JPS63186937A - Electronically controlled fuel injection device for internal combustion engine - Google Patents

Electronically controlled fuel injection device for internal combustion engine

Info

Publication number
JPS63186937A
JPS63186937A JP1597887A JP1597887A JPS63186937A JP S63186937 A JPS63186937 A JP S63186937A JP 1597887 A JP1597887 A JP 1597887A JP 1597887 A JP1597887 A JP 1597887A JP S63186937 A JPS63186937 A JP S63186937A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
setting
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1597887A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP1597887A priority Critical patent/JPS63186937A/en
Publication of JPS63186937A publication Critical patent/JPS63186937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To achieve the restraint of rotational variation or surge, by correcting an air-fuel ratio setting factor so that the target lean air-fuel ratio can be enriched, when the rotational variation of an engine is more than a prescribed value, even if the condition of lean air-fuel ratio is satisfied. CONSTITUTION:A means A which sets a basic injection quantity in response to the operating condition of an engine, and a means B which sets a feedforward correction factor so that the actual air-fuel ratio can reach a target air-fuel ratio leaner than the theoretical air-fuel ratio are provided respectively. And a means C which stores the air-fuel ratio setting factors for correcting the basic injection quantity, a means D which retrieves the air-fuel ratio setting factors, and a means E which detects the rotational variation of the engine during lean air-fuel ratio control are provided respectively. Further, a means F which rewrites the data in the means C into new air-fuel ratio setting factors when the rotational variation is more than a prescribed value is provided. Furthermore, a means G which sets the fuel injection quantity on the basis of the information from respective means A through C, and a means I which drives the fuel injection valve H are provided respectively.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.

(従来の技術〉 内燃機関の電子制御燃料噴射装置の従来例として以下の
ようなものがある(実願昭60−066558号参照)
(Prior art) Conventional examples of electronically controlled fuel injection devices for internal combustion engines include the following (see Utility Model Application No. 60-066558).
.

すなわち、エアフローメータ等により検出された吸入空
気流量Qと機関回転速度Nとから基本噴射量Tp=Kx
Q/N (Kは定数)を演算すると共に、主として水温
に応じた各種補正係数COEFと実際の空燃比が理論空
燃比になるように設定された空燃比フィードバック補正
係数αとバッテリ電圧による補正係数Tsとを演算した
後、定常運転時における燃料噴射量Ti=TpXCOE
F×α+Tsを演算する。
That is, from the intake air flow rate Q detected by an air flow meter etc. and the engine rotation speed N, the basic injection amount Tp=Kx
In addition to calculating Q/N (K is a constant), various correction coefficients COEF mainly depending on the water temperature, an air-fuel ratio feedback correction coefficient α set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, and a correction coefficient based on the battery voltage are calculated. After calculating Ts, the fuel injection amount Ti=TpXCOE during steady operation
Calculate F×α+Ts.

そして、例えばシングルポイントインジェクションシス
テム(以下SP1方式)では、機関のA回転毎に点火信
号等に同期して燃料噴射弁に対し前記燃料噴射量Tiに
対応するパルス巾の噴射パルス信号を出力し機関に燃料
を供給する。
For example, in a single point injection system (hereinafter referred to as SP1 system), an injection pulse signal with a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve in synchronization with an ignition signal etc. every A rotation of the engine. to provide fuel.

ところで、近年燃費の向上や排気の浄化等を目的として
、機関の定速低負荷運転領域において、実際の空燃比が
理論空燃比よりも薄くなるように空燃比制御するように
したものがある。
Incidentally, in recent years, for the purpose of improving fuel efficiency and purifying exhaust gas, some engines have been designed to control the air-fuel ratio so that the actual air-fuel ratio becomes thinner than the stoichiometric air-fuel ratio in the constant-speed, low-load operating region of the engine.

即ち、高出力を必要とせず希薄燃焼させても良い所定の
低速低負荷運転領域であることが判定されると、実際の
空燃比が略理論空燃比となるように設定される燃料噴射
!(以下、理論空燃比制御と呼ぶ)を、目標空燃比を切
り換えて実際の空燃比が所定の希薄空燃比となるように
減量設定して燃料噴射制御(以下、希薄空燃比制御と呼
ぶ)するものであり、これにより燃料消費量を少なくす
ると共に、排気中の有害成分を低減しようとするもので
ある。
In other words, when it is determined that the engine is in a predetermined low-speed, low-load operation region that does not require high output and can be used for lean combustion, fuel injection is performed so that the actual air-fuel ratio becomes approximately the stoichiometric air-fuel ratio! (hereinafter referred to as stoichiometric air-fuel ratio control) is controlled by switching the target air-fuel ratio and setting a reduction so that the actual air-fuel ratio becomes a predetermined lean air-fuel ratio (hereinafter referred to as lean air-fuel ratio control). This aims to reduce fuel consumption and reduce harmful components in exhaust gas.

〈発明が解決しようとする問題点〉 ところで、排気中の酸素濃度すなわち実際の空燃比を検
出する酸素センサとして、理論空燃比付近の値を主とし
て検出するものを使用しているときには、理論空燃比制
御時には酸素センサの検出値に基づいて、実際の空燃比
を理論空燃比に近づけるフィードバック制御を行うこと
ができる。しかし、希薄空燃比制御時には前記酸素セン
サのヰ食出値を使用できないので、フィードバック制御
を行うことができない。
<Problems to be Solved by the Invention> By the way, when an oxygen sensor that mainly detects a value near the stoichiometric air-fuel ratio is used as an oxygen sensor for detecting the oxygen concentration in exhaust gas, that is, the actual air-fuel ratio, During control, feedback control can be performed to bring the actual air-fuel ratio closer to the stoichiometric air-fuel ratio based on the detected value of the oxygen sensor. However, since the combustion output value of the oxygen sensor cannot be used during lean air-fuel ratio control, feedback control cannot be performed.

このため、従来においては希薄空燃比制御時には、予め
設定された目標希薄空燃比になるようにフィードフォワ
ード制御により燃料噴射量を制御するようにしている。
For this reason, conventionally, during lean air-fuel ratio control, the fuel injection amount is controlled by feedforward control so as to reach a preset target lean air-fuel ratio.

ところで、燃料噴射弁の低噴射量領域では、噴射パルス
巾と噴射量との直線性が悪く燃料噴射量を高精度に制御
できない。
By the way, in the low injection amount region of the fuel injection valve, the linearity between the injection pulse width and the injection amount is poor, and the fuel injection amount cannot be controlled with high precision.

これにより、希薄空燃比制御をフィードフォワード制御
により行うと、目標希薄空燃比への制御精度が悪く、実
際の空燃比が目標希薄空燃比より過度に希薄化されたと
きには、サージ(回転変動)が増大し、運転性の悪化を
招くという不具合がある。
As a result, when lean air-fuel ratio control is performed by feedforward control, control accuracy to the target lean air-fuel ratio is poor, and when the actual air-fuel ratio becomes excessively leaner than the target lean air-fuel ratio, surges (rotational fluctuations) occur. There is a problem in that this increases the amount of fuel and causes deterioration in drivability.

本発明は、このような実状に鑑みてなされたもので、希
薄空燃比制御を可能にしつつサージを抑制できる内燃機
関の電子制411燃料噴射装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronically controlled 411 fuel injection system for an internal combustion engine that can suppress surge while enabling lean air-fuel ratio control.

〈問題点を解決するための手段〉 このため、本発明は第1図に示すように、機関運転状態
に応じて基本噴射量を設定する基本噴射量設定手段Aと
、実際の空燃比が理論空燃比より希薄な目標希薄空燃比
になるようにフィードフォワード補正係数を設定するフ
ィードフォワード補正係数設定手段Bと、前記基本噴射
量を補正する空燃比設定係数を記憶する書換可能な記憶
手段Cと、該記憶手段がら空燃比設定係数を検索する検
索手段Aと、希薄空燃比制御中の機関への回転変動を検
出する回転変動検出手段Eと、検出された回転変動が所
定以上のときに、検索された空燃比設定係数を実際の空
燃比が前記目標希薄空燃比より所定量濃化するように補
正し、新たな空燃比設定係数を設定し、この新たな空燃
比設定係数に前記記憶手段のデータを書換える書換手段
Fと前記演算された基本噴射量とフィードフォワード補
正係数と前記空燃比設定係数とに基づいて燃料噴射量を
設定する燃料噴射量設定手段Gと、設定された燃料噴射
量に基づいて燃料噴射弁Hを駆動する駆動手段Iと、を
備えるようにした。
<Means for Solving the Problems> For this reason, as shown in FIG. Feedforward correction coefficient setting means B for setting a feedforward correction coefficient so that the target lean air-fuel ratio is leaner than the air-fuel ratio; and rewritable storage means C for storing the air-fuel ratio setting coefficient for correcting the basic injection amount. , a search means A for searching the air-fuel ratio setting coefficient from the storage means, a rotation fluctuation detection means E for detecting rotation fluctuations of the engine during lean air-fuel ratio control, and when the detected rotation fluctuations are above a predetermined value, The retrieved air-fuel ratio setting coefficient is corrected so that the actual air-fuel ratio becomes richer by a predetermined amount than the target lean air-fuel ratio, a new air-fuel ratio setting coefficient is set, and this new air-fuel ratio setting coefficient is stored in the storage means. a rewriting means F for rewriting data; a fuel injection amount setting means G for setting a fuel injection amount based on the calculated basic injection amount, feedforward correction coefficient, and air-fuel ratio setting coefficient; A driving means I for driving the fuel injection valve H based on the amount of fuel is provided.

く作用〉 このようにして、希薄空燃比制御条件成立時であっても
機関回転変動が所定値以上のときには空燃比設定係数を
補正して目標希薄空燃比を濃化させ、もって回転変動を
抑制するようにした。
In this way, even when the lean air-fuel ratio control conditions are met, when the engine rotational fluctuation is greater than a predetermined value, the air-fuel ratio setting coefficient is corrected to enrich the target lean air-fuel ratio, thereby suppressing the rotational fluctuation. I decided to do so.

また、空燃比設定係数を記憶させることにより希薄空燃
比制御を停止した後、再び希薄空燃比制御に移行したと
きに、回転変動を抑制できるようにした。
Furthermore, by storing the air-fuel ratio setting coefficient, it is possible to suppress rotational fluctuations when the lean air-fuel ratio control is resumed after stopping the lean air-fuel ratio control.

〈実施例〉 以下に、本発明の一実施例を第2図〜第7図に基づいて
説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 7.

第2図において、例えばマイクロコンピュータからなる
制御装置1には、点火コイル2から出力される点火信号
(回転速度信号)、エアフローメータ3から出力される
吸入空気流量信号、水゛温センサ4から出力される冷却
水温度信号、車速センサ5から出力される車速信号、ア
イドルスイッチ6からの0N−OFF信号、酸素センサ
7(排気中の酸素濃度によって理論空燃比付近の空燃比
を主として検出できるセンサ)からの空燃比検出信号、
とが入力されている。制御装置1は、第3図〜第7図に
示すフローチャートに従って作動し、燃料噴射弁8に駆
動回路9を介して駆動パルス信号を出力するようになっ
ている。
In FIG. 2, a control device 1 consisting of, for example, a microcomputer includes an ignition signal (rotational speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and an output from a water temperature sensor 4. Cooling water temperature signal output from the vehicle speed sensor 5, vehicle speed signal output from the vehicle speed sensor 5, ON-OFF signal from the idle switch 6, oxygen sensor 7 (a sensor that can mainly detect the air-fuel ratio near the stoichiometric air-fuel ratio based on the oxygen concentration in the exhaust gas) air-fuel ratio detection signal from
is entered. The control device 1 operates according to the flowcharts shown in FIGS. 3 to 7, and outputs a drive pulse signal to the fuel injection valve 8 via the drive circuit 9.

ここでは、制御装置1が基本噴射量設定手段とフィード
フォワード補正係数設定手段と記憶手段(CRAM)と
検索手段と書換手段と燃料噴射量設定手段とを構成する
。また、制御装置1と駆動回路9とにより駆動手段を構
成し、点火コイル2の点火信号により回転速度を検出す
るため、点火コイル2が回転変動検出手段を構成する。
Here, the control device 1 constitutes a basic injection amount setting means, a feedforward correction coefficient setting means, a storage means (CRAM), a retrieval means, a rewriting means, and a fuel injection amount setting means. Further, the control device 1 and the drive circuit 9 constitute a drive means, and since the rotational speed is detected by the ignition signal of the ignition coil 2, the ignition coil 2 constitutes a rotation fluctuation detection means.

次に作用を第3図〜第7図のフローチャートに従って説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 7.

まず、サージ判定ルーチンを第3図のフローチャートに
基づいて説明する。
First, the surge determination routine will be explained based on the flowchart of FIG.

かかるルーチンは100m5ec毎に起動信号が入力さ
れて起動する。
This routine is started every 100 m5ec by inputting a start signal.

Slでは、点火信号からの回転速度信号、車速信号を読
み込む。
Sl reads the rotational speed signal and vehicle speed signal from the ignition signal.

S2では、回数メモリ (RAM)に記憶されたサンプ
リング回数nに+1を加算して新たなサンプリング回数
nとして、回数メモリに記憶させる。
In S2, +1 is added to the number of sampling times n stored in the number of times memory (RAM), and the result is stored in the number of times memory as a new number of sampling times n.

S3では、前記サンプリング回数が11回になったか否
かを判定し、YESの時にはS4に進み回転速度メモリ
 (RAM)に記憶された回転速度を全て初期値(例え
ば0)にする一方、NOのときには回転速度メモリを初
期化することなく、S5に進む。
In S3, it is determined whether or not the number of sampling times has reached 11. If YES, the process advances to S4, and all rotation speeds stored in the rotation speed memory (RAM) are set to initial values (for example, 0), while if NO, the process proceeds to S4. Sometimes, the process proceeds to S5 without initializing the rotational speed memory.

S5では、検出された回転速度を新たに設定されたサン
プリング回数に対応する回転速度メモリのアドレスに記
憶させる。ここで、回転速度メモリには、100m5e
c毎に検出された回転速度サンプリング回数(100s
ec毎)に対応するアドレスに10種類すなわち1 s
ec間のデータが記憶可能になっている。
In S5, the detected rotational speed is stored in the address of the rotational speed memory corresponding to the newly set number of sampling times. Here, the rotation speed memory contains 100m5e.
Number of rotational speed samplings detected every c (100s
ec) 10 types of addresses corresponding to 1 s
Data between ecs can be stored.

S6では、サンプリング回数n=lに記憶された回転速
度N、と今回検出された回転速度Nnとからサンプリン
グ期間における回転速度の変化量ΔN (=N−N+ 
)を演算する。ここで、サンプリング期間Δtは100
m5ec、 200sec、 300sec、 500
ssec及び1 secに設定されている。したがって
、サンプリング開始初期は、100m5ecのサンプリ
ング期間において回転速度の変化量ΔNが演算される。
In S6, the amount of change in rotational speed during the sampling period ΔN (=N-N+
) is calculated. Here, the sampling period Δt is 100
m5ec, 200sec, 300sec, 500
ssec and 1 sec. Therefore, at the beginning of sampling, the amount of change ΔN in the rotational speed is calculated in a sampling period of 100 m5ec.

S7では、検出された車速VSFから単位時間当演算す
る。
In S7, the unit time is calculated from the detected vehicle speed VSF.

S8では演算された車速変化率ΔVSFから現在の運転
状態を判定し、加速運転判定時にはS9に進み減速運転
判定時には310に進む、さらに、定常運転判定時には
回転変動の判定を行うことなくSllに進む。
In S8, the current driving state is determined from the calculated vehicle speed change rate ΔVSF, and when acceleration driving is determined, the process proceeds to S9, and when deceleration driving is determined, the process proceeds to 310.Furthermore, when steady driving is determined, the process proceeds to Sll without determining rotation fluctuation. .

S9では、S6にて演算された変化量ΔNとm個す−ジ
許容範囲一ΔNcとを比較し、−ΔNc〉ΔNのときに
は変化量ΔNが一側に大きく変動していると判定しS1
2に進み、−ΔNc≦ΔNのときには回転変動が小さい
と判定しSllに進む。
In S9, the amount of change ΔN calculated in S6 is compared with the m-tolerance range ΔNc, and when -ΔNc>ΔN, it is determined that the amount of change ΔN is largely fluctuating in one direction, and S1
The process proceeds to step 2, and when -ΔNc≦ΔN, it is determined that the rotational fluctuation is small, and the process proceeds to Sll.

このようにして、加速運転時には変化量ΔNが一側に大
きく変動しているときにサージ発生と判定する。
In this way, during acceleration operation, it is determined that a surge has occurred when the amount of change ΔN is significantly fluctuating to one side.

一方、510では前記変化量ΔNと+側す−ジ許容範囲
ΔNcとを比較し、ΔNc<ΔNのときには変化量ΔN
が+側に大きく変動していると判定しS12に進み、Δ
Nc≧ΔNのときには回転変動が小さいと判定しSll
に進む。
On the other hand, at 510, the amount of change ΔN is compared with the + side shift tolerance range ΔNc, and when ΔNc<ΔN, the amount of change ΔN
It is determined that Δ has changed significantly to the + side, and the process proceeds to S12, where
When Nc≧ΔN, it is determined that the rotational fluctuation is small and Sll
Proceed to.

このようにして、減速運転時には変化量ΔNが+側に大
きく変動しているときにサージ発生と判定する。
In this way, during deceleration operation, it is determined that a surge has occurred when the amount of change ΔN is significantly fluctuating on the positive side.

Sllでは、サージ発生がない状態をサージフラッグF
、=0としてRAM等に記憶させる一方、S12ではサ
ージ発生があった状態をサージフラッグF、=1として
RAM等に記憶させる。
In Sll, the surge flag F indicates the state where no surge occurs.
, = 0, and stored in the RAM, etc., and in S12, the state in which a surge has occurred is stored in the RAM, etc., as the surge flag F, = 1.

かかるサージ判定ルーチンにより100m5ec、20
0m5eC+ 300m5ec+ 500m5ec及び
1 secのサンプリング期間において希薄空燃比制御
におけるサージ判定を行う。
With this surge judgment routine, 100m5ec, 20
Surge determination in lean air-fuel ratio control is performed during sampling periods of 0 m5 eC+ 300 m5 eC+ 500 m5 eC and 1 sec.

さらに、サージが発生したと判定されたときには、S1
3で今回のサージ判定が初回のサージ判定か否かを判定
し、YESのときにはS14に進み、Noのときにはサ
ージ判定ルーチンを終了させる。
Furthermore, when it is determined that a surge has occurred, S1
In step 3, it is determined whether the current surge determination is the first surge determination, and if YES, the process proceeds to S14, and if NO, the surge determination routine is ended.

S14では、RAMに記憶された後述の空燃比設定係数
nと噴射時間設定値iとを0にリセットする。
In S14, an air-fuel ratio setting coefficient n and an injection time setting value i, which will be described later, stored in the RAM are reset to zero.

次に、希薄空燃比制御判定ルーチンを第4図に基づいて
説明すると、S21では、点火信号、吸入空気流量信号
等の各種信号を読み込む。
Next, the lean air-fuel ratio control determination routine will be explained based on FIG. 4. In S21, various signals such as an ignition signal and an intake air flow rate signal are read.

S22では、検出された各種運転状態に基づいて希薄空
燃比制御条件が成立したか否かを判定し、YESのとき
にはS23に進みNOのときにはS24に進む。
In S22, it is determined whether the lean air-fuel ratio control condition is satisfied based on the detected various operating states, and if YES, the process proceeds to S23, and if NO, the process proceeds to S24.

希薄空燃比制御成立条件としては、機関負荷(例えば基
本噴射量)が所定範囲の低負荷域で、回転速度が所定範
囲の低回転域で、冷却水温度が所定値(例えば80℃)
以上で、車速か所定値(例えば8 km / h )以
上で、かつアイドル運転時以外(アイドルスイッチ6が
OFFのとき)のときがある。
The conditions for establishing lean air-fuel ratio control are that the engine load (e.g., basic injection amount) is in a low load range within a predetermined range, the rotation speed is in a low rotation range within a predetermined range, and the cooling water temperature is at a predetermined value (e.g., 80°C).
As described above, there are times when the vehicle speed is higher than a predetermined value (for example, 8 km/h) and the vehicle is not idling (when the idle switch 6 is OFF).

S23では、希薄空燃比制御条件が成立したことをリー
ンフラッグFL=1としてRAMに記憶させる。
In S23, the fact that the lean air-fuel ratio control condition is satisfied is stored in the RAM as a lean flag FL=1.

一方、S24では希薄空燃比制御条件が成立しないこと
をリーンフラッグFL=OとしてRAMに記憶させる。
On the other hand, in S24, the fact that the lean air-fuel ratio control condition is not satisfied is stored in the RAM as a lean flag FL=O.

次に目標希薄空燃比設定ルーチンを第5図のフローチャ
ートに従って説明すると、S31ではリーンフラッグF
Lが1か0かを判定し、FL=1のときすなわち希薄空
燃比制御条件が成立したときにはS32に進みFL=0
のときにはS34に進む。
Next, the target lean air-fuel ratio setting routine will be explained according to the flowchart in FIG. 5. In S31, the lean flag F
It is determined whether L is 1 or 0, and when FL=1, that is, when the lean air-fuel ratio control condition is satisfied, the process advances to S32 and FL=0.
If so, the process advances to S34.

S32では、空燃比が理論空燃比より希薄の目標希薄空
燃比になるように設定されたフィードフォワード補正係
数としてのリーンバーン補正係数LBCMAPを、基本
噴射量’rpと回転速度とに基づいて希薄空燃比マツプ
から検索した後、S33に進む。
In S32, the lean burn correction coefficient LBCMAP is set as a feedforward correction coefficient so that the air-fuel ratio becomes a target lean air-fuel ratio leaner than the stoichiometric air-fuel ratio. After searching from the fuel ratio map, the process advances to S33.

S33では、空燃比が略理論空燃比になるように設定さ
れた後述の混合比補正係数K lj r l水温補正係
数KTW等の補正係数を0に設定する。
In S33, correction coefficients such as a mixture ratio correction coefficient Kljrl water temperature correction coefficient KTW, which will be described later, are set to 0 so that the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio.

一方、S34では、前記混合比補正係数K sr等の補
正係数をマツプから検索する。
On the other hand, in S34, correction coefficients such as the mixture ratio correction coefficient Ksr are searched from the map.

また、第6図のフローチャートに示すように、イグニッ
ションスイッチがオンされたときに空燃比設定係数nを
0にリセットする。
Further, as shown in the flowchart of FIG. 6, the air-fuel ratio setting coefficient n is reset to 0 when the ignition switch is turned on.

次に燃料の噴射量制御ルーチンを第7図のフローチャー
トに従って説明する。このルーチンは10m5ec毎に
起動される。
Next, the fuel injection amount control routine will be explained according to the flowchart shown in FIG. This routine is started every 10m5ec.

S51では、点火信号から得られた機関回転速度Nと吸
入空気流i1Qとから基本噴射量Tp(=K□・Kは定
数)を演算する。
In S51, a basic injection amount Tp (=K□·K is a constant) is calculated from the engine rotation speed N obtained from the ignition signal and the intake air flow i1Q.

S52では、リーンフラッグFLが1かOかを判定し、
Ft”1のときすなわち希薄空燃比制御条件が成立して
いるときにはS53に進みFL=0のときにはS54に
進む。
In S52, it is determined whether the lean flag FL is 1 or O,
When Ft''1, that is, when the lean air-fuel ratio control condition is satisfied, the process proceeds to S53, and when FL=0, the process proceeds to S54.

S53では、サージフラッグF、が1かOかを判定し、
FS=oのときすなわちサージ非発生時にはS55に進
み、F、=1のときすなわちサージが発生していると判
定されいるときにはS56に進む。
In S53, it is determined whether the surge flag F is 1 or O,
When FS=o, that is, no surge has occurred, the process proceeds to S55, and when F,=1, that is, it is determined that a surge has occurred, the process proceeds to S56.

S55では、RAMに記憶されている空燃比設定係数n
が0か否かを判定し、YESのときには機関の始動後サ
ージが発生していないとしS57に進みNOのときには
機関始動後にサージ発生の経歴があったと判定し、S5
6に進む。
In S55, the air-fuel ratio setting coefficient n stored in the RAM is
is 0 or not, and if YES, it is determined that no surge has occurred after the engine has started, and the process proceeds to S57. If NO, it is determined that there has been a history of surges occurring after the engine has been started, and S5
Proceed to step 6.

S56では空燃比設定係数nを基本噴射1tTpと回転
速度Nとに基づいてRAMから検索する。
In S56, the air-fuel ratio setting coefficient n is retrieved from the RAM based on the basic injection 1tTp and the rotational speed N.

ここでRAMにはTpとNに対応させて空燃比設定係数
nが記憶されている。
Here, an air-fuel ratio setting coefficient n is stored in the RAM in association with Tp and N.

558では、前回の噴射時間設定値iに+1を加算して
新たな噴射時間設定値iを設定した後に359に進む。
In 558, +1 is added to the previous injection time setting value i to set a new injection time setting value i, and then the process proceeds to 359.

S59では、新たに設定された噴射時間設定値iが10
になったか否かを判定し、YESのときにはS60に進
みNoのときにはS60を通過することなくS61に進
む。
In S59, the newly set injection time setting value i is 10.
It is determined whether or not the current value has been reached, and when the answer is YES, the process proceeds to S60, and when the answer is No, the process proceeds to S61 without passing through S60.

S60では、前回の空燃比設定係数nに+1を加算して
新たな空燃比設定係数nを設定すると共に噴射時間設定
値iをOにリセットさせる。したがって、このルーチン
が10m5ec毎に起動され、噴射時間設定値iがOか
ら9になるまですなわち100IIIsec経過する期
間では、空燃比設定係数nは同一値をとるようになり、
100m5ec経過毎に新たな空燃比設定係数nが設定
される。
In S60, +1 is added to the previous air-fuel ratio setting coefficient n to set a new air-fuel ratio setting coefficient n, and the injection time setting value i is reset to O. Therefore, this routine is started every 10m5ec, and the air-fuel ratio setting coefficient n takes the same value until the injection time setting value i goes from O to 9, that is, during the period of 100IIIsec.
A new air-fuel ratio setting coefficient n is set every 100 m5ec.

S61では、新たに設定された空燃比設定係数nが最大
値nmax  (例えばn=1oo%)になったか否か
を判定し、YESのときにはS62に進みNOのときに
はS63に進む。
In S61, it is determined whether the newly set air-fuel ratio setting coefficient n has reached the maximum value nmax (for example, n=1oo%). If YES, the process advances to S62, and if NO, the process advances to S63.

S62では、空燃比設定係数nが最大値n +naxを
超えないように前記空燃比設定係数nを最大値nIII
axにクランプしてS63に進む。
In S62, the air-fuel ratio setting coefficient n is set to the maximum value nIII so that the air-fuel ratio setting coefficient n does not exceed the maximum value n+nax.
Clamp to ax and proceed to S63.

ここで前記最大値n maxは実際の空燃比が理論空燃
比より希薄な希薄空燃比になるように設定されている。
Here, the maximum value n max is set so that the actual air-fuel ratio becomes a lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio.

S63では、新たなリーンバーン補正係数LBCを次式
により演算する。
In S63, a new lean burn correction coefficient LBC is calculated using the following equation.

LBC=LBCMAP+nXΔF 尚、ΔFはクランプ濃化係数である。LBC=LBCMAP+nXΔF Note that ΔF is a clamp concentration coefficient.

S64では新たに設定された空燃比設定係数nをRAM
に記憶させる。
In S64, the newly set air-fuel ratio setting coefficient n is stored in the RAM.
to be memorized.

このようにして、サージが発生しない空燃比まで空燃比
設定係数nを増加させる。
In this way, the air-fuel ratio setting coefficient n is increased to an air-fuel ratio at which no surge occurs.

S65では、各種補正係数C0EFを前記S33にて得
られた補正係数に基づいて次式により演算して設定しS
67に進む。
In S65, various correction coefficients C0EF are calculated and set by the following equations based on the correction coefficients obtained in S33.
Proceed to 67.

Co E F ” 1 +に@1.+ Ktw−+ K
Hotしたがって、混合比補正係数に1等の補正係数が
833において0に設定されるため、各種補正係数C0
EFは1に設定される。
Co E F ” 1 + @1.+ Ktw-+ K
Hot Therefore, since the first correction coefficient in the mixture ratio correction coefficient is set to 0 in 833, various correction coefficients C0
EF is set to 1.

一方、リーンフラッグFL=0のときすなわち希薄空燃
比制御条件が不成立のときには、S54において各種補
正係数C0EFをS34にて得られた混合比補正係数K
 sr等の補正係数に基づいて次式により演算して設定
しS66に進む。
On the other hand, when the lean flag FL=0, that is, when the lean air-fuel ratio control condition is not satisfied, the various correction coefficients C0EF are changed to the mixture ratio correction coefficient K obtained in S34 in S54.
Based on the correction coefficients such as sr, the following equation is used to calculate and set, and the process proceeds to S66.

C0EF=1 +K1.lr+Kt@+”・十K MO
?したがって、このときには、各種補正係数C0EFは
1を超える値に設定される。
C0EF=1 +K1. lr+Kt@+”・10K MO
? Therefore, at this time, the various correction coefficients C0EF are set to values exceeding 1.

368では、酸素センサ7により検出された実際の空燃
比に基づいて空燃比が理論空燃比になるように空燃比フ
ィードバック補正係数αを設定しS69に進む。
In step 368, the air-fuel ratio feedback correction coefficient α is set so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the actual air-fuel ratio detected by the oxygen sensor 7, and the process proceeds to S69.

また、リーンフラッグFL=1のときすなわち希薄空燃
比制御条件が成立し、かつサージフラッグF、=0のと
きでかつ機関始動後にサージが発生していないときには
、S57で332にて検索されたリーンバーン補正係数
L B CMA Pを設定し、S65に進む。
Furthermore, when the lean flag FL=1, that is, the lean air-fuel ratio control condition is satisfied, and when the surge flag F=0 and no surge has occurred after the engine is started, the lean The burn correction coefficient L B CMAP is set, and the process proceeds to S65.

また、FL=1でかつF、−〇であっても機関始動後に
一回でもサージ発生が判定されたときには、S66で、
RAMがら空燃比設定係数nを検索した後、S67で前
記S63と同様にリーンバーン補正係数LBCを演算す
る。
Furthermore, even if FL=1 and F, -〇, if it is determined that a surge has occurred even once after the engine has started, in S66,
After retrieving the air-fuel ratio setting coefficient n from the RAM, a lean burn correction coefficient LBC is calculated in S67 in the same manner as in S63.

369では、燃料噴射量Tiを次式により演算する。In step 369, the fuel injection amount Ti is calculated using the following equation.

Ti=Tpxα(orLBCMAP、LBC)XCOE
F+Ts 尚、T、はバフテリ補正係数である。
Ti=Tpxα(orLBCMAP,LBC)XCOE
F+Ts Note that T is a buffer correction coefficient.

そして、演算された燃料噴射ITiに基づいて例えば点
火コイル2からのリファレンス信号(回転数)に同期し
て駆動回路9を介して燃料噴射弁8に出力し燃料噴射を
行う。
Based on the calculated fuel injection ITi, it is output to the fuel injection valve 8 via the drive circuit 9 in synchronization with, for example, a reference signal (rotation speed) from the ignition coil 2 to perform fuel injection.

このように燃料噴射制御を行うと、希薄空燃比制御条件
が成立しかつサージが機関始動直後から発生しないとき
には、リーンバーン補正係数LBCMAPに基づいてフ
ィードフォワード制御により実際の空燃比が目aI希薄
空燃比になるように希薄空燃比制御が行われる(357
.  S65及び569)。
When fuel injection control is performed in this way, when the lean air-fuel ratio control conditions are met and a surge does not occur immediately after engine startup, feedforward control is performed based on the lean burn correction coefficient LBCMAP to adjust the actual air-fuel ratio to Lean air-fuel ratio control is performed to maintain the fuel ratio (357
.. S65 and 569).

したがって、この運転領域では、燃費の向上及び排気の
浄化等を図れる。
Therefore, in this operating range, it is possible to improve fuel efficiency and purify exhaust gas.

一方、希薄空燃比制御条件が不成立のときには燃料噴射
制御がフィードバック制御により実際の空燃比が理論空
燃比になるように制御される(S54、  S68及び
569)。
On the other hand, when the lean air-fuel ratio control condition is not satisfied, the fuel injection control is controlled by feedback control so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio (S54, S68, and 569).

さらに、サージが発生したときには、希薄空燃比制御条
件が成立しても、空燃比設定係数nを100m5ec毎
に増大させてフィードフォワード制御により実際の空燃
比(希薄空燃比)を徐々に濃化する。
Furthermore, when a surge occurs, even if the lean air-fuel ratio control conditions are met, the air-fuel ratio setting coefficient n is increased every 100 m5ec to gradually enrich the actual air-fuel ratio (lean air-fuel ratio) through feedforward control. .

そして、所定の希薄空燃比になったところで実際の空燃
比になるように制御する。
Then, when the predetermined lean air-fuel ratio is reached, the air-fuel ratio is controlled to become the actual air-fuel ratio.

これにより、燃料噴射弁8の低噴射量域での噴射特性が
悪く、希薄空燃比制御により実際の空燃比が過度に希薄
化されサージが発生しても、燃量の向上を図りつつ実際
の空燃比が濃化されサージの発生を抑制でき、もって運
転性を向上できる。
As a result, even if the injection characteristics of the fuel injector 8 in the low injection amount range are poor and the actual air-fuel ratio is excessively lean due to the lean air-fuel ratio control and a surge occurs, the actual The air-fuel ratio is enriched and surge generation can be suppressed, thereby improving drivability.

サージ発生時に目標希薄空燃比を濃化するように設定す
る空燃比設定係数を更新して記憶するようにしたので、
希薄空燃比制御停止後に再び希薄空燃比制御に移行した
ときに目標希薄空燃比より実際の空燃比が濃化される。
The air-fuel ratio setting coefficient, which is set to enrich the target lean air-fuel ratio when a surge occurs, is updated and stored.
When the lean air-fuel ratio control is resumed after the lean air-fuel ratio control is stopped, the actual air-fuel ratio is richer than the target lean air-fuel ratio.

このためそのときにサージの発生を抑制できる。Therefore, the generation of surge can be suppressed at that time.

さらにイグニッションスイッチがオンされたときにRA
Mの空燃比設定係数nをOにリセットしたので燃料噴射
弁の噴射量が一時的に低下してサージが発生したときに
もサージを抑制できる。
Furthermore, when the ignition switch is turned on, the RA
Since the air-fuel ratio setting coefficient n of M is reset to O, the surge can be suppressed even when the injection amount of the fuel injection valve temporarily decreases and a surge occurs.

尚、本実施例では、サージ発生時に希薄空燃比制御から
理論空燃比制御に徐々に濃化させるようにしたが、瞬時
に濃化するようにしてもよい。
In this embodiment, when a surge occurs, the air-fuel ratio control is gradually enriched from the lean air-fuel ratio control to the stoichiometric air-fuel ratio control, but the air-fuel ratio control may be enriched instantly.

〈発明の効果) 本発明は、以上説明したように、@薄空燃比制御中にサ
ージが発生したときに、希薄空燃比を制御に濃化するよ
うにしたので、実際の空燃比を過度に希薄化するのを防
止できるため、燃量の向上を図りつつサージ発生を抑制
でき、もって運転性の向上を図れる。
<Effects of the Invention> As explained above, the present invention enriches the lean air-fuel ratio in control when a surge occurs during @lean air-fuel ratio control, so the actual air-fuel ratio is not excessively adjusted. Since dilution can be prevented, surge generation can be suppressed while improving fuel consumption, thereby improving drivability.

また空燃比選定係数を新たに設定して記憶させるように
したので、希薄空燃比制御に再び移行したときにサージ
の発生を抑制できる。
Furthermore, since the air-fuel ratio selection coefficient is newly set and stored, it is possible to suppress the occurrence of surge when switching to lean air-fuel ratio control again.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第7図は同上のフローチ
ャートである。 1・・・制御装置  2・・・点火コイル  3・・・
エアフロメータ  7・・・酸素センサ  8・・・燃
料噴射弁  9・・・駆動回路 特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第2図 第4図 第5図 第6図
FIG. 1 is a diagram corresponding to claims of the present invention, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIGS. 3 to 7 are flowcharts of the same. 1... Control device 2... Ignition coil 3...
Air flow meter 7...Oxygen sensor 8...Fuel injection valve 9...Drive circuit Patent applicant Japan Electronics Co., Ltd. Representative Patent attorney Fujio SasashimaFigure 2Figure 4Figure 5Figure 6

Claims (1)

【特許請求の範囲】[Claims] 所定の運転領域で所定の希薄空燃比制御条件が検出され
たときに実際の空燃比が理論空燃比より希薄化されるよ
うに希薄空燃比制御をフィードフォワード制御にて行う
内燃機関の電子制御燃料噴射装置において、機関運転状
態に応じて基本噴射量を設定する基本噴射量設定手段と
、実際の空燃比が理論空燃比より希薄な目標希薄空燃比
になるようにフィードフォワード補正係数を設定するフ
ィードフォワード補正係数設定手段と、前記基本噴射量
を補正する空燃比設定係数を記憶する書換可能な記憶手
段と、該記憶手段から空燃比設定係数を検索する検索手
段と、希薄空燃比制御中の機関の回転変動を検出する回
転変動検出手段と、検出された回転変動が所定値以上の
ときに、検索された空燃比設定係数を、実際の空燃比が
前記目標希薄空燃比より所定量濃化するように補正し新
たな空燃比設定係数を設定し、この新たな空燃比設定係
数に前記記憶手段のデーターを書換える書換手段と、前
記演算された基本噴射量とフィードフォーワード補正係
数と前記空燃比設定係数とに基づいて燃料噴射量を設定
する燃料噴射量設定手段と、設定された燃料噴射量に基
づいて燃料噴射弁を駆動する駆動手段と、を備えたこと
を特徴とする内燃機関の電子制御燃料噴射装置。
Electronically controlled fuel for an internal combustion engine that performs lean air-fuel ratio control using feedforward control so that when a predetermined lean air-fuel ratio control condition is detected in a predetermined operating region, the actual air-fuel ratio is leaner than the stoichiometric air-fuel ratio. The injection device includes a basic injection amount setting means for setting a basic injection amount according to engine operating conditions, and a feed for setting a feedforward correction coefficient so that the actual air-fuel ratio becomes a target lean air-fuel ratio leaner than the stoichiometric air-fuel ratio. forward correction coefficient setting means; rewritable storage means for storing an air-fuel ratio setting coefficient for correcting the basic injection amount; search means for searching the air-fuel ratio setting coefficient from the storage means; and an engine under lean air-fuel ratio control. rotational fluctuation detection means for detecting rotational fluctuation of the engine; and when the detected rotational fluctuation is equal to or greater than a predetermined value, the retrieved air-fuel ratio setting coefficient is configured to make the actual air-fuel ratio richer than the target lean air-fuel ratio by a predetermined amount. rewriting means for rewriting data in the storage means to the new air-fuel ratio setting coefficient; An internal combustion engine comprising: a fuel injection amount setting means for setting a fuel injection amount based on a fuel ratio setting coefficient; and a driving means for driving a fuel injection valve based on the set fuel injection amount. Electronically controlled fuel injection device.
JP1597887A 1987-01-28 1987-01-28 Electronically controlled fuel injection device for internal combustion engine Pending JPS63186937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1597887A JPS63186937A (en) 1987-01-28 1987-01-28 Electronically controlled fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1597887A JPS63186937A (en) 1987-01-28 1987-01-28 Electronically controlled fuel injection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63186937A true JPS63186937A (en) 1988-08-02

Family

ID=11903778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1597887A Pending JPS63186937A (en) 1987-01-28 1987-01-28 Electronically controlled fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63186937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308949A (en) * 1989-05-23 1990-12-21 Toyota Motor Corp Output fluctuation detecting device for multi-cylinder engine
JPH06288276A (en) * 1993-04-05 1994-10-11 Unisia Jecs Corp Air-fuel ratio control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104133A (en) * 1975-02-19 1976-09-14 Bosch Gmbh Robert Nannenkannokihakukukongokiuntennoshoteigenkaihenosetsukindoohyojisurushingonokeiseihohooyobisochi
JPS5918805A (en) * 1982-07-05 1984-01-31 ハイドロプレス・ヴアランデル・ウント・コンパニ−・ア−ベ− Apparatus for collecting and discharging solid substance
JPS5951147A (en) * 1982-09-16 1984-03-24 Toyota Motor Corp Control of air-fuel ratio of internal-combustion engine for car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104133A (en) * 1975-02-19 1976-09-14 Bosch Gmbh Robert Nannenkannokihakukukongokiuntennoshoteigenkaihenosetsukindoohyojisurushingonokeiseihohooyobisochi
JPS5918805A (en) * 1982-07-05 1984-01-31 ハイドロプレス・ヴアランデル・ウント・コンパニ−・ア−ベ− Apparatus for collecting and discharging solid substance
JPS5951147A (en) * 1982-09-16 1984-03-24 Toyota Motor Corp Control of air-fuel ratio of internal-combustion engine for car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308949A (en) * 1989-05-23 1990-12-21 Toyota Motor Corp Output fluctuation detecting device for multi-cylinder engine
JPH06288276A (en) * 1993-04-05 1994-10-11 Unisia Jecs Corp Air-fuel ratio control device

Similar Documents

Publication Publication Date Title
JP2526591B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6011220B2 (en) fuel injector
JP3348434B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0331548A (en) Mixed fuel supply device of internal combustion engine
JPS63186937A (en) Electronically controlled fuel injection device for internal combustion engine
US4662339A (en) Air-fuel ratio control for internal combustion engine
JPS63176636A (en) Electronic control type fuel injector for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS63176640A (en) Electronic control type fuel injector for internal combustion engine
JPS63140838A (en) Electronic control fuel injection device for internal combustion engine
JPH076446B2 (en) Mixed fuel supply system for internal combustion engine
JP2596035B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62271945A (en) Electronic control type fuel injection device for internal combustion engine
JPH02230934A (en) Air-fuel ratio control device for internal combustion engine
JPH04143435A (en) Air-fuel ratio control method of internal combustion engine
JPS63140840A (en) Electronic control fuel injection device for internal combustion engine
JP3538862B2 (en) Engine ignition timing control device
JPH01285635A (en) Air-fuel ratio control device for internal combustion engine
JP3334138B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63140839A (en) Electronic control fuel injection device for internal combustion engine
JPH0227132A (en) Device for controlling air-fuel ratio of internal combustion engine
JPH0545803Y2 (en)
JP2591006B2 (en) Air-fuel ratio control device for internal combustion engine
JP2596009B2 (en) Air-fuel ratio control device for internal combustion engine
JP4060427B2 (en) Air-fuel ratio control device for internal combustion engine