrate 1 and N-well layer 2, 4 is a P-channel transistor of this inverter 3, 5 is an N-channel transistor,
6 is the source layer of the P channel transistor 4, 7 is the drain layer, 8 is the gate (polysilicon), and 9 is N + for holding the N well layer 2 at the power supply V DD potential.
It is a layer. 10 is the source layer of the N-channel transistor 5, 11 is the drain layer, 12 is the gate, 1
3 is P + for holding the P substrate 1 at the power supply V SS potential
It is a layer. 15 is a source of the SAMOS 14, 16 is a drain, 17 is a control gate (polysilicon), and 18 is a floating gate (polysilicon).

上記ラツチアツプ現象は、N+型ソース層10
P型基板1、Nウエル層2からなる横形NPNト
ランジスタTr1と、P+型ドレイン層7、Nウエル
層2、P型基板1からなる縦型PNPトランジス
タTr2とで構成される。PNPN寄生サイリスタ
に、外部雑音電流が入力Vinまたは出力Voutま
たは基板内から入り、PNPN寄生サイリスタが
ターンオンし、電源VDDと接地VSS間に異常電流
(例えば数百mA)が流れる現象である。特に
SAMOS14のデータを書き込み時に、ドレイン
16近傍に発生する多数キヤリア(P型基板では
ホール)からなる基板電流i1は、基板1中を流れ
てP+層13へ入り、寄生サイリスタのトリガ電
流となつて前述のラツチアツプ現象を起こす。実
験によれば、SAMOSから発生する基板電流が数
mA以上CMOSインバータに入ると、ラツチア
ツプ現象が起こることが確認されている。また第
1図に示す構造では、前述の基板電流を吸収すべ
く、基板裏面を接地している。SAMOS14のド
レイン16近傍で発生した基板電流は、単純に考
えると層13,16間抵抗R1と、層16、基板
裏面間抵抗R2の逆比に分割されて流れ、SAMOS
とCMOSインバータが基板厚(約300μm)に対
して50〜100μmと近い構造では、約2/3がCMOS
インバータに流れ、ラツチアツプが起りやすいこ
とが実験で確認されている。
The above latch-up phenomenon occurs when the N + type source layer 10
It is composed of a horizontal NPN transistor Tr 1 consisting of a P type substrate 1 and an N well layer 2, and a vertical PNP transistor Tr 2 consisting of a P + type drain layer 7, an N well layer 2 and a P type substrate 1. This is a phenomenon in which an external noise current enters the PNPN parasitic thyristor from the input Vin, the output Vout, or from inside the board, the PNPN parasitic thyristor turns on, and an abnormal current (for example, several hundred mA) flows between the power supply V DD and the ground V SS . especially
When writing data to the SAMOS 14, a substrate current i1 consisting of many carriers (holes in a P type substrate) generated near the drain 16 flows through the substrate 1, enters the P + layer 13, and becomes a trigger current for a parasitic thyristor. This causes the aforementioned latch-up phenomenon. According to experiments, it has been confirmed that a latch-up phenomenon occurs when the substrate current generated from SAMOS enters a CMOS inverter in excess of several mA. Furthermore, in the structure shown in FIG. 1, the back surface of the substrate is grounded to absorb the aforementioned substrate current. The substrate current generated in the vicinity of the drain 16 of the SAMOS 14 is divided into the inverse ratio of the resistance R 1 between the layers 13 and 16 and the resistance R 2 between the layer 16 and the back surface of the substrate, and flows in the SAMOS 14.
In a structure where the CMOS inverter is close to 50 to 100 μm relative to the substrate thickness (approximately 300 μm), approximately 2/3 is CMOS
Experiments have confirmed that the latch-up is likely to occur due to the inverter flowing into the inverter.

本発明は上記実情に鑑みてなされたもので、
CMOSとSAMOSを同一半導体基板上に構成する
に際し、半導体基板上にこれと同一導電型のより
高い比抵抗の半導体層を形成し、SAMOSのデー
タ書き込み時に発生する基板電流を、より低い比
抵抗をもつ基板側に流し吸収することにより、
CMOS側に流れる基板電流を少なくし、前記
CMOSのラツチアツプ現象が生じるのを未然に
防止することができる半導体集積回路を提供しよ
うとするものである。
The present invention was made in view of the above circumstances, and
When configuring CMOS and SAMOS on the same semiconductor substrate, a semiconductor layer of the same conductivity type and higher resistivity is formed on the semiconductor substrate, and the substrate current generated when writing data to SAMOS is reduced to a lower resistivity. By absorbing it by flowing it to the substrate side,
By reducing the substrate current flowing to the CMOS side,
The present invention aims to provide a semiconductor integrated circuit that can prevent the CMOS latch-up phenomenon from occurring.

以下図面を参照して本発明の一実施例を説明す
る。第2図は同実施例を示す集積回路断面図であ
るが、この構成は第1図のものと対応させた場合
の例であるから、対応個所には同一符号を付して
説明を省略し、特徴とする点のみ抽出して説明す
る。本実施例の特徴は、比抵抗が0.01〜0.1Ω−
cmと低いP型基板11上に、公知の気相成長法に
より比抵抗が例えば10Ω−cmP型半導体層12
形成し、この層12にCMOS回路3とSAMOS1
4を設ける。即ち本構成では、前述の基板裏面で
の基板電流の吸収効率を高めるべく、基板表面側
2に対して基板裏面側11をより低比抵抗とし、
SAMOSドレイン層16と基板裏面間の抵抗を、
ドレイン層16とCMOSインバータ3間の抵抗
に比べてかなり小さくした構造の基板上に、
CMOSとSAMOSを構成したものである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a cross-sectional view of an integrated circuit showing the same embodiment. Since this configuration corresponds to that of FIG. 1, corresponding parts are given the same reference numerals and explanations will be omitted. , only the characteristic points will be extracted and explained. The feature of this example is that the specific resistance is 0.01 to 0.1Ω−
A P-type semiconductor layer 12 with a specific resistance of, for example, 10Ω-cm is formed on a P-type substrate 11 with a low resistivity of 10Ω-cm by a known vapor phase growth method, and a CMOS circuit 3 and a SAMOS1 are formed on this layer 12 .
4 will be provided. That is, in this configuration, in order to increase the absorption efficiency of the substrate current on the back surface of the substrate, the specific resistance of the back surface side 1 1 of the substrate is made lower than that of the front surface side 1 2 of the substrate.
The resistance between the SAMOS drain layer 16 and the back surface of the substrate is
On a substrate with a structure that is considerably smaller than the resistance between the drain layer 16 and the CMOS inverter 3,
It consists of CMOS and SAMOS.

第1図の従来構造では、基板裏面に1kΩの外
付け抵抗を付けた際に、極端にCMOSインバー
タ3側にSAMOS14から発生した基板電流が流
れ、CMOSインバータ3のラツチアツプ現象が
一層起こり易くなるという実験結果が得られてお
り、第2図の如き構成では、基板電流発生源とな
るSAMOS14のドレイン層16と基板11の裏
面との抵抗が第1図のものより低く、基板電流は
i2の如くほとんど基板11の裏面側に流れること
から、CMOSインバータ3のラツチアツプ現象
は起らなくなる。
In the conventional structure shown in Figure 1, when a 1kΩ external resistor is attached to the back of the board, the board current generated from the SAMOS 14 flows to the CMOS inverter 3 side, making the latch-up phenomenon of the CMOS inverter 3 more likely to occur. Experimental results have been obtained, and in the configuration shown in Figure 2, the resistance between the drain layer 16 of the SAMOS 14, which is the substrate current generation source, and the back surface of the substrate 11 is lower than that in Figure 1, and the substrate current is
Since most of the current flows to the back side of the substrate 11 like i2 , the latch-up phenomenon of the CMOS inverter 3 does not occur.

なお本発明は上記実施例に限られるものではな
く、例えばN型基板上のSAMOSとPウエルの
CMOS構成に対しても同様の対策が講じられる
し、またSAMOSの代りにゲートとしてフローテ
イングゲートのみを有するFAMOS(Floating
Gate Avalanche MOS)等にも適用できる等、
種々の応用が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and for example, the present invention is not limited to the above embodiments.
Similar measures can be taken for CMOS configurations, and FAMOS (Floating
Gate Avalanche MOS), etc.
Various applications are possible.

以上説明した如く本発明によれば、CMOS回
路のラツチアツプ現象のもとになる基板電流が吸
収できるので、ラツチアツプ現象が生じない半導
体集積回路が提供できるものである。
As explained above, according to the present invention, since the substrate current that causes the latch-up phenomenon in a CMOS circuit can be absorbed, a semiconductor integrated circuit that does not cause the latch-up phenomenon can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路を示す断面的構
成図、第2図は本発明の一実施例を示す断面的構
成図である。 11……低比抵抗基板、12……高比抵抗半導体
層、3……CMOSインバータ、14……
SAMOS。
FIG. 1 is a cross-sectional configuration diagram showing a conventional semiconductor integrated circuit, and FIG. 2 is a cross-sectional configuration diagram showing an embodiment of the present invention. 1 1 ... Low resistivity substrate, 1 2 ... High resistivity semiconductor layer, 3 ... CMOS inverter, 14 ...
SAMOS.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型半導体基体上に、これと同一導電
型でかつ前記半導体基体に対して高比抵抗値を有
する半導体層を被着し、該半導体層表面側に、相
補型MOSトランジスタ回路とフローテイングゲ
ートを有するMOSトランジスタとを形成してな
ることを特徴とする半導体集積回路。
1. A semiconductor layer of the same conductivity type and having a high specific resistance value with respect to the semiconductor substrate is deposited on a semiconductor substrate of a first conductivity type, and a complementary MOS transistor circuit and a flowchart are formed on the surface side of the semiconductor layer. 1. A semiconductor integrated circuit formed by forming a MOS transistor having a leading gate.
JP11371280A 1980-08-19 1980-08-19 Semiconductor integrated circuit Granted JPS5737878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11371280A JPS5737878A (en) 1980-08-19 1980-08-19 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11371280A JPS5737878A (en) 1980-08-19 1980-08-19 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5737878A JPS5737878A (en) 1982-03-02
JPS6318866B2 true JPS6318866B2 (en) 1988-04-20

Family

ID=14619238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11371280A Granted JPS5737878A (en) 1980-08-19 1980-08-19 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5737878A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856072A (en) * 1971-11-15 1973-08-07
JPS51102477A (en) * 1976-02-02 1976-09-09 Tdk Electronics Co Ltd HANDOTAI MEMORIS OCHI
JPS53100780A (en) * 1977-02-15 1978-09-02 Sanyo Electric Co Ltd Complementary type mos transistor
JPS56114375A (en) * 1980-02-15 1981-09-08 Nec Corp Manufacture of nonvolatile semiconductor memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856072A (en) * 1971-11-15 1973-08-07
JPS51102477A (en) * 1976-02-02 1976-09-09 Tdk Electronics Co Ltd HANDOTAI MEMORIS OCHI
JPS53100780A (en) * 1977-02-15 1978-09-02 Sanyo Electric Co Ltd Complementary type mos transistor
JPS56114375A (en) * 1980-02-15 1981-09-08 Nec Corp Manufacture of nonvolatile semiconductor memory

Also Published As

Publication number Publication date
JPS5737878A (en) 1982-03-02

Similar Documents

Publication Publication Date Title
JP3085455B2 (en) Static RAM
US5760446A (en) Electrostatic discharge structure of semiconductor device
EP0024903B1 (en) A mis device including a substrate bias generating circuit
US7542329B2 (en) Virtual power rails for integrated circuits
JP3264622B2 (en) Semiconductor device
JPH06216346A (en) Semiconductor device
US4446536A (en) Complementary metal oxide semiconductors address drive circuit
JPS6325714B2 (en)
US4775809A (en) Output buffer circuit avoiding electrostatic breakdown
JPS63279491A (en) Semiconductor dynamic ram
JPS6118839B2 (en)
US4868627A (en) Complementary semiconductor integrated circuit device capable of absorbing noise
JPS6318866B2 (en)
JP3499578B2 (en) Semiconductor integrated circuit
JPH05198742A (en) Semiconductor integrated circuit device
JPH044755B2 (en)
KR100380022B1 (en) Semiconductor memory device
JPH0410225B2 (en)
JPH0144023B2 (en)
JPS5852869A (en) Semiconductor device
JPH0313754B2 (en)
JPH0685422B2 (en) Semiconductor integrated circuit
JPS62123739A (en) Semiconductor integrated circuit device
JPH06177335A (en) I/o circuit of integrated circuit
JPH0477016A (en) Low-noise cmos driver