JP4060427B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP4060427B2
JP4060427B2 JP03795498A JP3795498A JP4060427B2 JP 4060427 B2 JP4060427 B2 JP 4060427B2 JP 03795498 A JP03795498 A JP 03795498A JP 3795498 A JP3795498 A JP 3795498A JP 4060427 B2 JP4060427 B2 JP 4060427B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensor
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03795498A
Other languages
Japanese (ja)
Other versions
JPH11223147A (en
Inventor
大介 清水
典男 鈴木
浩 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP03795498A priority Critical patent/JP4060427B2/en
Publication of JPH11223147A publication Critical patent/JPH11223147A/en
Application granted granted Critical
Publication of JP4060427B2 publication Critical patent/JP4060427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の空燃比制御装置に関し、特に空燃比センサの活性状態に応じた空燃比フィードバック制御の開始時期の判定手法に関する。
【0002】
【従来の技術】
従来、内燃機関に供給される混合気の空燃比を制御する内燃機関の空燃比制御装置においては、内燃機関が通常の運転状態にあるときは目標空燃比を理論空燃比に設定して排気ガス特性の向上を図り、機関の始動直後から機関の排気系に配設された三元触媒が活性化するまでの間は目標空燃比を理論空燃比よりもリーン側の値に設定して排気ガス中のHC成分を低減させ、また、機関の高速クルージング運転状態においては燃費向上のために目標空燃比を理論空燃比よりもリーン側の値に設定するリーンバーン制御を実行し、或いは、ノッキング防止やエンジン保護のために目標空燃比を理論空燃比よりもリッチ側の値に設定する等、目標空燃比を内燃機関の運転状態に応じて設定するようにしていた。
【0003】
また、従来、排気ガス中の酸素濃度に略比例する出力特性を有する広域型空燃比センサ(限界電流式酸素濃度センサ)を排気系に設けると共に、該空燃比センサの活性化を判定する活性化判定手段を設けて、空燃比センサが活性化するまでの間は空燃比センサからの信号の有無により空燃比のリッチ・リーンのみを判別して、比例・積分制御(PI制御)を実行し、活性化した後は上記空燃比センサの出力に基づく現代制御等の精密な空燃比フィードバック制御を開始するようにした内燃機関の空燃比制御装置が例えば特開平7-127502号公報により公知である。
【0004】
上記公知の空燃比制御装置においては、広域型空燃比センサ(限界電流式酸素濃度センサ)の素子温度に基づいて空燃比センサの活性化を判定している。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公知の空燃比制御装置におけるような広域型空燃比センサは、制御空燃比によって空燃比センサの限界電流が安定する素子温度が異なるのが通常である。即ち、理論空燃比近傍の空燃比領域においては比較的低温の素子温度で限界電流が安定するのに対して、制御空燃比が理論空燃比から離れる程素子温度がより高温になるまで限界電流が安定しないのが通常である。
【0006】
このため、上記公知の空燃比制御装置において、空燃比センサ活性化判定用の基準値として空燃比全域に亘って限界電流が安定する素子温度を採用した場合には空燃比センサ活性化の判断が遅れて空燃比フィードバック制御の開始時期が遅くなるため、排気ガス特性の悪化を招く一方、空燃比フィードバック制御の開始時期を早めるために上記基準値をより低い素子温度に設定した場合には、理論空然比近傍以外の空燃比領域で空燃比センサの活性化が十分でないうちにフィードバック制御が開始されてしまう等、理論空燃比近傍以外のリッチ又はリーンの空燃比領域での空燃比フィードバック制御の信頼性が低下し、排気ガス特性の悪化を招くと云う問題があった。
【0007】
本発明は、上記問題点を解決するためになされたもので、空燃比センサの活性状態を適切に判断して、空燃比センサの出力の信頼性を損なうことなく可及的に早い時期に空燃比フィードバック制御を開始することができるようにし、以って排気ガス特性を向上させることができる内燃機関の空燃比制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、内燃機関の排気系に設けられ前記内燃機関に供給される混合気の空燃比に略比例した値の信号を出力する、限界電流式酸素濃度センサで構成された空燃比センサと、前記内燃機関の運転状態を検出する運転状態検出手段と、前記空燃比センサの出力信号に応じて前記空燃比が目標空燃比と一致するように前記空燃比をフィードバック制御する空燃比フィードバック制御手段と、前記検出された運転状態に応じて前記目標空燃比を設定する目標空燃比設定手段と、前記空燃比センサの活性度合いを表すパラメータとして、前記空燃比センサの素子温度を表すパラメータを検出する活性度検出手段と、前記空燃比センサが活性化したか否かを判定するための活性判定基準値を、前記目標空燃比設定手段によって設定された前記目標空燃比が理論空燃比から離れるほど、より高温の前記素子温度を表す側に設定する活性判定基準値設定手段と、前記検出された活性度合いが前記活性判定基準値を、より高い活性状態を表す側に越えたときに前記目標空燃比への空燃比フィードバック制御の実行を許可する許可手段とを具備したことを特徴とする。
【0009】
この構成によれば、空燃比センサは、内燃機関に供給される混合気の空燃比に略比例した値の信号を出力する限界電流式酸素濃度センサで構成されており、空燃比センサが活性化したか否かを判定するための活性判定基準値が、内燃機関の運転状態に応じて設定された目標空燃比が理論空燃比から離れるほど、より高温の空燃比センサの素子温度を表す側に設定されると共に、空燃比センサの活性度合いを表すパラメータとして、空燃比センサの素子温度を表すパラメータが検出され、該検出された空燃比センサの活性度合いが上記設定された活性判定基準値を、より高い活性状態を表す側に越えたときに上記空燃比センサの出力に基づくフィードバック制御が開始されるので、空燃比センサの活性状態を適切に判断して、空燃比センサの出力の信頼性を損なうことなく可及的に早い時期に空燃比フィードバック制御を開始することができ、以って排気ガス特性を向上させることができる。
請求項2記載の発明は、内燃機関の排気系に設けられ、活性化する素子温度が、前記内燃機関に供給される混合気の空燃比が理論空燃比のときに低く、前記空燃比が理論空燃比から離れるに従って高くなるという特性を有し、前記空燃比に略比例した値の信号を出力する空燃比センサと、前記内燃機関の運転状態を検出する運転状態検出手段と、前記空燃比センサの出力信号に応じて前記空燃比が目標空燃比と一致するように前記空燃比をフィードバック制御する空燃比フィードバック制御手段と、前記検出された運転状態に応じて前記目標空燃比を設定する目標空燃比設定手段と、前記空燃比センサの活性度合いを表すパラメータとして、前記空燃比センサの前記素子温度を表すパラメータを検出する活性度検出手段と、前記空燃比センサが活性化したか否かを判定するための活性判定基準値を、前記目標空燃比設定手段によって設定された前記目標空燃比が理論空燃比から離れるほど、より高温の前記素子温度を表す側に設定する活性判定基準値設定手段と、前記検出された活性度合いが前記活性判定基準値を、より高い活性状態を表す側に越えたときに前記目標空燃比への空燃比フィードバック制御の実行を許可する許可手段と、を具備したことを特徴とする。
請求項3記載の発明は、内燃機関の排気系に設けられ、前記内燃機関に供給される混合気の空燃比に略比例した値の信号を出力する、限界電流式酸素濃度センサで構成された空燃比センサと、前記内燃機関の運転状態を検出する運転状態検出手段と、前記空燃比センサの出力信号に応じて前記空燃比が目標空燃比と一致するように前記空燃比をフィードバック制御する空燃比フィードバック制御手段と、前記検出された運転状態に応じて前記目標空燃比を設定する目標空燃比設定手段と、前記空燃比センサの活性度合いを表すパラメータとして、前記空燃比センサの内部抵抗を検出する活性度検出手段と、前記空燃比センサが活性化したか否かを判定するための活性判定基準値を、前記目標空燃比設定手段によって設定された前記目標空燃比に応じて設定する活性判定基準値設定手段であって、前記活性判定基準値を、前記空燃比センサの内部抵抗に対して設定する場合には、前記目標空燃比が理論空燃比であるときに最大値に設定し、且つ前記目標空燃比が理論空燃比から離れるに従って前記最大値から漸減する値に設定するとともに、前記内部抵抗の逆数に対して設定する場合には、前記目標空燃比が理論空燃比であるときに最小値に設定し、且つ前記目標空燃比が理論空燃比から離れるに従って最小値から漸増する値に設定する活性判定基準値設定手段と、前記検出された活性度合いが前記活性判定基準値を、より高い活性状態を表す側に越えたときに前記目標空燃比への空燃比フィードバック制御の実行を許可する許可手段と、を具備したことを特徴とする。
【0010】
【発明の実施の形態】
以下本発明の実施の形態を添付図面に基づいて詳述する。
【0011】
図1は、本発明の第1の実施の形態に係る内燃機関(以下「エンジン」という)及び制御装置の全体の構成を示す図である。同図中、1は各シリンダに吸気弁と排気弁(図示せず)とを各1対に設けたDOHC直列4気筒エンジンである。
【0012】
エンジン1の吸気管2の途中にはスロットルボディ3が設けられ、その内部にはスロットル弁3’が配されている。スロットル弁3’にはスロットル弁開度(θTH)センサ4が連結されており、当該スロットル弁3’の開度に応じた電気信号を出力して電子コントロールユニット(以下「ECU」という)5に供給する。
【0013】
燃料噴射弁6はエンジン1とスロットル弁3との間且つ吸気管2の図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間が制御される。
【0014】
また、スロットル弁3の直ぐ下流には管7を介して吸気管内絶対圧(PBA)センサ8が設けられており、この絶対圧センサ8により電気信号に変換された絶対圧信号は前記ECU5に供給される。また、その下流には吸気温(TA)センサ9が取付けられており、吸気温TAを検出して対応する電気信号を出力しECU5に供給する。
【0015】
エンジン1の本体に装着されたエンジン水温(TW)センサ10はサーミスタ等から成り、エンジン水温(冷却水温)TWを検出して対応する温度信号を出力してECU5に供給する。エンジン回転数(NE)センサ11及び気筒判別(CYL)センサ12はエンジン1の図示しないカム軸周囲又はクランク軸周囲に取付けられている。エンジン回転数センサ11はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置で信号パルス(以下「TDC信号パルス」という)を出力し、気筒判別センサ12は特定の気筒の所定のクランク角度位置で信号パルス(以下「CYL信号パルス」という)を出力するものであり、これらの各信号パルスはECU5に供給される。
【0016】
三元触媒14はエンジン1の排気管13に配置されており、排気ガス中のHC,CO,NOx等の成分の浄化を行う。空燃比センサとしての限界電流式酸素濃度センサ(以下「LAFセンサ」という)15が排気管13の三元触媒14の上流側に装着されている。
【0017】
後述するようにLAFセンサ15は、内部抵抗検出手段としての酸素濃度検出活性化制御装置(以下「制御装置」という)25と共に酸素濃度検出装置16を構成する。LAFセンサ15は制御装置25を介してECU5に接続されており、排気ガス中の酸素濃度(空燃比)に略比例した電気信号を出力し、その電気信号を制御装置25に出力する。制御装置25内に格納された酸素濃度検出値はECU5により読み出される。
【0018】
ECU5は各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路5a、中央演算処理回路(以下「CPU」という)5b、CPU5bで実行される各種演算プログラム及び演算結果等を記憶する記憶装置5c、前記燃料噴射弁6に駆動信号を供給する出力回路5d等から構成される。
【0019】
CPU5bは上述の各種エンジンパラメータ信号に基づいて、排気ガス中の酸素濃度に応じた空燃比フィードバック制御運転領域やオープンループ制御運転領域等の種々のエンジン運転状態を判別するとともに、エンジン運転状態に応じ、下記数式1に基づき、前記TDC信号パルスに同期する燃料噴射弁6の燃料噴射時間Toutを演算する。
【0020】
【数1】
Tout=Ti×KCMDM×KLAF×K1+K2
ここに、Tiは基本燃料量、具体的にはエンジン回転数NEと吸気管内絶対圧PBAとに応じて決定される基本燃料噴射時間であり、このTi値を決定するためのTiマップが記憶手段5cに記憶されている。
【0021】
KCMDMは、修正目標空燃比係数であり、エンジン運転状態に応じて設定され、目標空燃比を表わす目標空燃比係数KCMDに燃料冷却補正係数KETVを乗算することによって算出される。補正係数KETVは、燃料を実際に噴射することによる冷却効果によってエンジン1に供給される混合気の空燃比が変化することを考慮して燃料噴射量を補正するための係数であり、目標空燃比係数KCMDの値に応じて設定される。なお、前記数式1から明らかなように、修正目標空燃比係数KCMDMが増加すれば燃料噴射時間(燃料噴射量)Toutは増加するので、KCMD値及びKCMDM値はいわゆる空燃比A/Fの逆数に比例する値となる。目標空燃比係数KCMDは、空燃比A/Fの逆数、すなわち燃空比F/Aに比例し、理論空燃比のとき値1.0をとるので、目標当量比ともいう。
【0022】
KLAFは空燃比補正係数であり、空燃比フィードバック制御中はLAFセンサ15によって検出された空燃比が目標空燃比に一致するように設定され、オープンループ制御中はエンジン運転状態に応じた所定値に設定される。
【0023】
K1及びK2は夫々各種エンジンパラメータ信号に応じて演算される他の補正係数及び補正変数であり、エンジン運転状態に応じた燃費特性、エンジン加速特性等の諸特性の最適化が図られるような値に設定される。
【0024】
CPU5bは上述のようにして算出、決定した結果に基づいて、燃料噴射弁6を駆動する信号を、出力回路5dを介して出力する。
【0025】
図2は、図1における酸素濃度検出装置16の詳細な構成を示すブロック図であり、同図において図1中と同一の構成要素には同一の符号が付してある。
【0026】
酸素濃度検出装置16は、LAFセンサ15及び制御装置25により構成される。LAFセンサ15は上述のように排気管13に設けられており、LAFセンサ15の信号線は、コネクタ(図示せず)により制御装置25に着脱自在に接続されている。LAFセンサ15は、固体電解質素子等から構成され、その内側にヒータ54を内蔵する。ヒータ54はLAFセンサ15を活性状態にするのに十分な発熱容量を有している。また、LAFセンサ15の周囲には小孔60を有するカバー59が設けられており、カバー59は、小孔60を通じて排気ガスを流入させることによりLAFセンサ15が排気ガスに直接触れることを防ぎ、LAFセンサ15の保護及び保温の役目を果たす。
【0027】
制御装置25には、バイアス制御部63、電流検出部67及び制御部69が設けられている。LAFセンサ15に接続されたリード線61の一方はバイアス制御部63に接続され、リード線61の他方は電流検出部67に接続されている。また、ヒータ54に接続された2本のリード線62が制御部69の加熱制御部71に接続されている。
【0028】
バイアス制御部63は、正バイアス源64、負バイアス源65及び切り替え部66から構成されている。電流検出部67は、切り替え部66及び制御部69に接続され、切り替え部66は制御部69にも接続されている。切り替え部66は制御部69からの信号に従ってLAFセンサ15に印加する電圧の極性を切り替え、電流検出部67は検出電流を制御部69に出力する。
【0029】
制御部69は、信号を増幅及び波形整形するアンプ72、アナログ信号値をデジタル信号値に変換するA/D変換部68、記憶部70、及びヒータ54の発熱状態を制御する加熱制御部71から構成される。記憶部70は、制御部69で実行される各種演算プログラムや後述するマップ及び演算結果等を記憶するROM及びRAM、並びにLAFセンサ15の酸素濃度(空燃比A/F)検出値を格納するリングバッファ等からなる。
【0030】
制御部69は、CYL信号パルス、TDC信号パルス、エンジン回転数NE信号及び吸気管内絶対圧PBA信号をECU5から受容する一方、後述の処理により選択したLAFセンサ15の酸素濃度検出値及び内部抵抗値をECU5に供給する。
【0031】
LAFセンサ15は、所定の正の電圧V1を印加したときの限界電流値が酸素分圧に比例することから、排気ガス中の酸素濃度をリニアに検出することができるが、該LAFセンサ15は活性化するのに高温を必要とし、しかもその活性温度範囲が狭いために、エンジン1の排気ガス温のみではLAFセンサ15の活性状態を適切に制御することができない。そこで、内部抵抗の検出によるLAFセンサ15の活性状態維持のための処理(以下「LAFセンサ活性化処理」という)が必要となる。酸素濃度検出装置16は、LAFセンサ活性化処理と酸素濃度検出処理とを一定の切り替え周期Tで切り替えて行う。切り替え周期Tは、LAFセンサ15の素子やヒータ54の熱容量、LAFセンサ15の冷却特性及びLAFセンサ15の活性温度範囲等を考慮して設定する。
【0032】
酸素濃度検出装置25において、切り替え部66を正バイアス源64に接続することにより、LAFセンサ15に所定の正の電圧V1を印加する。このときにLAFセンサ15から出力される電流値I1を電流検出部67により検出し、この電流値I1をアンプ72により増幅及び波形整形した後、A/D変換部68によりデジタル値に変換し、このデジタル値に基づき排気ガス中の酸素濃度(空燃比)を検出する。
【0033】
一方、切り替え部66を負バイパス源65に接続することにより、LAFセンサ15に所定の負の電圧V2を印加して、このときのLAFセンサ15から出力される電流値I2を電流検出部67により検出し、この電流値I2をアンプ72により増幅及び波形整形した後、A/D変換部68によりデジタル値に変換し、このデジタル値に基づいてLAFセンサ15の内部抵抗LAFRIを検出する。
【0034】
また、検出された内部抵抗LAFRIが所定の基準値以上であるときは、加熱制御部71によりヒータ54を加熱制御し、内部抵抗LAFRIが前記所定の基準値を下回る場合は、加熱制御部71によるヒータ54の加熱を停止する。これにより、検出される内部抵抗LAFRIが常に一定になるようにヒータ54の発熱状態が制御され、LAFセンサ15の温度が常に活性温度範囲内に維持される。
【0035】
以下図面を参照して本実施の形態の空燃比制御装置の動作を説明する。
【0036】
図3は、内燃機関の運転状態に応じて目標空燃比を設定するための目標空燃比設定処理を示すフローチャートである。この目標空燃比設定処理は各TDC信号パルスの発生毎に実行される。
【0037】
まず、ステップS101で、エンジン保護リッチ化条件が成立しているか否かを判定する。このエンジン保護リッチ化条件は、エンジン温度の過度の上昇を防止してノッキングを回避したりエンジンを保護するために空燃比をリッチ化する条件であり、高吸気温、高吸気管内圧、及び高スロットル弁開度等のエンジン1の所定の高負荷運転状態において成立する。このエンジン保護リッチ化条件が成立しているときには目標空燃比係数KCMDを所定のリッチ化補正値KCMDPR(例えば、A/F=12相当の値)に設定し(ステップS102)、処理を終了する。エンジン保護リッチ化条件が成立していないときには、ステップS103に進み、三元触媒14が活性化したか否かを判定する。この活性化の判定は、例えば三元触媒14に公知の温度センサを設けて触媒温度が所定温度に達したときに三元触媒14が活性化したものと判定する。
【0038】
上記ステップS103において三元触媒14が活性化したと判定されたときには、ステップS104に進み、更にリーンバーン条件が成立しているか否かを判定する。このリーンバーン条件は、車輌の高速クルージング走行時等、希薄空燃比下での燃焼が可能な内燃機関の運転状態において成立する条件であり、該リーンバーン条件が成立している場合には、ステップS105に進み、KCMD値をリーンバーン制御用の所定値KCMDLB(例えば、A/F=22相当の値)に設定し、処理を終了する。リーンバーン条件が成立していない場合は、ステップS106に進み、KCMD値を理論空燃比相当の所定値KCMDSに設定し(ステップS106)、処理を終了する。
【0039】
また、上記ステップS103において、三元触媒14が活性化していない場合は、ステップS107に進み、更に始動後リーン条件が成立しているか否かを判別する。この始動後リーン条件は内燃機関の始動直後に三元触媒14が排気ガス中のHC成分を十分に浄化することができない状態で成立する条件であって、この条件が成立している間はエンジン1の燃焼によるHCの発生量を減少させるために、KCMD値を始動後リーン用の所定値KCMDSL(例えば、A/F=15相当の値)に設定し(ステップS108)、処理を終了する。ここで、始動後リーン条件が成立していなければ、上記ステップS106に進み、処理を終了する。
【0040】
次に、図4及び図5を参照して空燃比センサ活性判定処理を説明する。この空燃比センサ活性判定処理はLAFセンサ15の活性度合いを検出すると共に、目標空燃比に応じてLAFセンサ15の活性を判定するための活性判定基準値を設定し、上記検出された空燃比センサの活性度合いと上記設定された活性判定基準値とを比較することによって、LAFセンサ15の出力に基づく空燃比フィードバック制御を開始するか否かを判断するための処理である。
【0041】
先ず、ステップS201において、ヒータ54が通電中であるか否かを判定する。通電中であれば、記憶装置5Cに記憶されたRILMTテーブルから目標空燃比係数KCMD値に応じた活性判定基準値RILMTを検索する。このRILMT値はLAFセンサ15の内部抵抗LAFRIに対して設定される基準値であって、図5に示すように、目標空燃比が理論空燃比であるときに比較的大きい値に設定され、目標空燃比が理論空燃比から離れるに従ってより小さい値に設定される。
【0042】
これは、LAFセンサ15が活性化する素子温度、即ち上述した限界電流値が安定するときの素子温度が理論空燃比域で低く、理論空燃比から離れるに従って高くなるからである。従って、目標空燃比が理論空燃比に設定されたときには比較的低い素子温度(例えば、530℃)でLAFセンサ15が活性化したと判定されるようにRILMT値は大きい値に設定される一方、例えば目標空燃比がリーンバーン制御用の所定空燃比(例えば、A/F=22)のときには、素子温度が比較的高温(例えば、700℃)になったときにLAFセンサ15が活性化したと判定されるように、RILMT値は小さい値に設定される。
【0043】
図4に戻り、上記ステップS202でKCMD値に応じた活性判定基準値RILMTの検索が終了すると、ステップS203に進み、LAFセンサ15の内部抵抗LAFRIが基準値RILMTよりも小さいか否かを判定する。ここで、LAFRI<RILMTであれば、ステップS204に進み、LAFセンサ15が活性化したことを「1」で示すLAFセンサ活性フラグFLAFACTを「1」に設定し、処理を終了する。LAFRI≧RILMTであれば、ステップS205に進み、LAFセンサ活性フラグFLAFACTを「0」に設定し、処理を終了する。従って、本実施の形態においては、LAFセンサ15の内部抵抗LAFRIの逆数が特許請求の範囲に記載した空燃比センサの活性度合いであり、RILMT値の逆数が活性判定基準値に相当する。
【0044】
また、上記ステップS201でヒータ54が通電中ではない場合は上記ステップS205に進み、LAFセンサ活性フラグFLAFACTを「0」に設定し、処理を終了する。
【0045】
次に、図6を参照して、空燃比フィードバック制御実行決定処理を説明する。図6は空燃比フィードバック制御実行決定処理を示すフローチャートである。この処理は、上述した空燃比センサ活性判定処理の判定結果に応じて、LAFセンサ出力に基づく空燃比のフィードバック制御を実行するか否かを決定する処理である。
【0046】
先ず、ステップS301において、エンジン水温TWが所定温度TWLAF(例えば、−20℃)よりも高いか否かを判定する。TW>TWLAFであればステップS302に進み、更にエンジン回転数NEが所定の中間領域(NHOP>NE>NLOP、例えばNHOP=5000rpm,NLOP=500rpm)か否を判定する。NHOP>NE>NLOPであれば、ステップS303に進み、更にLAFセンサ活性フラグFLAFACTが「1」であるか否かを判定する。
【0047】
ここで、FLAFACT=1であれば、LAFセンサ15の出力信号に基づく空燃比フィードバック制御を実行するものとしてステップS304に進み、空燃比フィードバック制御実行フラグFLAFFBを「1」に設定し、処理を終了する。この空燃比フィードバック制御実行フラグFLAFFBは空燃比補正係数KLAFの算出処理等において用いられるフラグであって、このフラグが「1」であるときに、LAFセンサ15出力に基づく公知のPID制御等を実行する。
【0048】
また、上記ステップS301〜S303のいずれかの処理において、判定結果が否定である場合、即ちTW≦TWLAFであるか、NE≧NHOP又はNE≦NLOPであるか、又はFLAFFB=0であるかのいずれかの場合は、ステップS305に進み、空燃比フィードバック制御実行フラグを「0」に設定し、処理を終了する。
【0049】
次に、図7を参照して、本実施の形態の空燃比制御装置の動作を具体的に説明する。図7はエンジン1の始動直後のLAFセンサ15の内部抵抗LAFRI、LAFセンサ活性フラグFLAFACT、及び供給空燃比(実空燃比)の変化を示すグラフである。
【0050】
先ず、エンジン1の始動直後(時刻t0〜時刻t1)は、内部抵抗LAFRIが高く(即ち素子温度は低い)、LAFセンサ15は活性化していないので、LAFセンサ活性フラグFLAFACTは「0」に設定される。この時、LAFセンサ15の出力に基づく空燃比フィードバック制御は実行されていないので、エンジン1に供給される混合気の空燃比(実空燃比)と目標空燃比との間にはずれが生じる。
【0051】
時刻t1にLAFセンサ15の内部抵抗LAFRIが目標空燃比係数KCMDに応じて設定された空燃比センサ活性判定基準値RILMTを下回ると、LAFセンサ活性フラグFLAFACTの値が「1」に切り替わる。この結果、LAFセンサ15の出力に基づく空燃比フィードバック制御が開始されて、以後実空燃比は目標空燃比になるように制御される。
【0052】
以上述べたように、本実施の形態の内燃機関の空燃比制御装置によれば、内燃機関の運転状態に応じて目標空燃比係数KCMDが設定され、該KCMD値に応じてLAFセンサ15の活性を判定する活性判定基準値RILMTが設定され、LAFセンサ15の内部抵抗LAFRIが上記設定された活性判定基準値RILMTを下回ったときにLAFセンサ15が活性化したものとして、LAFセンサ15の出力に基づく空燃比フィードバック制御が開始される。これによって、LAFセンサ15の活性状態を適切に判断して、LAFセンサの出力の信頼性を損なうことなく可及的に早い時期に空燃比フィードバック制御を開始し、以ってエンジン1の排気ガス特性を向上させることができる。
【0053】
尚、上記実施の形態においては、LAFセンサ15の内部抵抗LAFRI(若しくは、これに反比例するパラメータ)を空燃比センサの活性度合いを示すパラメータとして用いたが、これに限られるものではなく、例えばヒータ電流等のLAFセンサの素子温度自体又は素子温度に関連する全てのパラメータを上記活性度合いを示すパラメータとして使用することが可能である。
【0054】
【発明の効果】
請求項1記載の内燃機関の空燃比制御装置によれば、内燃機関の運転状態に応じて設定される目標空燃比に応じて空燃比センサが活性化したか否かを判定するための活性判定基準値が設定されると共に、内燃機関に供給される混合気の空燃比に略比例した値の信号を出力する空燃比センサの活性度合いが検出され、該検出された空燃比センサの活性度合いが上記設定された活性判定基準値を越えたときに上記空燃比センサの出力に基づくフィードバック制御が開始されるので、空燃比センサの活性状態を適切に判断して、空燃比センサの出力の信頼性を損なうことなく可及的に早い時期に空燃比フィードバック制御を開始することができ、以って排気ガス特性を向上させることができる。
また、請求項2記載の内燃機関の空燃比制御装置によれば、活性判定基準値が、目標空燃比が理論空燃比であるときに最大値又は最小値に設定され、且つ目標空燃比が理論空燃比から離れるに従って最大値から漸減する値又は最小値から漸増する値に設定されるので、空燃比センサの活性状態を更に適切に判断して、空燃比センサの出力の信頼性を損なうことなく可及的に早い時期に空燃比フィードバック制御を開始することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る内燃機関の空燃比制御装置の全体の構成図である。
【図2】図1における酸素濃度検出装置16の詳細な構成を示すブロック図である。
【図3】目標空燃比を設定するプログラムのフローチャートである。
【図4】LAFセンサ15の活性を判定するプログラムのフローチャートである。
【図5】空燃比センサの活性を判定するための活性判定基準値を決定するテーブルを示す図である。
【図6】LAFセンサ15の出力に基づく空燃比のフィードバック制御を実行するか否かを決定するプログラムのフローチャートである。
【図7】本実施の形態の空燃比制御装置の動作を説明するグラフである。
【符号の説明】
1 エンジン
5 ECU
14 三元触媒
15 LAFセンサ
16 酸素濃度検出装置
25 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and more particularly to a method for determining the start timing of air-fuel ratio feedback control according to the active state of an air-fuel ratio sensor.
[0002]
[Prior art]
Conventionally, in an air-fuel ratio control apparatus for an internal combustion engine that controls the air-fuel ratio of an air-fuel mixture supplied to the internal combustion engine, when the internal combustion engine is in a normal operating state, the target air-fuel ratio is set to the stoichiometric air-fuel ratio and the exhaust gas is set. In order to improve the characteristics, the target air-fuel ratio is set to a value on the lean side of the stoichiometric air-fuel ratio between the start of the engine and the activation of the three-way catalyst disposed in the exhaust system of the engine. Executes lean burn control that sets the target air-fuel ratio to a value on the lean side of the stoichiometric air-fuel ratio in order to reduce the HC component in the engine and to improve fuel efficiency in the high-speed cruising operation state of the engine, or to prevent knocking In addition, the target air-fuel ratio is set in accordance with the operating state of the internal combustion engine, such as setting the target air-fuel ratio to a richer value than the stoichiometric air-fuel ratio in order to protect the engine.
[0003]
Conventionally, a wide range air-fuel ratio sensor (limit current type oxygen concentration sensor) having an output characteristic substantially proportional to the oxygen concentration in the exhaust gas is provided in the exhaust system, and activation for determining the activation of the air-fuel ratio sensor is performed. Until the air-fuel ratio sensor is activated by providing the determination means, only the rich / lean of the air-fuel ratio is determined based on the presence / absence of a signal from the air-fuel ratio sensor, and proportional / integral control (PI control) is executed. An air-fuel ratio control apparatus for an internal combustion engine that starts precise air-fuel ratio feedback control such as modern control based on the output of the air-fuel ratio sensor after activation is known, for example, from Japanese Patent Laid-Open No. 7-127502.
[0004]
In the known air-fuel ratio control device, the activation of the air-fuel ratio sensor is determined based on the element temperature of the wide-range air-fuel ratio sensor (limit current type oxygen concentration sensor).
[0005]
[Problems to be solved by the invention]
However, the wide-range air-fuel ratio sensor as in the known air-fuel ratio control apparatus usually has a different element temperature at which the limit current of the air-fuel ratio sensor is stabilized depending on the control air-fuel ratio. In other words, in the air-fuel ratio region near the stoichiometric air-fuel ratio, the limit current stabilizes at a relatively low element temperature, whereas the limit current increases until the element temperature becomes higher as the control air-fuel ratio departs from the stoichiometric air-fuel ratio. It is usually not stable.
[0006]
For this reason, in the known air-fuel ratio control apparatus, when the element temperature at which the limit current is stabilized over the entire air-fuel ratio is adopted as the reference value for air-fuel ratio sensor activation determination, the determination of air-fuel ratio sensor activation is made. Since the start timing of the air-fuel ratio feedback control is delayed, the exhaust gas characteristics are deteriorated. On the other hand, if the reference value is set to a lower element temperature in order to advance the start timing of the air-fuel ratio feedback control, The feedback control is started before the air-fuel ratio sensor is sufficiently activated in the air-fuel ratio region other than the vicinity of the air-fuel ratio, such as the air-fuel ratio feedback control in the rich or lean air-fuel ratio region other than the vicinity of the theoretical air-fuel ratio. There is a problem that reliability is lowered and exhaust gas characteristics are deteriorated.
[0007]
The present invention has been made to solve the above-described problems, and appropriately determines the active state of the air-fuel ratio sensor so that the air-fuel ratio sensor is empty as soon as possible without impairing the reliability of the output of the air-fuel ratio sensor. It is an object of the present invention to provide an air-fuel ratio control apparatus for an internal combustion engine that can start fuel ratio feedback control and thereby improve exhaust gas characteristics.
[0008]
[Means for Solving the Problems]
  The invention according to claim 1 is provided in an exhaust system of an internal combustion engine.,An air-fuel ratio sensor composed of a limiting current oxygen concentration sensor that outputs a signal having a value substantially proportional to the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine, and an operating state detection that detects the operating state of the internal combustion engine Means, air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio so that the air-fuel ratio matches the target air-fuel ratio according to the output signal of the air-fuel ratio sensor, and the target according to the detected operating state The target air-fuel ratio setting means for setting the air-fuel ratio and the degree of activity of the air-fuel ratio sensor are determined.As a parameter to represent, a parameter representing the element temperature of the air-fuel ratio sensorThe target air-fuel ratio set by the target air-fuel ratio setting means is a degree-of-activity detection means for detecting and an activity determination reference value for determining whether or not the air-fuel ratio sensor is activated.The further away from the stoichiometric air-fuel ratio, the higher the element temperature side.An activation determination reference value setting means to be set and execution of air-fuel ratio feedback control to the target air-fuel ratio is permitted when the detected degree of activity exceeds the activation determination reference value to the side representing a higher active state The permission means to perform is provided.
[0009]
  According to this configuration, the air-fuel ratio sensor isOutputs a signal with a value approximately proportional to the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engineIt is composed of a limiting current type oxygen concentration sensor, and an activation determination reference value for determining whether or not the air-fuel ratio sensor is activated isAs the target air-fuel ratio set according to the operating state of the internal combustion engine is further away from the stoichiometric air-fuel ratio, the element temperature of the higher-temperature air-fuel ratio sensor is increased.The degree of activation of the air-fuel ratio sensorA parameter that represents the element temperature of the air-fuel ratio sensorIs detected, and feedback control based on the output of the air-fuel ratio sensor is started when the detected degree of activity of the air-fuel ratio sensor exceeds the set activity determination reference value to the side representing a higher active state. Therefore, it is possible to appropriately determine the active state of the air-fuel ratio sensor and start the air-fuel ratio feedback control as early as possible without impairing the reliability of the output of the air-fuel ratio sensor. Gas characteristics can be improved.
  The invention according to claim 2 is provided in the exhaust system of the internal combustion engine, and the element temperature to be activated is low when the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is the stoichiometric air-fuel ratio, and the air-fuel ratio is theoretically An air-fuel ratio sensor that has a characteristic of increasing as it goes away from the air-fuel ratio, and that outputs a signal having a value substantially proportional to the air-fuel ratio; an operating state detecting means that detects an operating state of the internal combustion engine; and the air-fuel ratio sensor Air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio so that the air-fuel ratio matches the target air-fuel ratio according to the output signal, and the target air-fuel ratio setting the target air-fuel ratio according to the detected operating state An air-fuel ratio setting means; an activity detection means for detecting a parameter representing the element temperature of the air-fuel ratio sensor as a parameter representing the degree of activity of the air-fuel ratio sensor; and the air-fuel ratio sensor An activation determination reference value for determining whether or not the element is activated is set on the side representing the element temperature that is higher as the target air-fuel ratio set by the target air-fuel ratio setting means is farther from the stoichiometric air-fuel ratio. An activity determination reference value setting means that permits execution of air-fuel ratio feedback control to the target air-fuel ratio when the detected degree of activity exceeds the activity determination reference value to a side representing a higher active state And a permission unit.
  According to a third aspect of the present invention, there is provided a limiting current type oxygen concentration sensor which is provided in an exhaust system of an internal combustion engine and outputs a signal having a value substantially proportional to an air-fuel ratio of an air-fuel mixture supplied to the internal combustion engine. An air-fuel ratio sensor, an operating condition detecting means for detecting an operating condition of the internal combustion engine, and an air-fuel ratio feedback-controlling the air-fuel ratio in accordance with an output signal of the air-fuel ratio sensor so that the air-fuel ratio matches a target air-fuel ratio. An internal resistance of the air-fuel ratio sensor is detected as a parameter representing the degree of activity of the air-fuel ratio sensor, a target air-fuel ratio setting means for setting the target air-fuel ratio according to the detected operating state, and a parameter representing the degree of activity of the air-fuel ratio sensor And an activity determination reference value for determining whether or not the air-fuel ratio sensor is activated, and the target air-fuel ratio set by the target air-fuel ratio setting means An activation determination reference value setting unit that sets the activation determination reference value with respect to the internal resistance of the air-fuel ratio sensor, the maximum value when the target air-fuel ratio is the stoichiometric air-fuel ratio. When the target air-fuel ratio is set to a value that gradually decreases from the maximum value as the target air-fuel ratio goes away from the stoichiometric air-fuel ratio, and is set for the reciprocal of the internal resistance, the target air-fuel ratio is the stoichiometric air-fuel ratio. An activity determination reference value setting means for setting to a minimum value when the fuel is an air-fuel ratio and setting the target air-fuel ratio to a value that gradually increases from the minimum value as the target air-fuel ratio departs from the stoichiometric air-fuel ratio; and the detected activity level is the activity determination Permission means for permitting execution of the air-fuel ratio feedback control to the target air-fuel ratio when a reference value exceeds a side representing a higher active state.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 is a diagram showing an overall configuration of an internal combustion engine (hereinafter referred to as “engine”) and a control device according to a first embodiment of the present invention. In the figure, reference numeral 1 denotes a DOHC in-line four-cylinder engine in which each cylinder is provided with a pair of an intake valve and an exhaust valve (not shown).
[0012]
A throttle body 3 is provided in the middle of the intake pipe 2 of the engine 1, and a throttle valve 3 'is disposed therein. A throttle valve opening (θTH) sensor 4 is connected to the throttle valve 3 ′ and outputs an electric signal corresponding to the opening of the throttle valve 3 ′ to an electronic control unit (hereinafter referred to as “ECU”) 5. Supply.
[0013]
The fuel injection valve 6 is provided for each cylinder between the engine 1 and the throttle valve 3 and slightly upstream of the intake valve (not shown) of the intake pipe 2, and each injection valve is connected to a fuel pump (not shown). At the same time, it is electrically connected to the ECU 5 and the valve opening time of the fuel injection valve 6 is controlled by a signal from the ECU 5.
[0014]
An intake pipe absolute pressure (PBA) sensor 8 is provided immediately downstream of the throttle valve 3 via a pipe 7. The absolute pressure signal converted into an electric signal by the absolute pressure sensor 8 is supplied to the ECU 5. Is done. Further, an intake air temperature (TA) sensor 9 is attached downstream thereof, detects the intake air temperature TA, outputs a corresponding electrical signal, and supplies it to the ECU 5.
[0015]
An engine water temperature (TW) sensor 10 mounted on the main body of the engine 1 is composed of a thermistor or the like, detects the engine water temperature (cooling water temperature) TW, outputs a corresponding temperature signal, and supplies it to the ECU 5. The engine speed (NE) sensor 11 and the cylinder discrimination (CYL) sensor 12 are attached around the cam shaft or crank shaft (not shown) of the engine 1. The engine speed sensor 11 outputs a signal pulse (hereinafter referred to as “TDC signal pulse”) at a predetermined crank angle position every 180 ° rotation of the crankshaft of the engine 1, and the cylinder discrimination sensor 12 is a predetermined crank of a specific cylinder. A signal pulse (hereinafter referred to as “CYL signal pulse”) is output at an angular position, and each of these signal pulses is supplied to the ECU 5.
[0016]
The three-way catalyst 14 is disposed in the exhaust pipe 13 of the engine 1 and purifies components such as HC, CO, NOx in the exhaust gas. A limit current type oxygen concentration sensor (hereinafter referred to as “LAF sensor”) 15 as an air-fuel ratio sensor is mounted upstream of the three-way catalyst 14 in the exhaust pipe 13.
[0017]
As will be described later, the LAF sensor 15 constitutes an oxygen concentration detection device 16 together with an oxygen concentration detection activation control device (hereinafter referred to as “control device”) 25 as internal resistance detection means. The LAF sensor 15 is connected to the ECU 5 via the control device 25, outputs an electrical signal that is substantially proportional to the oxygen concentration (air-fuel ratio) in the exhaust gas, and outputs the electrical signal to the control device 25. The detected oxygen concentration value stored in the control device 25 is read out by the ECU 5.
[0018]
The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, and the like, and a central processing circuit (hereinafter referred to as “CPU”). 5b, a storage device 5c that stores various calculation programs executed by the CPU 5b, calculation results, and the like, an output circuit 5d that supplies a drive signal to the fuel injection valve 6, and the like.
[0019]
The CPU 5b discriminates various engine operation states such as an air-fuel ratio feedback control operation region and an open loop control operation region according to the oxygen concentration in the exhaust gas based on the various engine parameter signals described above, and according to the engine operation state. Based on the following Equation 1, the fuel injection time Tout of the fuel injection valve 6 synchronized with the TDC signal pulse is calculated.
[0020]
[Expression 1]
Tout = Ti × KCMDM × KLAF × K1 + K2
Here, Ti is a basic fuel amount, specifically, a basic fuel injection time determined according to the engine speed NE and the intake pipe absolute pressure PBA, and a Ti map for determining this Ti value is stored in the storage means. 5c.
[0021]
KCMDM is a corrected target air-fuel ratio coefficient, which is set according to the engine operating state, and is calculated by multiplying the target air-fuel ratio coefficient KCMD representing the target air-fuel ratio by the fuel cooling correction coefficient KETV. The correction coefficient KETV is a coefficient for correcting the fuel injection amount in consideration of the change in the air-fuel ratio of the air-fuel mixture supplied to the engine 1 due to the cooling effect by actually injecting the fuel, and the target air-fuel ratio. It is set according to the value of the coefficient KCMD. As is clear from Equation 1, the fuel injection time (fuel injection amount) Tout increases as the corrected target air-fuel ratio coefficient KCMDM increases, so that the KCMD value and the KCMDM value are the reciprocals of the so-called air-fuel ratio A / F. Proportional value. The target air-fuel ratio coefficient KCMD is proportional to the reciprocal of the air-fuel ratio A / F, that is, the fuel-air ratio F / A, and takes a value of 1.0 when the stoichiometric air-fuel ratio is used.
[0022]
KLAF is an air-fuel ratio correction coefficient, which is set so that the air-fuel ratio detected by the LAF sensor 15 coincides with the target air-fuel ratio during air-fuel ratio feedback control, and is set to a predetermined value according to the engine operating state during open loop control. Is set.
[0023]
K1 and K2 are other correction coefficients and correction variables that are calculated according to various engine parameter signals, and are values that optimize various characteristics such as fuel efficiency characteristics and engine acceleration characteristics according to engine operating conditions. Set to
[0024]
The CPU 5b outputs a signal for driving the fuel injection valve 6 via the output circuit 5d based on the result calculated and determined as described above.
[0025]
FIG. 2 is a block diagram showing a detailed configuration of the oxygen concentration detection device 16 in FIG. 1, and the same components in FIG. 1 as those in FIG.
[0026]
The oxygen concentration detection device 16 includes a LAF sensor 15 and a control device 25. The LAF sensor 15 is provided in the exhaust pipe 13 as described above, and the signal line of the LAF sensor 15 is detachably connected to the control device 25 by a connector (not shown). The LAF sensor 15 is composed of a solid electrolyte element or the like, and incorporates a heater 54 inside thereof. The heater 54 has a sufficient heat generation capacity to activate the LAF sensor 15. In addition, a cover 59 having a small hole 60 is provided around the LAF sensor 15, and the cover 59 prevents the LAF sensor 15 from directly contacting the exhaust gas by flowing the exhaust gas through the small hole 60, It serves to protect and keep warm the LAF sensor 15.
[0027]
The control device 25 includes a bias control unit 63, a current detection unit 67, and a control unit 69. One of the lead wires 61 connected to the LAF sensor 15 is connected to the bias control unit 63, and the other lead wire 61 is connected to the current detection unit 67. Further, two lead wires 62 connected to the heater 54 are connected to the heating control unit 71 of the control unit 69.
[0028]
The bias control unit 63 includes a positive bias source 64, a negative bias source 65, and a switching unit 66. The current detection unit 67 is connected to the switching unit 66 and the control unit 69, and the switching unit 66 is also connected to the control unit 69. The switching unit 66 switches the polarity of the voltage applied to the LAF sensor 15 according to the signal from the control unit 69, and the current detection unit 67 outputs the detected current to the control unit 69.
[0029]
The control unit 69 includes an amplifier 72 that amplifies and shapes a signal, an A / D conversion unit 68 that converts an analog signal value into a digital signal value, a storage unit 70, and a heating control unit 71 that controls the heat generation state of the heater 54. Composed. The storage unit 70 stores various calculation programs executed by the control unit 69, ROMs and RAMs for storing maps and calculation results described later, and a ring for storing oxygen concentration (air-fuel ratio A / F) detection values of the LAF sensor 15. It consists of a buffer.
[0030]
The control unit 69 receives the CYL signal pulse, the TDC signal pulse, the engine speed NE signal, and the intake pipe absolute pressure PBA signal from the ECU 5, while the oxygen concentration detection value and the internal resistance value of the LAF sensor 15 selected by the processing described later. Is supplied to the ECU 5.
[0031]
The LAF sensor 15 can detect the oxygen concentration in the exhaust gas linearly because the limit current value when a predetermined positive voltage V1 is applied is proportional to the oxygen partial pressure, but the LAF sensor 15 Since the activation requires a high temperature and the activation temperature range is narrow, the activation state of the LAF sensor 15 cannot be appropriately controlled only by the exhaust gas temperature of the engine 1. Therefore, a process for maintaining the active state of the LAF sensor 15 by detecting the internal resistance (hereinafter referred to as “LAF sensor activation process”) is required. The oxygen concentration detection device 16 switches between LAF sensor activation processing and oxygen concentration detection processing at a constant switching cycle T. The switching period T is set in consideration of the elements of the LAF sensor 15 and the heat capacity of the heater 54, the cooling characteristics of the LAF sensor 15, the activation temperature range of the LAF sensor 15, and the like.
[0032]
In the oxygen concentration detection device 25, a predetermined positive voltage V <b> 1 is applied to the LAF sensor 15 by connecting the switching unit 66 to the positive bias source 64. At this time, the current value I1 output from the LAF sensor 15 is detected by the current detection unit 67, the current value I1 is amplified and shaped by the amplifier 72, and then converted into a digital value by the A / D conversion unit 68. Based on this digital value, the oxygen concentration (air-fuel ratio) in the exhaust gas is detected.
[0033]
On the other hand, by connecting the switching unit 66 to the negative bypass source 65, a predetermined negative voltage V2 is applied to the LAF sensor 15, and the current value I2 output from the LAF sensor 15 at this time is applied by the current detection unit 67. The current value I2 is amplified and shaped by the amplifier 72 and then converted into a digital value by the A / D converter 68. Based on this digital value, the internal resistance LAFRI of the LAF sensor 15 is detected.
[0034]
When the detected internal resistance LAFRI is equal to or greater than a predetermined reference value, the heater 54 is controlled to be heated by the heating control unit 71. When the internal resistance LAFRI is lower than the predetermined reference value, the heating control unit 71 Heating of the heater 54 is stopped. Thus, the heat generation state of the heater 54 is controlled so that the detected internal resistance LAFRI is always constant, and the temperature of the LAF sensor 15 is always maintained within the activation temperature range.
[0035]
The operation of the air-fuel ratio control apparatus according to the present embodiment will be described below with reference to the drawings.
[0036]
FIG. 3 is a flowchart showing a target air-fuel ratio setting process for setting the target air-fuel ratio in accordance with the operating state of the internal combustion engine. This target air-fuel ratio setting process is executed every time each TDC signal pulse is generated.
[0037]
First, in step S101, it is determined whether an engine protection enrichment condition is satisfied. This engine protection rich condition is a condition for enriching the air-fuel ratio in order to prevent excessive engine temperature rise to avoid knocking or protect the engine. This is established in a predetermined high-load operation state of the engine 1 such as the throttle valve opening degree. When the engine protection rich condition is satisfied, the target air-fuel ratio coefficient KCMD is set to a predetermined rich correction value KCMDPR (for example, a value corresponding to A / F = 12) (step S102), and the process is terminated. When the engine protection rich condition is not satisfied, the process proceeds to step S103, and it is determined whether or not the three-way catalyst 14 is activated. This determination of activation is performed, for example, by determining that the three-way catalyst 14 is activated when a known temperature sensor is provided in the three-way catalyst 14 and the catalyst temperature reaches a predetermined temperature.
[0038]
When it is determined in step S103 that the three-way catalyst 14 is activated, the process proceeds to step S104, and it is further determined whether the lean burn condition is satisfied. This lean burn condition is a condition that is satisfied in the operating state of the internal combustion engine capable of combustion under a lean air-fuel ratio, such as when the vehicle is traveling at high speed cruising, and if the lean burn condition is satisfied, the step Proceeding to S105, the KCMD value is set to a predetermined value KCMDLB for lean burn control (for example, a value corresponding to A / F = 22), and the process ends. If the lean burn condition is not satisfied, the process proceeds to step S106, the KCMD value is set to a predetermined value KCMDS corresponding to the theoretical air-fuel ratio (step S106), and the process is terminated.
[0039]
In step S103, if the three-way catalyst 14 is not activated, the process proceeds to step S107, and it is further determined whether the after-start lean condition is satisfied. The after-start lean condition is a condition that is established in a state in which the three-way catalyst 14 cannot sufficiently purify the HC component in the exhaust gas immediately after the internal combustion engine is started. In order to reduce the amount of HC generated due to the combustion of 1, the KCMD value is set to a predetermined value KCMDSL for lean after starting (for example, a value corresponding to A / F = 15) (step S108), and the process is terminated. If the after-start lean condition is not satisfied, the process proceeds to step S106 and the process is terminated.
[0040]
Next, the air-fuel ratio sensor activity determination process will be described with reference to FIGS. This air-fuel ratio sensor activity determination process detects the degree of activity of the LAF sensor 15 and sets an activity determination reference value for determining the activity of the LAF sensor 15 in accordance with the target air-fuel ratio. The detected air-fuel ratio sensor This is a process for determining whether or not to start the air-fuel ratio feedback control based on the output of the LAF sensor 15 by comparing the degree of activation of the current and the set activity determination reference value.
[0041]
First, in step S201, it is determined whether or not the heater 54 is energized. If power is being supplied, the activation determination reference value RILMT corresponding to the target air-fuel ratio coefficient KCMD value is retrieved from the RILMT table stored in the storage device 5C. This RILMT value is a reference value set for the internal resistance LAFRI of the LAF sensor 15, and is set to a relatively large value when the target air-fuel ratio is the stoichiometric air-fuel ratio as shown in FIG. The air-fuel ratio is set to a smaller value as the theoretical air-fuel ratio increases.
[0042]
This is because the element temperature at which the LAF sensor 15 is activated, that is, the element temperature when the above-described limit current value is stabilized is low in the stoichiometric air-fuel ratio region and becomes higher as the distance from the stoichiometric air-fuel ratio is increased. Accordingly, when the target air-fuel ratio is set to the stoichiometric air-fuel ratio, the RILMT value is set to a large value so that the LAF sensor 15 is determined to be activated at a relatively low element temperature (for example, 530 ° C.), For example, when the target air-fuel ratio is a predetermined air-fuel ratio for lean burn control (for example, A / F = 22), the LAF sensor 15 is activated when the element temperature becomes relatively high (for example, 700 ° C.). As determined, the RILMT value is set to a small value.
[0043]
Returning to FIG. 4, when the search for the activation determination reference value RILMT according to the KCMD value is completed in step S <b> 202, the process proceeds to step S <b> 203 to determine whether or not the internal resistance LAFRI of the LAF sensor 15 is smaller than the reference value RILMT. . Here, if LAFRI <RILMT, the process proceeds to step S204, the LAF sensor activation flag FLAFACT indicating “1” that the LAF sensor 15 is activated is set to “1”, and the process ends. If LAFRI ≧ RILMT, the process proceeds to step S205, the LAF sensor activation flag FLAFACT is set to “0”, and the process ends. Therefore, in the present embodiment, the reciprocal of the internal resistance LAFRI of the LAF sensor 15 is the degree of activity of the air-fuel ratio sensor described in the claims, and the reciprocal of the RILMT value corresponds to the activity determination reference value.
[0044]
If the heater 54 is not energized in step S201, the process proceeds to step S205, the LAF sensor activation flag FLAFACT is set to “0”, and the process ends.
[0045]
Next, the air-fuel ratio feedback control execution determination process will be described with reference to FIG. FIG. 6 is a flowchart showing the air-fuel ratio feedback control execution determination process. This process is a process of determining whether or not to execute the air-fuel ratio feedback control based on the LAF sensor output in accordance with the determination result of the air-fuel ratio sensor activation determination process described above.
[0046]
First, in step S301, it is determined whether or not the engine water temperature TW is higher than a predetermined temperature TWLAF (for example, −20 ° C.). If TW> TWLAF, the process proceeds to step S302, and it is further determined whether or not the engine speed NE is within a predetermined intermediate range (NHOP> NE> NLOP, for example, NHOP = 5000 rpm, NLOP = 500 rpm). If NHOP> NE> NLOP, the process proceeds to step S303, and it is further determined whether or not the LAF sensor activation flag FLAFACT is “1”.
[0047]
Here, if FLAFACT = 1, it is assumed that the air-fuel ratio feedback control based on the output signal of the LAF sensor 15 is to be executed, the process proceeds to step S304, the air-fuel ratio feedback control execution flag FLAFFB is set to “1”, and the process is terminated. To do. This air-fuel ratio feedback control execution flag FLAFFB is a flag used in the calculation process of the air-fuel ratio correction coefficient KLAF, and when this flag is “1”, a known PID control based on the output of the LAF sensor 15 is executed. To do.
[0048]
In any of the processes in steps S301 to S303, if the determination result is negative, that is, whether TW ≦ TWLAF, NE ≧ NHOP or NE ≦ NLOP, or FLAFFB = 0. In such a case, the process proceeds to step S305, the air-fuel ratio feedback control execution flag is set to “0”, and the process ends.
[0049]
Next, the operation of the air-fuel ratio control apparatus of the present embodiment will be specifically described with reference to FIG. FIG. 7 is a graph showing changes in the internal resistance LAFRI, the LAF sensor activation flag FLAFACT, and the supply air-fuel ratio (actual air-fuel ratio) of the LAF sensor 15 immediately after the engine 1 is started.
[0050]
First, immediately after the engine 1 is started (time t0 to time t1), the internal resistance LAFRI is high (that is, the element temperature is low), and the LAF sensor 15 is not activated, so the LAF sensor activation flag FLAFACT is set to “0”. Is done. At this time, since the air-fuel ratio feedback control based on the output of the LAF sensor 15 is not executed, a deviation occurs between the air-fuel ratio (actual air-fuel ratio) of the air-fuel mixture supplied to the engine 1 and the target air-fuel ratio.
[0051]
When the internal resistance LAFRI of the LAF sensor 15 falls below the air-fuel ratio sensor activation determination reference value RILMT set according to the target air-fuel ratio coefficient KCMD at time t1, the value of the LAF sensor activation flag FLAFACT is switched to “1”. As a result, air-fuel ratio feedback control based on the output of the LAF sensor 15 is started, and thereafter, the actual air-fuel ratio is controlled to become the target air-fuel ratio.
[0052]
As described above, according to the air-fuel ratio control apparatus for the internal combustion engine of the present embodiment, the target air-fuel ratio coefficient KCMD is set according to the operating state of the internal combustion engine, and the activation of the LAF sensor 15 according to the KCMD value. Is determined as the activation determination reference value RILMT, and the LAF sensor 15 is activated when the internal resistance LAFRI of the LAF sensor 15 falls below the set activation determination reference value RILMT. Based on the air-fuel ratio feedback control is started. As a result, the activation state of the LAF sensor 15 is appropriately determined, and the air-fuel ratio feedback control is started as early as possible without impairing the reliability of the output of the LAF sensor. Characteristics can be improved.
[0053]
In the above embodiment, the internal resistance LAFRI (or a parameter inversely proportional thereto) of the LAF sensor 15 is used as a parameter indicating the degree of activity of the air-fuel ratio sensor. However, the present invention is not limited to this. The LAF sensor element temperature itself such as current or all parameters related to the element temperature can be used as the parameters indicating the degree of activity.
[0054]
【The invention's effect】
  According to the air-fuel ratio control apparatus for an internal combustion engine according to claim 1, the activity determination for determining whether or not the air-fuel ratio sensor is activated according to the target air-fuel ratio set according to the operating state of the internal combustion engine. While the reference value is set, the degree of activity of the air-fuel ratio sensor that outputs a signal having a value substantially proportional to the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is detected, and the degree of activity of the detected air-fuel ratio sensor is determined. Since the feedback control based on the output of the air / fuel ratio sensor is started when the set activity determination reference value is exceeded, the reliability of the output of the air / fuel ratio sensor is determined by appropriately determining the active state of the air / fuel ratio sensor. The air-fuel ratio feedback control can be started at the earliest possible time without impairing the exhaust gas, thereby improving the exhaust gas characteristics.
  According to the air-fuel ratio control apparatus for an internal combustion engine according to claim 2, the activation determination reference value is set to the maximum value or the minimum value when the target air-fuel ratio is the stoichiometric air-fuel ratio, and the target air-fuel ratio is the theoretical air-fuel ratio. Since it is set to a value that gradually decreases from the maximum value or a value that gradually increases from the minimum value as the distance from the air-fuel ratio increases, the active state of the air-fuel ratio sensor can be determined more appropriately without impairing the reliability of the output of the air-fuel ratio sensor. The air-fuel ratio feedback control can be started as early as possible.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an air-fuel ratio control apparatus for an internal combustion engine according to an embodiment of the present invention.
2 is a block diagram showing a detailed configuration of the oxygen concentration detection device 16 in FIG. 1. FIG.
FIG. 3 is a flowchart of a program for setting a target air-fuel ratio.
FIG. 4 is a flowchart of a program for determining the activity of the LAF sensor 15;
FIG. 5 is a diagram showing a table for determining an activity determination reference value for determining the activity of the air-fuel ratio sensor.
FIG. 6 is a flowchart of a program for determining whether or not to execute air-fuel ratio feedback control based on the output of the LAF sensor 15;
FIG. 7 is a graph for explaining the operation of the air-fuel ratio control apparatus of the present embodiment.
[Explanation of symbols]
1 engine
5 ECU
14 Three-way catalyst
15 LAF sensor
16 Oxygen concentration detector
25 Control device

Claims (3)

内燃機関の排気系に設けられ、前記内燃機関に供給される混合気の空燃比に略比例した値の信号を出力する、限界電流式酸素濃度センサで構成された空燃比センサと、
前記内燃機関の運転状態を検出する運転状態検出手段と、
前記空燃比センサの出力信号に応じて前記空燃比が目標空燃比と一致するように前記空燃比をフィードバック制御する空燃比フィードバック制御手段と、
前記検出された運転状態に応じて前記目標空燃比を設定する目標空燃比設定手段と、
前記空燃比センサの活性度合いを表すパラメータとして、前記空燃比センサの素子温度を表すパラメータを検出する活性度検出手段と、
前記空燃比センサが活性化したか否かを判定するための活性判定基準値を、前記目標空燃比設定手段によって設定された前記目標空燃比が理論空燃比から離れるほど、より高温の前記素子温度を表す側に設定する活性判定基準値設定手段と、
前記検出された活性度合いが前記活性判定基準値を、より高い活性状態を表す側に越えたときに前記目標空燃比への空燃比フィードバック制御の実行を許可する許可手段と、
を具備したことを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio sensor, which is provided in an exhaust system of an internal combustion engine and outputs a signal having a value substantially proportional to the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine;
An operating state detecting means for detecting an operating state of the internal combustion engine;
Air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio so that the air-fuel ratio matches a target air-fuel ratio according to an output signal of the air-fuel ratio sensor;
Target air-fuel ratio setting means for setting the target air-fuel ratio according to the detected operating state;
An activity level detecting means for detecting a parameter indicating an element temperature of the air / fuel ratio sensor as a parameter indicating the activity level of the air / fuel ratio sensor ;
The element temperature that is higher as the target air-fuel ratio set by the target air-fuel ratio setting means becomes farther from the stoichiometric air-fuel ratio is used as an activation determination reference value for determining whether or not the air-fuel ratio sensor is activated. Activity determination reference value setting means for setting on the side representing
Permission means for permitting execution of air-fuel ratio feedback control to the target air-fuel ratio when the detected degree of activity exceeds the activity determination reference value to a side representing a higher active state;
An air-fuel ratio control apparatus for an internal combustion engine, comprising:
内燃機関の排気系に設けられ、活性化する素子温度が、前記内燃機関に供給される混合気の空燃比が理論空燃比のときに低く、前記空燃比が理論空燃比から離れるに従って高くなるという特性を有し、前記空燃比に略比例した値の信号を出力する空燃比センサと、
前記内燃機関の運転状態を検出する運転状態検出手段と、
前記空燃比センサの出力信号に応じて前記空燃比が目標空燃比と一致するように前記空燃比をフィードバック制御する空燃比フィードバック制御手段と、
前記検出された運転状態に応じて前記目標空燃比を設定する目標空燃比設定手段と、
前記空燃比センサの活性度合いを表すパラメータとして、前記空燃比センサの前記素子温度を表すパラメータを検出する活性度検出手段と、
前記空燃比センサが活性化したか否かを判定するための活性判定基準値を、前記目標空燃比設定手段によって設定された前記目標空燃比が理論空燃比から離れるほど、より高温の前記素子温度を表す側に設定する活性判定基準値設定手段と、
前記検出された活性度合いが前記活性判定基準値を、より高い活性状態を表す側に越えたときに前記目標空燃比への空燃比フィードバック制御の実行を許可する許可手段と、
を具備したことを特徴とする内燃機関の空燃比制御装置。
The element temperature provided and activated in the exhaust system of the internal combustion engine is low when the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is the stoichiometric air-fuel ratio, and increases as the air-fuel ratio departs from the stoichiometric air-fuel ratio. An air-fuel ratio sensor having a characteristic and outputting a signal having a value substantially proportional to the air-fuel ratio;
An operating state detecting means for detecting an operating state of the internal combustion engine;
Air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio so that the air-fuel ratio matches a target air-fuel ratio according to an output signal of the air-fuel ratio sensor;
Target air-fuel ratio setting means for setting the target air-fuel ratio according to the detected operating state;
An activity detection means for detecting a parameter representing the element temperature of the air-fuel ratio sensor as a parameter representing the activity level of the air-fuel ratio sensor;
The element temperature that is higher as the target air-fuel ratio set by the target air-fuel ratio setting means becomes farther from the stoichiometric air-fuel ratio is used as an activation determination reference value for determining whether or not the air-fuel ratio sensor is activated. Activity determination reference value setting means for setting on the side representing
Permission means for permitting execution of air-fuel ratio feedback control to the target air-fuel ratio when the detected degree of activity exceeds the activity determination reference value to a side representing a higher active state;
An air-fuel ratio control apparatus for an internal combustion engine , comprising:
内燃機関の排気系に設けられ、前記内燃機関に供給される混合気の空燃比に略比例した値の信号を出力する、限界電流式酸素濃度センサで構成された空燃比センサと、
前記内燃機関の運転状態を検出する運転状態検出手段と、
前記空燃比センサの出力信号に応じて前記空燃比が目標空燃比と一致するように前記空燃比をフィードバック制御する空燃比フィードバック制御手段と、
前記検出された運転状態に応じて前記目標空燃比を設定する目標空燃比設定手段と、
前記空燃比センサの活性度合いを表すパラメータとして、前記空燃比センサの内部抵抗を検出する活性度検出手段と、
前記空燃比センサが活性化したか否かを判定するための活性判定基準値を、前記目標空燃比設定手段によって設定された前記目標空燃比に応じて設定する活性判定基準値設定手段であって、前記活性判定基準値を、前記空燃比センサの内部抵抗に対して設定する場合には、前記目標空燃比が理論空燃比であるときに最大値に設定し、且つ前記目標空燃比が理論空燃比から離れるに従って前記最大値から漸減する値に設定するとともに、前記内部抵抗の逆数に対して設定する場合には、前記目標空燃比が理論空燃比であるときに最小値に設定し、且つ前記目標空燃比が理論空燃比から離れるに従って最小値から漸増する値に設定する活性判定基準値設定手段と、
前記検出された活性度合いが前記活性判定基準値を、より高い活性状態を表す側に越えたときに前記目標空燃比への空燃比フィードバック制御の実行を許可する許可手段と、
を具備したことを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio sensor, which is provided in an exhaust system of an internal combustion engine and outputs a signal having a value substantially proportional to the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine;
An operating state detecting means for detecting an operating state of the internal combustion engine;
Air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio so that the air-fuel ratio matches a target air-fuel ratio according to an output signal of the air-fuel ratio sensor;
Target air-fuel ratio setting means for setting the target air-fuel ratio according to the detected operating state;
As a parameter representing the activity level of the air-fuel ratio sensor, an activity level detection means for detecting an internal resistance of the air-fuel ratio sensor;
Activity determination reference value setting means for setting an activity determination reference value for determining whether or not the air-fuel ratio sensor is activated according to the target air-fuel ratio set by the target air-fuel ratio setting means; When the reference value for determining the activity is set with respect to the internal resistance of the air-fuel ratio sensor, it is set to a maximum value when the target air-fuel ratio is the stoichiometric air-fuel ratio, and the target air-fuel ratio is set to the stoichiometric air-fuel ratio. When set to a value that gradually decreases from the maximum value as the distance from the fuel ratio increases, and to set the reciprocal of the internal resistance, when the target air-fuel ratio is the stoichiometric air-fuel ratio, the minimum value is set, and the An activity determination reference value setting means for setting the target air-fuel ratio to a value that gradually increases from the minimum value as the target air-fuel ratio departs from the theoretical air-fuel ratio;
Permission means for permitting execution of air-fuel ratio feedback control to the target air-fuel ratio when the detected degree of activity exceeds the activity determination reference value to a side representing a higher active state;
An air-fuel ratio control apparatus for an internal combustion engine , comprising:
JP03795498A 1998-02-05 1998-02-05 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4060427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03795498A JP4060427B2 (en) 1998-02-05 1998-02-05 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03795498A JP4060427B2 (en) 1998-02-05 1998-02-05 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11223147A JPH11223147A (en) 1999-08-17
JP4060427B2 true JP4060427B2 (en) 2008-03-12

Family

ID=12511955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03795498A Expired - Fee Related JP4060427B2 (en) 1998-02-05 1998-02-05 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4060427B2 (en)

Also Published As

Publication number Publication date
JPH11223147A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3692618B2 (en) Air-fuel ratio control device for internal combustion engine
JP3262157B2 (en) Fuel supply control device for internal combustion engine
JPH03271544A (en) Control device of internal combustion engine
JPH0522061B2 (en)
JPH0417747A (en) Air-fuel ratio control system of internal combustion engine
JP5790523B2 (en) Air-fuel ratio imbalance determination device
JPH0531646B2 (en)
JP3819494B2 (en) Fuel supply control device for internal combustion engine
JPH0745840B2 (en) Air-fuel ratio atmospheric pressure correction method for internal combustion engine
JPS63167049A (en) After-starting fuel supply control method for internal combustion engine
JPH11107827A (en) Catalyst temperature controller for internal combustion engine
JP2688670B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JP4060427B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62157252A (en) Method of feedback controlling air-fuel ratio of internal combustion engine
JP2775676B2 (en) Fuel supply control device for internal combustion engine
JPH11270382A (en) Air-fuel ratio control device of internal combustion engine
US6176080B1 (en) Oxygen concentration sensor abnormality-detecting system for internal combustion engines
JPH10111269A (en) Oxygen concentration detector
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JP4073563B2 (en) Control device for internal combustion engine
JP2559782Y2 (en) Ignition timing control device for internal combustion engine
JP2004197693A (en) Air/fuel ratio control system of internal combustion engine
JP4064092B2 (en) Engine air-fuel ratio control device
JPS6075737A (en) Air/fuel ratio control method for internal-combustion engine
JP2712089B2 (en) Air-fuel ratio control method for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees