JPS63140840A - Electronic control fuel injection device for internal combustion engine - Google Patents

Electronic control fuel injection device for internal combustion engine

Info

Publication number
JPS63140840A
JPS63140840A JP28601786A JP28601786A JPS63140840A JP S63140840 A JPS63140840 A JP S63140840A JP 28601786 A JP28601786 A JP 28601786A JP 28601786 A JP28601786 A JP 28601786A JP S63140840 A JPS63140840 A JP S63140840A
Authority
JP
Japan
Prior art keywords
fuel ratio
correction coefficient
air
fuel injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28601786A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP28601786A priority Critical patent/JPS63140840A/en
Publication of JPS63140840A publication Critical patent/JPS63140840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a responsiveness as well as to improve fuel consumption and drivability, by selecting a feedforward correction factor at the load variation initial stage, and afterward a feedback correction factor, respectively when performing control over a lean air-fuel ratio, while renewing a learning correction factor by both these correction factors. CONSTITUTION:A feedback correction factor setting device F sets a feedback correction factor on the basis of a deviation between a detection value out of an air-fuel ratio detecting device A and a desired air-fuel ratio at the lean side, and a feedforward correction factor setting device E sets such a feedforward correction factor as becoming the desired air-fuel ratio on the basis of engine speed and fundamental fuel injection quantity. When a load variation judging device D has judged that a load variation is more than the specified one on the basis of variations in the fuel injection quantity, a first selecting device G selects the feedforward correction factor and afterward the feedback correction factor, respectively. A renewal device K renews a learning correction factor of a memory device I corresponding to the engine speed and the fundamental fuel injection quantity on the basis of both these correction factors.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection system for an internal combustion engine.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置の従来例として以下の
ようなものがある(実願昭60−066558号参照)
<Prior art> The following is a conventional example of an electronically controlled fuel injection device for an internal combustion engine (see Utility Application No. 60-066558).
.

すなわち、エアフローメータ等により検出された吸入空
気流量Qと機関回転速度Nとから基本噴射量Tp=KX
Q/N(Kは定数)を演算すると共に、主として水温に
応じた各種補正係数C0EFと実際の空燃比が理論空燃
比になるように設定された空燃比フィードバック補正係
数αとバッテリ電圧による補正係数Tsとを演算した後
、定常運転時における燃料噴射fiTi=TpXcOE
F×α+Tsを演算する。
That is, from the intake air flow rate Q detected by an air flow meter etc. and the engine rotation speed N, the basic injection amount Tp=KX
In addition to calculating Q/N (K is a constant), various correction coefficients C0EF mainly depending on the water temperature, an air-fuel ratio feedback correction coefficient α set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, and a correction coefficient based on the battery voltage are calculated. After calculating Ts, fuel injection fiTi=TpXcOE during steady operation
Calculate F×α+Ts.

そして、例えばシングルポイントインジェクションシス
テム(以下SP1方式)では、機関のA回転毎に点火信
号等に同期して燃料噴射弁に対し前記燃料噴射1iTi
に対応するパルス巾の噴射パルス信号を出力し機関に燃
料を供給する。
For example, in a single point injection system (hereinafter referred to as SP1 system), the fuel injection valve 1iTi is injected into the fuel injection valve in synchronization with an ignition signal, etc. every A rotation of the engine.
outputs an injection pulse signal with a pulse width corresponding to the pulse width to supply fuel to the engine.

ところで、近年燃費の向上や排気の浄化等を目的として
、機関低速低負荷運転領域において、実際の空燃比が理
論空燃比よりも薄くなるように空燃比制御するようにし
たものである。
Incidentally, in recent years, for the purpose of improving fuel efficiency and purifying exhaust gas, the air-fuel ratio has been controlled so that the actual air-fuel ratio becomes thinner than the stoichiometric air-fuel ratio in the engine low-speed, low-load operating region.

即ち、高出力を必要とせず希薄燃焼させても良い所定の
低速低負荷運転領域であることが判定されると、実際の
空燃比が略理論空燃比となるように設定される燃料噴射
量(以下、理論空燃比制御と呼ぶ)を、目標空燃比を切
換えて実際の空燃比が所定の希薄空燃比となるように減
量設定して燃料噴射制御(以下、希薄空燃比制御と呼ぶ
)するものであり、これにより燃料消費量を少なくする
と共に、排気中の有害成分を低減しようとするものであ
る。
In other words, when it is determined that the operation is in a predetermined low-speed, low-load operating region that does not require high output and may allow lean combustion, the fuel injection amount ( (hereinafter referred to as stoichiometric air-fuel ratio control), and fuel injection control (hereinafter referred to as lean air-fuel ratio control) by switching the target air-fuel ratio and setting a reduction so that the actual air-fuel ratio becomes a predetermined lean air-fuel ratio. This aims to reduce fuel consumption and reduce harmful components in exhaust gas.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の電子制御燃料噴射装置
においては、定常運転状態で理論空燃比制御から希薄空
燃比制御に急激に切換えると、急激に機関出力が低下し
て運転フィーリングが悪化するという不具合がある。
<Problems to be Solved by the Invention> However, in such conventional electronically controlled fuel injection systems, when switching suddenly from stoichiometric air-fuel ratio control to lean air-fuel ratio control during steady operation, the engine output suddenly decreases. The problem is that the driving feeling deteriorates.

また、加速運転あるいは減速運転時から希薄空燃比運転
可能な運転−域である定常運転に移行した直後には、急
激に希薄空燃比制御に切換えないと、燃費或いはN O
Xの低減化が図れないという不具合がある。又は、大き
な負荷変動を伴う上記移行時はその時発生するトルク変
動を希薄空燃比制御に急激に切換えることにより抑制し
運転フィーリングの悪化を抑制できる。
In addition, immediately after transitioning from acceleration or deceleration to steady operation, which is an operating range in which lean air-fuel ratio operation is possible, unless you suddenly switch to lean air-fuel ratio control, fuel efficiency or NO
There is a problem that reduction of X cannot be achieved. Alternatively, at the time of the above-mentioned transition accompanied by large load fluctuations, the torque fluctuations occurring at that time can be suppressed by abruptly switching to lean air-fuel ratio control, thereby suppressing deterioration of driving feeling.

しかしフィードバック制御によりこれを行うと実際の空
燃比を検出する酸素センサの検出応答遅れによって急激
に実際の空燃比を希薄空燃比にすることができない。こ
のため、急激に実際の空燃比を希薄空燃比に制御すると
きには、フィードフォワード制御により行うことも考え
られるが、フィードフォワード制御では例えば燃料噴射
弁の噴射特性或いは経時変化等により希薄空燃比制御移
行時に実際の空燃比を目標希薄空燃比に高精度に制御す
ることが難しく、NOx排出量の増大を招いたりサージ
発生により運転性の悪化を招(という不具合ががある。
However, if this is done using feedback control, the actual air-fuel ratio cannot be suddenly changed to a lean air-fuel ratio due to a delay in the detection response of the oxygen sensor that detects the actual air-fuel ratio. For this reason, when suddenly controlling the actual air-fuel ratio to a lean air-fuel ratio, feedforward control may be considered, but in feedforward control, the shift to lean air-fuel ratio control may occur due to, for example, the injection characteristics of the fuel injector or changes over time. Sometimes, it is difficult to control the actual air-fuel ratio to the target lean air-fuel ratio with high precision, leading to increased NOx emissions and deterioration of drivability due to surge generation.

本発明は、このような実状の鑑みてなされたもので、希
薄空燃比制御を行なっても加速運転直後のNOX排出量
の低減化と燃費の向上を図りつつ運転性の向上を図れる
電子制御燃料噴射装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an electronically controlled fuel that can reduce NOx emissions immediately after acceleration driving, improve fuel efficiency, and improve drivability even when lean air-fuel ratio control is performed. The purpose is to provide an injection device.

く問題点を解決するための手段〉 このため、本発明は、第1図に示すように機関の実際の
空燃比を検出する空燃比検出手段Aと、機関の負荷を検
出する負荷検出手段Bと、検出された負荷に基づいて負
荷変化率を演算する負荷変化率演算手段0と、演算され
た負荷変化率が所定値以上か否かを判定する負荷変化率
判定手段りと、理論空燃比より希薄な略一定希薄空燃比
となるようにフィードフォワード補正係数を設定するフ
ィードフォワード補正係数設定手段Eと、検出された実
際の空燃比に基づいて実際の空燃比が目標希薄空燃比に
なるようにフィードバック補正係数を設定するフィード
バック補正係数設定手段Fと、負荷変化率が所定値以上
と判定されたときに希薄空燃比制御初期の所定時間の間
は、前記フィードフォワード補正係数を選択し、その後
フィードバック補正係数を選択する第1選択手段Gと、
負荷変化率が所定値未満と判定されたときに、希薄空燃
比制御開始時から前記フィードバック補正係数を選択す
る第2選択手段Hと、燃料噴射量を補正する学習補正係
数を記憶する書換可能な記憶手段■と、該記憶手段から
学習補正係数を検索する検索手段Jと、前記設定された
フィードフォワード補正係数とフィードバック補正係数
とに基づいて新たな学習補正係数を設定し、該新たな学
習補正係数に前記記憶手段Iに記憶されたデータを更新
、する更新手段にと、第1選択手段Gにより選択された
フィードフォワード補正係数と検索され若しくは新たに
設定された学習補正係数と或いは第1若しくは第2選択
手段G、  Hにより選択されたフィードバック補正係
数に基づいて燃料噴射量を設定する燃料噴射設定手段り
と、該設定された燃料噴射量に応じて燃料噴射弁Mを駆
動する駆動手段Nとを備えるようにした。
Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention provides air-fuel ratio detection means A for detecting the actual air-fuel ratio of the engine, and load detection means B for detecting the engine load. a load change rate calculation means 0 for calculating a load change rate based on the detected load; a load change rate determination means 0 for determining whether the calculated load change rate is equal to or greater than a predetermined value; and a stoichiometric air-fuel ratio. Feedforward correction coefficient setting means E for setting a feedforward correction coefficient so as to obtain a substantially constant lean air-fuel ratio; a feedback correction coefficient setting means F that sets a feedback correction coefficient to the feedforward correction coefficient during a predetermined time period at the beginning of the lean air-fuel ratio control when the load change rate is determined to be equal to or greater than a predetermined value; a first selection means G for selecting a feedback correction coefficient;
a second selection means H that selects the feedback correction coefficient from the start of the lean air-fuel ratio control when the load change rate is determined to be less than a predetermined value; and a rewritable second selection means H that stores a learning correction coefficient that corrects the fuel injection amount. a storage means (2), a search means J for searching the learning correction coefficient from the storage means, and setting a new learning correction coefficient based on the set feedforward correction coefficient and feedback correction coefficient, and performing the new learning correction. The updating means updates the data stored in the storage means I to the coefficients, the feedforward correction coefficient selected by the first selection means G, the searched or newly set learning correction coefficient, or the first or A fuel injection setting means for setting the fuel injection amount based on the feedback correction coefficient selected by the second selection means G, H, and a driving means N for driving the fuel injection valve M according to the set fuel injection amount. I made sure to prepare the following.

(作用〉 このようにして、負荷変化率が所定値以上すなわち所定
値以上の加・減速運転から希薄空燃比制御に移行すると
きにその初期にフィードフォワード制御により実際の空
燃比を急激に希薄空燃比にした後、フィードバック制御
により目標希薄空燃比に近づけるようにする。一方、負
荷変化率が所定値未満のときには、希薄空燃比制御開始
時がらフィードバック制御により実際の空燃比を目標空
燃比に近づけるようにする。
(Function) In this way, when transitioning from acceleration/deceleration operation where the load change rate is above a predetermined value, that is, above a predetermined value, to lean air-fuel ratio control, the feedforward control is used to rapidly change the actual air-fuel ratio to lean air-fuel ratio control at the initial stage. After the fuel ratio is set, the actual air-fuel ratio is brought closer to the target lean air-fuel ratio by feedback control.On the other hand, when the load change rate is less than a predetermined value, the actual air-fuel ratio is brought closer to the target air-fuel ratio by feedback control at the same time as starting the lean air-fuel ratio control. do it like this.

さらに、フィードフォワード制御時のフィードフォワー
ド補正係数とフィードバック補正係数とにより得られた
学習補正係数に基づいてフィードフォワード制御時の燃
料噴射量を演算する。
Further, a fuel injection amount during feedforward control is calculated based on a learning correction coefficient obtained from a feedforward correction coefficient and a feedback correction coefficient during feedforward control.

〈実施例〉 以下に、本発明の一実施例を第2図〜第6図に基づいて
説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 6.

第2図において、例えばマイクロコンピュータからなる
制御装置1には、点火コイル2がら出力される点火信号
(回転速度信号)、エアフロメータ3から出力される吸
入空気流量信号、水温センサ4から出力される冷却水温
度信号、車速センサ5から出力される車速信号、アイド
ルスイッチ6からのON、OFF信号、空燃比検出手段
としての酸素センサ7 (排気中の酸素濃度によって理
論空燃比4含む広範囲の空燃比を検出できるセンサ)か
らの空燃比検出信号とが人力されている。制御装置1は
、第1図〜第6図に示すフローチャートに従って作動し
、燃料噴射弁8に駆動回路9を介して駆動パルス信号を
出力するようになっている。
In FIG. 2, a control device 1 consisting of a microcomputer, for example, receives an ignition signal (rotational speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and a water temperature sensor 4. A cooling water temperature signal, a vehicle speed signal output from the vehicle speed sensor 5, an ON/OFF signal from the idle switch 6, an oxygen sensor 7 as an air-fuel ratio detection means (a wide range of air-fuel ratios including the stoichiometric air-fuel ratio of 4 depending on the oxygen concentration in the exhaust gas) The air-fuel ratio detection signal from a sensor that can detect the air-fuel ratio is manually generated. The control device 1 operates according to the flowcharts shown in FIGS. 1 to 6, and outputs a drive pulse signal to the fuel injection valve 8 via a drive circuit 9.

ここでは、制御装置1が負荷変化率演算手段と負荷変化
率手段とフィードフォワード補正係数設定手段とフィー
ドバック補正係数設定手段と第1及び第2選択手段と記
憶手段(RAM)と検索手段と更新手段と燃料噴射量設
定手段とを構成する。
Here, the control device 1 includes a load change rate calculation means, a load change rate means, a feedforward correction coefficient setting means, a feedback correction coefficient setting means, first and second selection means, a storage means (RAM), a search means, and an update means. and a fuel injection amount setting means.

また、制御装置1と駆動回路9とにより駆動手段が構成
される。また、機関1回転当りの吸入空気流量から演算
される基本噴射量の変化率を負荷変化率と使用するため
エアフロメータ3が負荷検出手段を構成する。
Further, the control device 1 and the drive circuit 9 constitute a drive means. Furthermore, since the rate of change in the basic injection amount calculated from the flow rate of intake air per engine revolution is used as the rate of change in load, the air flow meter 3 constitutes a load detection means.

次に作用を第3図〜第6図のフローチャートに従って説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 6.

まず、燃料噴射量演算ルーチンを第3図に基づいて説明
すると、Slでは、点火信号、吸入空気流量信号等の各
種信号を読込む。
First, the fuel injection amount calculation routine will be explained based on FIG. 3. At Sl, various signals such as an ignition signal and an intake air flow rate signal are read.

S2では、点火信号から得られた機関回転速度Nと吸入
空気流量Qとから基本噴射量Tp (=KQ。
In S2, the basic injection amount Tp (=KQ) is determined from the engine rotational speed N obtained from the ignition signal and the intake air flow rate Q.

−、には定数)を演算する。−, is a constant).

33〜$7では、希薄空燃比制御条件を判定する。すな
わち、S3では、演算された基本噴射量Tpが設定値T
plからTp2までの範囲に入っているか否かを判定し
、YESのときには、s4に進みNoのときにはS2に
進む。
33 to $7, lean air-fuel ratio control conditions are determined. That is, in S3, the calculated basic injection amount Tp is set to the set value T.
It is determined whether or not it is within the range from pl to Tp2. If YES, proceed to s4; if NO, proceed to S2.

S4では、機関回転速度Nが設定値N、がらN2までの
範囲に入っているか否かを判定し、YESのときにはS
5に進み、Noのときには322に進む。
In S4, it is determined whether the engine rotation speed N is within the range from the set value N to N2, and if YES, the S
If the answer is No, the process advances to 322.

S5では、検出された冷却水温度Twが所定植(例えば
80℃)以上か否かを判定し、YESのときにはS6に
進み、NOのときにはS22に進む。
In S5, it is determined whether or not the detected cooling water temperature Tw is equal to or higher than a predetermined value (for example, 80° C.). If YES, the process proceeds to S6; if NO, the process proceeds to S22.

S6では、アイドルスイッチ6がON(吸気絞弁全開時
)かOFFかを判定し、OFFのときには、S7に進み
ONのときにはS22に進む。
In S6, it is determined whether the idle switch 6 is ON (when the intake throttle valve is fully open) or OFF. If it is OFF, the process proceeds to S7, and if it is ON, the process proceeds to S22.

S7では、検出された車速か所定値(例えば8km/h
)以上か否かを判定し、YESのときには、S8に進み
NoのときにはS22に進む。
In S7, the detected vehicle speed is set to a predetermined value (for example, 8 km/h).
) or more, and if YES, proceed to S8; if NO, proceed to S22.

このようにして希薄空燃比制御条件と(第7図参照)判
定されたときには、S8において、前回と今回演算され
た基本噴射量’rpO差ΔTpを演算する。
When the lean air-fuel ratio control condition is thus determined (see FIG. 7), in S8, the difference ΔTp in the basic injection amount 'rpO calculated last time and this time is calculated.

S9では、演算された差の絶対値1ΔTplが所定価Δ
TpLを超えているか否かを判定し、YESのときには
SIOに進みNOのときには315に進む。
In S9, the absolute value 1ΔTpl of the calculated difference is set to the predetermined value Δ
It is determined whether or not the TpL is exceeded. If YES, the process proceeds to SIO; if NO, the process proceeds to 315.

SIOでは、タイマのカウント値をリセットし新たにカ
ウントを開始させ、Sllに進む。
In SIO, the count value of the timer is reset and a new count is started, and the process proceeds to Sll.

Sllでは、タイマのカウント値が希薄空燃比制御条件
と判定された時から第1設定時間TI (例えばl s
ecで第8図参照)を経過したか否かを判定し、YES
のときにはS12に進みNoのときには、S22に進む
In Sll, the first set time TI (for example, l s
ec (refer to Figure 8) has elapsed, and select YES.
If so, the process advances to S12, and if No, the process advances to S22.

S12では、タイマのカウント値が希薄空燃比制御条件
と判定された時から、第2設定時間T2(例えば1.2
38Cで第8図参照)を経過したか否かを判定し、YE
SのときにはS17に進みNoのときには、S13に進
む。
In S12, the second set time T2 (for example, 1.2
38C (see Figure 8) has passed, and YE
If S, the process advances to S17, and if No, the process advances to S13.

S13では、三次元マツプからフィードフォワード補正
係数としてのリーンバーン補正係数LBCを機関回転速
度Nと基本噴射tTpとに基づいて検索する。
In S13, a lean burn correction coefficient LBC as a feedforward correction coefficient is searched from the three-dimensional map based on the engine rotational speed N and the basic injection tTp.

ここで、前記リーンバーン補正係数はロードロード走行
時に、空燃比が最も希薄化され負荷の増大に伴って空燃
比が理論空燃比に近づくように三次元マツプに記憶され
ている。
Here, the lean burn correction coefficient is stored in a three-dimensional map so that the air-fuel ratio becomes the leanest during road driving, and as the load increases, the air-fuel ratio approaches the stoichiometric air-fuel ratio.

314では、後述のリーンバーン学習補正係数LBCL
RNを機関回転速度Nと基本噴射量’rpとに基づいて
PAM等の学習マツプから検索する。
314, the lean burn learning correction coefficient LBCL, which will be described later, is
RN is searched from a learning map such as PAM based on the engine rotational speed N and the basic injection amount 'rp.

一方、S15では、タイマのカウント値に+1を加算し
て新たなカウント値を得て、S16に進む。
On the other hand, in S15, +1 is added to the count value of the timer to obtain a new count value, and the process proceeds to S16.

S16では、タイマのカウント値が前記第1設定時間T
、を経過したか否かを判定し、YESのときにはS17
に進み、NOのときにはS22に進む。
In S16, the count value of the timer is equal to the first set time T.
, it is determined whether or not the period has elapsed, and if YES, the process proceeds to S17.
If the answer is NO, the process advances to S22.

S17では、酸素センサ7の検出信号を読込んで、31
8では酸素センサ9の検出信号に基づいて空燃比マツプ
から実際の空燃比を検索してS19に進む。
In S17, the detection signal of the oxygen sensor 7 is read, and 31
At step 8, the actual air-fuel ratio is searched from the air-fuel ratio map based on the detection signal of the oxygen sensor 9, and the process proceeds to step S19.

S19では、検索された空燃比すなわち実際の空燃比と
目標希薄空燃比とを比較し、実際の空燃比がリンチのと
きには、S20に進みリーンのときにはS21に進む。
In S19, the searched air-fuel ratio, that is, the actual air-fuel ratio, is compared with the target lean air-fuel ratio, and if the actual air-fuel ratio is lean, the process proceeds to S20, and if it is lean, the process proceeds to S21.

S20では、前回設定されたフィードバック補正係数と
してのリーンバーン補正係数LBCから所定値ΔLを減
算して実際の空燃比が目標希薄空燃比に近づくように新
たなリーンバーン補正係数LBCを設定する。
In S20, a predetermined value ΔL is subtracted from the previously set lean burn correction coefficient LBC as the feedback correction coefficient to set a new lean burn correction coefficient LBC so that the actual air-fuel ratio approaches the target lean air-fuel ratio.

向、実際の空燃比が目標希薄空燃比のときには前回のリ
ーンバーン補正係数LBCをそのまま設定する。
On the other hand, when the actual air-fuel ratio is the target lean air-fuel ratio, the previous lean burn correction coefficient LBC is set as is.

一方、S21では、前回設定されたリーンバーン補正係
数LBCに所定値ΔLを加算して実際の空燃比が目標希
薄空燃比に近づくように新たなり−ンバーン補正係数’
L B Cを設定する。
On the other hand, in S21, a predetermined value ΔL is added to the previously set lean burn correction coefficient LBC to create a new lean burn correction coefficient' so that the actual air-fuel ratio approaches the target lean air-fuel ratio.
Set LBC.

そして、S23では、S13で検索されたリーンバーン
補正係数LBCとリーンバーン学習補正係数LBCLR
NまたはS21にて設定されたリーンバーン補正係数L
BCに基づいて燃料噴射量Tiを次式により演算する。
Then, in S23, the lean burn correction coefficient LBC and the lean burn learning correction coefficient LBCLR retrieved in S13 are
Lean burn correction coefficient L set in N or S21
Based on BC, the fuel injection amount Ti is calculated using the following equation.

T i =TpX (LBC+LBCLRN)XCOE
FXKBLRC+Ts COEFは水量等を含む各種補正係数、Tsはバッテリ
電圧による補正係数KBLRCは理論空燃比制御時に設
定され燃料噴射弁8等の経時変化を補正する学習係数で
ある。
T i =TpX (LBC+LBCLRN)XCOE
FXKBLRC+Ts COEF is various correction coefficients including water amount etc. Ts is correction coefficient based on battery voltage KBLRC is a learning coefficient set at the time of stoichiometric air-fuel ratio control to correct changes over time of the fuel injection valve 8 and the like.

尚、315〜S21を経過するフィードバック制御時に
はリーンバーン学習補正係数LBCLRNは零に設定さ
れる。
It should be noted that during the feedback control from 315 to S21, the lean burn learning correction coefficient LBCLRN is set to zero.

一方、希薄空燃比制御条件と判定されず或いは判定され
ても第1設定時間T+の間は、S22において、実際の
空燃比が略理論空燃比になるように燃料噴射量Tiを次
式により演算する。
On the other hand, during the first set time T+ even if the lean air-fuel ratio control condition is not determined or is determined, the fuel injection amount Ti is calculated by the following formula in S22 so that the actual air-fuel ratio becomes approximately the stoichiometric air-fuel ratio. do.

Ti=TpXαXC0EFXKBLRC+Tsαは従来
例と同様に実際の空燃比が理論空燃比になるように設定
された空燃比フィードバック補正係数である。
Ti=TpXαXC0EFXKBLRC+Tsα is an air-fuel ratio feedback correction coefficient set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, as in the conventional example.

このようにして、S23若しくはS22にて演算された
燃料噴射量Tiは、第4図に示すフローチャートに従っ
て例えば点火コイル2からのレファレンス信号(回転数
)に同期して駆動回路9を介して燃料噴射弁8に出力し
燃料噴射を行う。
In this way, the fuel injection amount Ti calculated in S23 or S22 is used to inject fuel via the drive circuit 9 in synchronization with the reference signal (rotation speed) from the ignition coil 2, for example, according to the flowchart shown in FIG. It outputs to valve 8 and performs fuel injection.

また、前記目標希薄空燃比は第5図のフローチャートに
従って設定される。すなわち、341では、空燃比マツ
プから機関回転速度Nと基本噴射1tTpとに基づいて
目標希薄空燃比を検索し、S42では検索された目標希
薄空燃比をRAM等に記憶させその値を第3図のフロー
チャートにおいて使用する。
Further, the target lean air-fuel ratio is set according to the flowchart shown in FIG. That is, in step 341, a target lean air-fuel ratio is searched from the air-fuel ratio map based on the engine rotational speed N and the basic injection 1tTp, and in step S42, the searched target lean air-fuel ratio is stored in a RAM or the like, and its value is stored in FIG. Used in flowcharts.

次に、リーンバーン学習補正係数の学習制御を第6図の
フローチャートに従って説明する。
Next, learning control of the lean burn learning correction coefficient will be explained according to the flowchart of FIG.

S51では、酸素センサ7等の各種信号を読込む。In S51, various signals from the oxygen sensor 7 and the like are read.

85.2では、希薄空燃比制御領域でフィードバック制
?I (すなわち、第3回のフローチャートで815〜
S21が行われている制御域)が開始されているか否か
を判定し、YESのときにはS53に進み、Noのとき
に351に戻る。
In 85.2, is there a feedback system in the lean air-fuel ratio control region? I (i.e. 815~ in the third flowchart)
It is determined whether or not the control area in which S21 is being performed has been started, and if YES, the process proceeds to S53, and if NO, the process returns to 351.

S53では、検出された実際の空燃比が目標希薄空燃比
の許容範囲内で変動しているか否がすなわち、フィード
バック制御域に入ったか否かを判定し、YESのときに
はS54に進み、NoのときにはS51に戻る。
In S53, it is determined whether or not the detected actual air-fuel ratio is fluctuating within the allowable range of the target lean air-fuel ratio, that is, whether it has entered the feedback control range. If YES, the process proceeds to S54; if NO, the process proceeds to Return to S51.

S54では、前記三次元マツプからリーンバーン補正係
数LBCを機関回転速度Nと基本噴射量’rp(機関負
荷)とに基づいて検索する。
In S54, the lean burn correction coefficient LBC is retrieved from the three-dimensional map based on the engine rotational speed N and the basic injection amount 'rp (engine load).

S55では安定したフィードバック制御時に設定された
リーンバーン補正係数LBCと三次元マツプにより検索
されたリーンバーン補正係数LBCとの係数差ΔLBC
(第8図参照)を演算する。
In S55, the coefficient difference ΔLBC between the lean burn correction coefficient LBC set during stable feedback control and the lean burn correction coefficient LBC searched by the three-dimensional map is calculated.
(See Figure 8).

S56では、演算された係数差ΔLBCに学習マツプの
データを機関回転速度Nと基本噴射1tTpとを対応さ
せて学習補正係数として更新する。
In S56, the data of the learning map is updated as a learning correction coefficient by making the calculated coefficient difference ΔLBC correspond to the engine rotational speed N and the basic injection 1tTp.

このようにして更新された学習補正係数のデータは第3
図のフローチャートにおいてリーンバーン学習補正係数
LRCLRNとして使用される。
The learning correction coefficient data updated in this way is
It is used as the lean burn learning correction coefficient LRCLRN in the flowchart of the figure.

希薄空燃比制御条件と判定された時から第1設定時間T
1を経過するまでは、差の絶対値1ΔTp1の大小に拘
わらず判定直前と同様に実際の空燃比が例えば理論空燃
比になるようにフィードバック制御される。これにより
、第7図に示すように希薄空燃比制御領域外のA点から
B点までの加速運転時に、希薄空燃比制御領域を一時的
に通過し、希薄空燃比制御条件が判定されても、前記第
1設定時間T、の間希薄空燃比制御がなされないため、
実際の空燃比の希薄化を防止でき加速性能を良好に維持
できる。
The first set time T from the time when it is determined that the lean air-fuel ratio control condition is met.
Until 1 has passed, regardless of the magnitude of the absolute value 1ΔTp1 of the difference, feedback control is performed so that the actual air-fuel ratio becomes, for example, the stoichiometric air-fuel ratio in the same way as immediately before the determination. As a result, as shown in FIG. 7, even if during acceleration operation from point A to point B outside the lean air-fuel ratio control region, the lean air-fuel ratio control region is temporarily passed and the lean air-fuel ratio control condition is determined. , because the lean air-fuel ratio control is not performed during the first set time T,
It is possible to prevent dilution of the actual air-fuel ratio and maintain good acceleration performance.

また、第1設定時間T1経過後においては、前記差の絶
対値1ΔTplが所定値ΔTpLを超えているときには
第2設定時間T2が経過するまでは、三次元マツプによ
り検索されたリーンバーン補正係数LBCに基づいて燃
料噴射iTiが演算されるため、第8図に示すように、
第1設定時間T、経過後、第2設定時間T3経過するま
では、実際の空燃比が理論空燃比より希薄化された一定
の希薄空燃比に維持される(フィードフォワード制御と
呼ぶ)。これにより、加速運転直後に希薄空燃比制御が
なされるときには、第1設定時間T、経過後に実際の空
燃比が理論空燃比から希薄空燃比に急激に低下するので
、希薄空燃比制御への移行時に排気中のNOX排出量を
低減しつつ希薄空燃比制御により燃費の向上を図ること
ができる。
Further, after the first set time T1 has elapsed, if the absolute value 1ΔTpl of the difference exceeds the predetermined value ΔTpL, the lean burn correction coefficient LBC searched by the three-dimensional map is Since the fuel injection iTi is calculated based on, as shown in FIG.
After the first set time T has elapsed, the actual air-fuel ratio is maintained at a constant lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio (referred to as feedforward control) until the second set time T3 has elapsed. As a result, when lean air-fuel ratio control is performed immediately after acceleration driving, the actual air-fuel ratio rapidly decreases from the stoichiometric air-fuel ratio to the lean air-fuel ratio after the first set time T has elapsed, so that the transition to lean air-fuel ratio control is performed. At times, it is possible to improve fuel efficiency by controlling the lean air-fuel ratio while reducing the amount of NOx emitted in the exhaust gas.

一方、差の絶対値1ΔTplが所定値以下すなわち超緩
加速運転成いは定常運転から希薄空燃比制御に移行する
ときには、前記第1設定時間T。
On the other hand, when the absolute value 1ΔTpl of the difference is less than or equal to the predetermined value, that is, when transition is made from ultra-slow acceleration operation or steady operation to lean air-fuel ratio control, the first set time T.

経過後に、酸素センサ7により検出された実際の空燃比
が目標希薄空燃比になるようにフィードバック制御する
ようにしたので、第7図中破線で示すように、フィード
バック制御初期に実際の空燃比は、目標希薄空燃比に経
時と共に徐々に近づいた後、目標希薄空燃比付近におい
てフィードバック制御される。ここで、フィードフォワ
ード制御時とフィードバック制御時の目標希薄空燃比は
同様になっている。これにより、希薄空燃比制御への移
行時に機関出力が経時と共に徐々に低下するので、運転
フィーリングの悪化を抑制できる。
Since the feedback control is performed so that the actual air-fuel ratio detected by the oxygen sensor 7 becomes the target lean air-fuel ratio after the elapse of time, as shown by the broken line in FIG. , after gradually approaching the target lean air-fuel ratio over time, feedback control is performed near the target lean air-fuel ratio. Here, the target lean air-fuel ratio during feedforward control and during feedback control are the same. Thereby, since the engine output gradually decreases over time when shifting to lean air-fuel ratio control, it is possible to suppress deterioration of driving feeling.

さらに、フィードフォワード制御時にフィードフォワー
ド制御時と安定したフィードバック制御時のリーンバー
ン補正係数LBCの差ΔLBCにより設定された学習補
正係数に基づいて燃料噴射量を補正するようにしたので
、フィードフォワード制御時のリーンバーン補正係数に
よると例えば燃料噴射弁8の噴射特性或いは経時変化に
より実際の空燃比が目標希薄空燃比からずれることがあ
るが、そのずれ分をフィードバック制御時に検出された
実際の空燃比に基づいて設定されたリーンバーン補正係
数LBCにより補なうことができる。
Furthermore, during feedforward control, the fuel injection amount is corrected based on the learning correction coefficient set by the difference ΔLBC between the lean burn correction coefficient LBC during feedforward control and stable feedback control. According to the lean burn correction coefficient, the actual air-fuel ratio may deviate from the target lean air-fuel ratio due to, for example, the injection characteristics of the fuel injector 8 or changes over time. This can be compensated for by the lean burn correction coefficient LBC set based on this.

このため、フィードフォワード制御時の実際の空燃比を
高精度に目標希薄空燃比に制御できNOK排出量の低減
化と燃費の向上を図りつつサージ低減により運転性の向
上を図れる。
Therefore, the actual air-fuel ratio during feedforward control can be controlled to the target lean air-fuel ratio with high accuracy, reducing NOK emissions, improving fuel efficiency, and improving drivability by reducing surge.

尚、本実施例では、基本噴射量の単位時間当りの変化率
すなわち前回と今回との差の絶対値1ΔTplから希薄
空燃比制御開始直前の機関運転状態を判定するようにし
たが、吸入負荷、スロットル弁開度等の変化率から判定
するようにしてもよい。
In this embodiment, the engine operating state immediately before the start of lean air-fuel ratio control is determined from the rate of change of the basic injection amount per unit time, that is, the absolute value 1ΔTpl of the difference between the previous and current times. The determination may be made based on the rate of change of the throttle valve opening or the like.

〈発明の効果〉 本発明は、以上説明したように、負荷変化率が所定値以
上のときに希薄空燃比制御を、フィードフォワード制御
により急激に希薄空燃比に近づけた後フィードバック制
御により行う一方、負荷変化率が所定値未満のときにフ
ィードバック制御により希薄空燃比制御を行うようにし
たので、例えば加速運転直後からの希薄空燃比制御時に
はN Ox排出量の低減化を図りつつ燃費の向上を図れ
る一方、例えば定常運転時からの希薄空燃比制御時には
、空燃比を徐々に希薄空燃比に近づけることにより機関
出力を徐々に低下させるため、運転フィーリングの向上
を図れる。
<Effects of the Invention> As explained above, the present invention performs lean air-fuel ratio control by feedback control after rapidly approaching the lean air-fuel ratio by feedforward control when the load change rate is equal to or higher than a predetermined value. Lean air-fuel ratio control is performed by feedback control when the load change rate is less than a predetermined value, so, for example, when controlling the lean air-fuel ratio immediately after acceleration, it is possible to reduce NOx emissions and improve fuel efficiency. On the other hand, when controlling the lean air-fuel ratio from, for example, steady operation, the engine output is gradually reduced by gradually bringing the air-fuel ratio closer to the lean air-fuel ratio, thereby improving the driving feeling.

さらに、フィードフォワード制御時の補正係数とフィー
ドバック制御時の補正係数とにより学習補正係数を設定
してフィードフォワード制御時の燃料噴射量演算に用い
たので、フィードフォワード制御時の実際の空燃比を目
標希薄空燃比に高精度に制御でき、N Oxの排出量の
低減化と燃費の向上を図りつつサージ低減により運転性
を向上できる。
Furthermore, a learning correction coefficient was set using the correction coefficient during feedforward control and the correction coefficient during feedback control, and was used to calculate the fuel injection amount during feedforward control, so that the actual air-fuel ratio during feedforward control was set as the target. The lean air-fuel ratio can be controlled with high precision, reducing NOx emissions and improving fuel efficiency while reducing surge and improving drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第6図は同上のフローチ
ャート、第7図及び第8図は同上の作用を説明するため
の図である。 1・・・制御装置  2・・・点火コイル  3・・・
エアフローメータ  4・・・水温センサ  5・・・
車速センサ  6・・・アイドルスイッチ  7・・・
酸素センサ  8・・・燃料噴射弁  9・・・駆動回
路特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第3図− 第4図 第5図 機関回転VL度
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Figs. 3 to 6 are flowcharts of the same, and Figs. It is a figure for explaining. 1... Control device 2... Ignition coil 3...
Air flow meter 4...Water temperature sensor 5...
Vehicle speed sensor 6... Idle switch 7...
Oxygen sensor 8...Fuel injection valve 9...Drive circuit Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio SasashimaFigure 3-Figure 4Figure 5 Engine rotation VL degree

Claims (1)

【特許請求の範囲】[Claims] 所定の運転領域で所定の希薄空燃比制御条件が検出され
たときに実際の空燃比が理論空燃比より希薄化されるよ
うに希薄空燃比制御を行う内燃機関の電子制御燃料噴射
装置において、機関の実際の空燃比を検出する空燃比検
出手段と、機関の負荷を検出する負荷検出手段と、検出
された負荷に基づいて負荷変化率を演算する負荷変化率
演算手段と、演算された負荷変化率が所定値以上か否か
を判定する負荷変化率判定手段と、理論空燃比より希薄
な略一定の希薄空燃比となるようにフィードフォワード
補正係数を設定するフィードフォワード補正係数設定手
段と、検出された実際の空燃比に基づいて実際の空燃比
が目標希薄空燃比となるようにフィードバック補正係数
を設定するフィードバック補正係数設定手段と、負荷変
化率が所定値以上と判定されたときに希薄空燃比制御初
期の所定時間の間は、前記フィードフォワード補正係数
を選択しその後、フィードバック補正係数を選択する第
1選択手段と、負荷変化率が所定値未満と判定されたと
きに、希薄空燃比制御開始時から前記フィードバック補
正係数を選択する第2選択手段と、燃料噴射量を補正す
る学習補正係数を記憶する書換可能な記憶手段と、該記
憶手段から学習補正係数を検索する検索手段と、前記設
定されたフィードフォワード補正係数とフィードバック
補正係数とに基づいて新たな学習補正係数を設定し、該
新たな学習補正係数に前記記憶手段に記憶されたデータ
を更新する更新手段と、第1選択により選択されたフィ
ードフォワード補正係数と検索され若しくは新たに設定
された学習補正係数と或いは第1若しくは第2選択手段
により選択されたフィードバック補正係数に基づいて燃
料噴射量を設定する燃料噴射設定手段と、該設定された
燃料噴射量に応じて燃料噴射弁を駆動する駆動手段とを
備えたことを特徴とする内燃機関の電子制御燃料噴射装
置。
In an electronically controlled fuel injection system for an internal combustion engine that performs lean air-fuel ratio control such that when a predetermined lean air-fuel ratio control condition is detected in a predetermined operating region, the actual air-fuel ratio is leaner than the stoichiometric air-fuel ratio. air-fuel ratio detection means for detecting the actual air-fuel ratio of the engine; load detection means for detecting the engine load; load change rate calculation means for calculating the load change rate based on the detected load; and load change rate calculation means for calculating the load change rate based on the detected load. load change rate determining means for determining whether or not the ratio is equal to or higher than a predetermined value; a feedback correction coefficient setting means for setting a feedback correction coefficient so that the actual air-fuel ratio becomes a target lean air-fuel ratio based on the actual air-fuel ratio that has been determined; A first selection means selects the feedforward correction coefficient and then selects a feedback correction coefficient during a predetermined time at the initial stage of fuel ratio control, and lean air-fuel ratio control is performed when the load change rate is determined to be less than a predetermined value. a second selection means for selecting the feedback correction coefficient from the start; a rewritable storage means for storing a learning correction coefficient for correcting the fuel injection amount; a search means for searching the learning correction coefficient from the storage means; updating means for setting a new learning correction coefficient based on the set feedforward correction coefficient and feedback correction coefficient, and updating the data stored in the storage means to the new learning correction coefficient; fuel injection setting means for setting the fuel injection amount based on the selected feedforward correction coefficient, the searched or newly set learning correction coefficient, or the feedback correction coefficient selected by the first or second selection means; An electronically controlled fuel injection device for an internal combustion engine, comprising: a driving means for driving a fuel injection valve according to the set fuel injection amount.
JP28601786A 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine Pending JPS63140840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28601786A JPS63140840A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28601786A JPS63140840A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63140840A true JPS63140840A (en) 1988-06-13

Family

ID=17698902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28601786A Pending JPS63140840A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63140840A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813131A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS58124040A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS6098139A (en) * 1983-11-02 1985-06-01 Nissan Motor Co Ltd Air-fuel ratio controller
JPS60212653A (en) * 1984-04-06 1985-10-24 Nissan Motor Co Ltd Fuel supply controlling apparatus for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813131A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS58124040A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS6098139A (en) * 1983-11-02 1985-06-01 Nissan Motor Co Ltd Air-fuel ratio controller
JPS60212653A (en) * 1984-04-06 1985-10-24 Nissan Motor Co Ltd Fuel supply controlling apparatus for engine

Similar Documents

Publication Publication Date Title
US4964272A (en) Air-fuel ratio feedback control system including at least downstreamside air-fuel ratio sensor
JPH03271544A (en) Control device of internal combustion engine
US5052177A (en) Air-fuel ratio feedback control system having single air-fuel ratio sensor downstream of or within three-way catalyst converter
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JPS63140840A (en) Electronic control fuel injection device for internal combustion engine
JP3622290B2 (en) Control device for internal combustion engine
JP3899658B2 (en) Exhaust gas purification device for internal combustion engine
JPS63140839A (en) Electronic control fuel injection device for internal combustion engine
JP2870286B2 (en) Air-fuel ratio control device for lean burn engine
JP3718857B2 (en) Control device for internal combustion engine
JPS63140838A (en) Electronic control fuel injection device for internal combustion engine
JPS6329857Y2 (en)
JP3397086B2 (en) Engine combustion fluctuation control device
JPS63186937A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0531247Y2 (en)
JP3397087B2 (en) Engine combustion fluctuation control device
JP3528193B2 (en) Air-fuel ratio control device for lean burn engine
JP3334138B2 (en) Air-fuel ratio control device for internal combustion engine
JP3397085B2 (en) Engine combustion fluctuation control device
JPH0569971B2 (en)
JPH0510195A (en) Learning controller
JPH0445659B2 (en)
JPH0475383B2 (en)
JPH0543868B2 (en)
JPH07119602A (en) Ignition timing controller of engine