JPS63140838A - Electronic control fuel injection device for internal combustion engine - Google Patents

Electronic control fuel injection device for internal combustion engine

Info

Publication number
JPS63140838A
JPS63140838A JP28601686A JP28601686A JPS63140838A JP S63140838 A JPS63140838 A JP S63140838A JP 28601686 A JP28601686 A JP 28601686A JP 28601686 A JP28601686 A JP 28601686A JP S63140838 A JPS63140838 A JP S63140838A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
correction coefficient
lean air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28601686A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP28601686A priority Critical patent/JPS63140838A/en
Publication of JPS63140838A publication Critical patent/JPS63140838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent overleanness from occurring, by selection a feedforward correction factor at the load variation initial stage and also a feedback correction factor afterward, respectively, while compensating it to the rich side when a speed variation is large, in case of a device performing control over a lean side air-fuel ratio. CONSTITUTION:A feedback correction factor setting device G sets a feedback correction factor on the basis of each output out of an air-fuel ratio detecting device A and a desired lean air-fuel ratio setting device B and a feed forward correction factor setting device sets a feedforward correction factor so as to become the set desired lean air-fuel ratio. When a load variation judging device E has judged that a load variation is more than the specified one on the basis of variations in a fundamental fuel injection quantity, a first selector device H selects the feedforward correction factor as long as the specified time, and afterward it selects the feedback correction factor. When a speed variation detecting device L detects a speed variation of more than the specified one, each correction factor or the desired lean air-fuel ratio is compensated and the promotion of richness is carried out.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection system for an internal combustion engine.

〈従来の技術) 内V!機関の電子制御燃料噴射装置の従来例として以下
のようなものがある(実願昭60−066558号参照
)。
(Conventional technology) Inner V! The following is a conventional example of an electronically controlled fuel injection system for an engine (see Utility Model Application No. 60-066558).

すなわち、エアフローメータ等により検出された吸入空
気流量Qと機関回転速度Nとから基本噴射量Tp=Kx
Q/N (Kは定数)を演算すると共に、主として水温
に応じた各種補正係数C0EFと実際の空燃比が理論空
燃比になるように設定された空燃比フィードバック補正
係数αとバッテリ電圧による補正係数Tsとを演算した
後、定常運転時における燃料噴射量Ti=TpXCOB
F×α+Tsを演算する。
That is, from the intake air flow rate Q detected by an air flow meter etc. and the engine rotation speed N, the basic injection amount Tp=Kx
In addition to calculating Q/N (K is a constant), various correction coefficients C0EF mainly depending on the water temperature, an air-fuel ratio feedback correction coefficient α set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, and a correction coefficient based on the battery voltage are calculated. After calculating Ts, the fuel injection amount Ti=TpXCOB during steady operation
Calculate F×α+Ts.

そして、例えばシングルポイントインジェクションシス
テム(以下SP1方式)では、機関のA回転毎に点火信
号等に同期して燃料噴射弁に対し前記燃料噴射量Tiに
対応するパルス巾の噴射パルス信号を出力し機関に燃料
を供給する。
For example, in a single point injection system (hereinafter referred to as SP1 system), an injection pulse signal with a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve in synchronization with an ignition signal etc. every A rotation of the engine. to provide fuel.

ところで、近年燃費の向上や排気の浄化等を目的として
、機関の低速低負荷運転領域において、実際の空燃比が
理論空燃比よりも薄くなるように空燃比制御するように
したものがある。
Incidentally, in recent years, for the purpose of improving fuel efficiency and purifying exhaust gas, some engines have been designed to control the air-fuel ratio so that the actual air-fuel ratio becomes thinner than the stoichiometric air-fuel ratio in the low-speed, low-load operating region of the engine.

即ち、高出力を必要とせず希薄燃焼させても良い所定の
低速定負荷運転領域であることが判定されると、実際の
空燃比が略理論空燃比となるように設定される燃料噴射
量(以下、理論空燃比制御と呼ぶ)を、目標空燃比を切
り換えて実際の空燃比が所定の希薄空燃比となるように
減量設定して燃料噴射制御(以下、希薄空燃比制御と呼
ぶ)するものであり、これにより燃料消費量を少なくす
ると共に、排気中の有害成分を低減しようとするもので
ある。
That is, when it is determined that the operation is in a predetermined low-speed constant-load operation region that does not require high output and may allow lean combustion, the fuel injection amount ( A system that controls fuel injection by switching the target air-fuel ratio (hereinafter referred to as stoichiometric air-fuel ratio control) and setting a reduction so that the actual air-fuel ratio becomes a predetermined lean air-fuel ratio (hereinafter referred to as lean air-fuel ratio control). This aims to reduce fuel consumption and reduce harmful components in exhaust gas.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の電子制御燃料噴射装置
においては、定常運転状態で理論空燃比制御から希薄空
燃比制御に急激に切り換えると、急激に機関出力が低下
して運転フィーリングが悪化するという不具合がある。
<Problems to be Solved by the Invention> However, in such conventional electronically controlled fuel injection systems, when switching suddenly from stoichiometric air-fuel ratio control to lean air-fuel ratio control during steady operation, the engine output suddenly decreases. The problem is that the driving feeling deteriorates.

また、加速運転あるいは減速運転から希薄空燃比制御可
能な運転領域である定常運転に移行した直後には急激に
希薄空燃比制御に切り換えなし1と一燃費或いはNOx
の低減化が図れないという不具合がある。又、負荷変動
が大きい場合、もともとトルク変動が大きいのでトルク
変動を抑制するために急激に希薄空燃比制御して切換る
必要がある。
In addition, immediately after transitioning from acceleration or deceleration operation to steady operation, which is an operating range in which lean air-fuel ratio control is possible, there is a sudden switch to lean air-fuel ratio control.
There is a problem in that it is not possible to reduce the Furthermore, when the load fluctuation is large, the torque fluctuation is originally large, so it is necessary to rapidly control and switch the lean air-fuel ratio in order to suppress the torque fluctuation.

しかしフィードバック制御によりこれを行うと実際の空
燃比を検出する酸素センサの検出応答遅れによって実際
の空燃比を急激に希薄空燃比にすることができず、また
フィードバック制御中においても酸素センサの経時変化
により希薄空燃比を高精度に制御できずサージの発生に
より運転性の悪化を招くという不具合がある。
However, when this is done using feedback control, the actual air-fuel ratio cannot be rapidly made lean due to the delay in the detection response of the oxygen sensor that detects the actual air-fuel ratio, and even during feedback control, the oxygen sensor changes over time. Therefore, there is a problem that the lean air-fuel ratio cannot be controlled with high precision, and drivability is deteriorated due to the generation of surge.

このため、急激に実際の空燃比を希薄空燃比に制御する
ときには、フィードフォワード制御により行うことも考
えられるが、フィードフォワード制御では例えば燃料噴
射弁の噴射特性或いは経時変化等により希薄空燃比制御
移行時に実際の空燃比を目標希薄空燃比に高精度に制御
することが難しくNOx排出量の増大を招いたりサージ
発生により運転性の悪化を招くという不具合がある。
For this reason, when suddenly controlling the actual air-fuel ratio to a lean air-fuel ratio, feedforward control may be considered, but in feedforward control, the shift to lean air-fuel ratio control may occur due to, for example, the injection characteristics of the fuel injector or changes over time. At times, it is difficult to control the actual air-fuel ratio to the target lean air-fuel ratio with high precision, resulting in an increase in NOx emissions and a deterioration in drivability due to surge generation.

本発明は、このような実状に鑑みてなされたもので、希
薄空燃比制御を行っても加速運転直後のNOx排出量の
低減化と燃費の向上を図りつつ運転性の向上を図れる電
子制御燃料噴射装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an electronically controlled fuel that can reduce NOx emissions immediately after acceleration driving, improve fuel efficiency, and improve drivability even when lean air-fuel ratio control is performed. The purpose is to provide an injection device.

く問題点を解決するための手段) このため、本発明は第1図に示すように機関の実際の空
燃比を検出する空燃比検出手段Aと、理論空燃比より希
薄な目標希薄空燃比を設定する目標希薄空燃比設定手段
Bと、機関の負荷を検出する負荷検出手段Cと、検出さ
れた負荷に基づいて負荷変化率を演算する負荷変化率演
算手段りと、演算さた負荷変化率が所定値以上か否かを
判定する負荷変化率判定手段Eと、前記設定された希薄
空燃比となるようにフィードフォワード補正係数を設定
するフィードフォワード補正係数設定手段Fと、検出さ
れた実際の空燃比に基づいて実際の空燃比が目標希薄空
燃比になるようにフイードバツク補正係数を設定するフ
ィードバック補正係数設定手段Gと、負荷変化率が所定
値以上と判定されたときに希薄空燃比制御初期の所定時
間の間は前記フィードフォワード補正係数を選択しその
後フィードバック補正係数を選択する第1選択手段Hと
、負荷変化率が所定値未満と判定されたときに希薄空燃
比制御開始時から前記フィードバック補正係数を選択す
る第2選択手段■と、第1若しくは第2選択手段H,I
により選択された補正係数に基づいて燃料噴射量を設定
する燃料噴射量設定手段Jと、設定された燃料噴射量に
応じて燃料噴射弁Nを駆動する駆動手段にと、機関の回
転変動を検出する回転変動検出手段りと、検出された回
転変動が所定値以上のときに、実際の空燃比が前記設定
された目標希薄空燃比に対し所定値だけ濃化するように
、前記フィードフォワード補正係数とフィードバンク補
正係数との少なくとも一方若しくは前記設定された目標
希薄空燃比を補正する空燃比補正手段Mと、を備えるよ
うにした。
Therefore, as shown in FIG. 1, the present invention includes an air-fuel ratio detection means A that detects the actual air-fuel ratio of the engine, and a target lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. A target lean air-fuel ratio setting means B for setting a target lean air-fuel ratio, a load detecting means C for detecting the engine load, a load change rate calculating means for calculating a load change rate based on the detected load, and a calculated load change rate. a load change rate determining means E for determining whether or not the detected actual Feedback correction coefficient setting means G that sets a feedback correction coefficient so that the actual air-fuel ratio becomes the target lean air-fuel ratio based on the air-fuel ratio; and a feedback correction coefficient setting means G that sets a feedback correction coefficient so that the actual air-fuel ratio becomes the target lean air-fuel ratio; a first selection means H that selects the feedforward correction coefficient for a predetermined period of time and then selects a feedback correction coefficient; A second selection means (■) for selecting a correction coefficient, and a first or second selection means (H, I)
A fuel injection amount setting means J that sets the fuel injection amount based on the correction coefficient selected by , and a drive means that drives the fuel injection valve N according to the set fuel injection amount detect rotational fluctuations of the engine. and the feedforward correction coefficient so that the actual air-fuel ratio is enriched by a predetermined value with respect to the set target lean air-fuel ratio when the detected rotation fluctuation is equal to or greater than a predetermined value. and a feed bank correction coefficient or an air-fuel ratio correction means M for correcting the set target lean air-fuel ratio.

〈作用〉 このようにして、負荷変化率が所定値以上すなわち所定
値以上の加・減速運転から希薄空燃比制御に移行すると
きにその初期にフィードフォワード制御により実際の空
燃比を急激に希薄空燃比にした後、フィードバック制御
により目標希薄空燃比に近づけるようにする。一方、負
荷変化率が所定値未満のときには希薄空燃比制御開始時
からフィードバック制御により実際の空燃比を目標希薄
空燃比に近づけるようにする。
<Operation> In this way, when shifting from acceleration/deceleration operation where the load change rate is above a predetermined value, that is, above the predetermined value, to lean air-fuel ratio control, the actual air-fuel ratio is rapidly changed to lean air-fuel ratio by feedforward control at the initial stage. After the fuel ratio is set, feedback control is performed to bring it closer to the target lean air-fuel ratio. On the other hand, when the load change rate is less than a predetermined value, the actual air-fuel ratio is brought closer to the target lean air-fuel ratio by feedback control from the start of the lean air-fuel ratio control.

さらに、所定値以上の回転変動が検出されたときに実際
の空燃比を濃側に補正して希薄空燃比制御時のサージ発
生を抑制する。
Further, when a rotational fluctuation of a predetermined value or more is detected, the actual air-fuel ratio is corrected to the rich side to suppress the occurrence of a surge during lean air-fuel ratio control.

〈実施例〉 以下に、本発明の一実施例を第2図〜第7図に基づいて
説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 7.

第2図において、例えばマイクロコンピュータからなる
制御装置lには、点火コイル2から出力される点火信号
(回転速度信号)、エアフローメータ3から出力される
吸入空気流量信号、水温センサ4から出力される冷却水
温度信号、車速センサ5から出力される車速信号、アイ
ドルスイッチ6からのON・OFF信号、空燃比検出手
段としての酸素センサ7 (排気中の酸素濃度によって
理論空燃比を含む広範囲の空燃比を検出できるセンサ)
からの空燃比検出信号、とが入力されている。
In FIG. 2, for example, a control device L consisting of a microcomputer receives an ignition signal (rotational speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and a water temperature sensor 4. A cooling water temperature signal, a vehicle speed signal output from the vehicle speed sensor 5, an ON/OFF signal from the idle switch 6, an oxygen sensor 7 as an air-fuel ratio detection means (a wide range of air-fuel ratios including the stoichiometric air-fuel ratio depending on the oxygen concentration in the exhaust gas) (sensor that can detect)
The air-fuel ratio detection signal from

制御装置lは、第3図〜第7図に示すフローチャートに
従って作動し、燃料噴射弁8に駆動回路9を介して駆動
パルス信号を出力するようにな;ている。
The control device 1 operates according to the flowcharts shown in FIGS. 3 to 7, and outputs a drive pulse signal to the fuel injection valve 8 via the drive circuit 9.

ここでは、制御装置1が負荷変化率演算手段と負荷変化
率判定手段とフィードフォワード補正係数設定手段とフ
ィードバック補正係数設定手段と第1及び第2選択手段
と燃料噴射量設定手段と空燃比補正手段とを構成する。
Here, the control device 1 includes a load change rate calculation means, a load change rate determination means, a feedforward correction coefficient setting means, a feedback correction coefficient setting means, first and second selection means, a fuel injection amount setting means, and an air-fuel ratio correction means. constitutes.

また、制御装置1と駆動回路9とにより、駆動手段が構
成される。また、機関1回転当りの吸入空気流量から演
算される基本噴射量の変化率を負荷変化率と使用するた
めエアフローメータ3が負荷検出手段を構成する。
Further, the control device 1 and the drive circuit 9 constitute a drive means. Furthermore, since the rate of change in the basic injection amount calculated from the flow rate of intake air per engine revolution is used as the rate of change in load, the air flow meter 3 constitutes a load detection means.

さらに、点火コイル2の点火信号により回転速度を検出
するため、点火コイル2が回転変動検出手段を構成する
Further, since the rotational speed is detected based on the ignition signal of the ignition coil 2, the ignition coil 2 constitutes rotational fluctuation detection means.

次に作用を第3図〜第7図のフローチャートに従って説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 7.

まず、燃料噴射量演算ルーチンを第3図に基づいて説明
すると、Slでは、点火信号、吸入空気流量信号等の各
種信号を読み込む。
First, the fuel injection amount calculation routine will be explained based on FIG. 3. At Sl, various signals such as an ignition signal and an intake air flow rate signal are read.

S2では、点火信号から得られた機関回転速度Nと吸入
空気流量Qとから基本噴射量’rp (=KN−には定
数)を演算する。
In S2, a basic injection amount 'rp (=KN- is a constant) is calculated from the engine rotational speed N obtained from the ignition signal and the intake air flow rate Q.

83〜S7では、希薄空燃比制御条件を判定する。In steps 83 to S7, lean air-fuel ratio control conditions are determined.

すなわち、S3では、演算された基本噴射量Tpが設定
値TplからT I) zまでの範囲に入っている否か
を判定し、YESのときには、S4に進みNOのときに
はS22に進む。
That is, in S3, it is determined whether or not the calculated basic injection amount Tp is within the range from the set value Tpl to T1)z. If YES, the process proceeds to S4; if NO, the process proceeds to S22.

S4では、機関回転速度Nが設定値N1からN2までの
範囲に入っているか否かを判定し、YESのときにはS
5に進み、NoのときにはS22に進む。
In S4, it is determined whether the engine rotational speed N is within the range from set value N1 to N2, and if YES, S4 is determined.
If the answer is No, the process advances to S22.

S5では、検出された冷却水温度Twが所定植(例えば
80℃)以上か否かを判定し、YESのときにはS6に
進み、NoのときにはS22に進む。
In S5, it is determined whether or not the detected cooling water temperature Tw is equal to or higher than a predetermined value (for example, 80° C.). If YES, the process proceeds to S6; if NO, the process proceeds to S22.

S6では、アイドルスイッチ6がON(吸気絞弁全閉時
)かOFFかを判定し、OFFのときには、S7に進み
ONのときにはS22に進む。
In S6, it is determined whether the idle switch 6 is ON (when the intake throttle valve is fully closed) or OFF, and if it is OFF, the process proceeds to S7, and if it is ON, the process proceeds to S22.

S7では、検出された車速が所定値(例えば8km /
 h )以上か否かを判定し、YESのときには、S8
に進みNOのときにはS22に進む。
In S7, the detected vehicle speed is set to a predetermined value (for example, 8 km/h).
h) Determine whether or not it is greater than or equal to
If the answer is NO, the process advances to S22.

このようにして希薄空燃比制御条件(第9図参照)と判
定されたときには、S8−において前回と今回演算され
た基本噴射量’rpO差Δ’rpを、演算する。
When the lean air-fuel ratio control condition (see FIG. 9) is thus determined, the basic injection amount 'rpO difference Δ'rp calculated last time and this time is calculated in S8-.

S9では、演算された差の絶対値lΔTplが所定値Δ
TpLを越えているか否かを判定し、YESのときには
S10に進みNOのときにはS15に進む。
In S9, the absolute value lΔTpl of the calculated difference is set to a predetermined value Δ
It is determined whether or not TpL has been exceeded. If YES, the process proceeds to S10; if NO, the process proceeds to S15.

310では、タイマのカウント値をリセットし新たにカ
ウントを開始させ、Sllに進む。
At 310, the count value of the timer is reset and a new count is started, and the process proceeds to Sll.

Sllでは、タイマのカウント値が希薄空燃比制御条件
と判定された時から第1設定時間’r+(例えば13.
cで第10図参照)を経過したか否かを判定し、YES
のときにはS12に進みNoのときには、S22に進む
In Sll, the first set time 'r+ (for example, 13.
(See Figure 10) in step c, and determine if YES has passed.
If so, the process advances to S12, and if No, the process advances to S22.

S12では、タイマのカウント値が希薄空燃比制御条件
と判定された時から、第2設定時間T8(例えば1.2
secで第10図参照)を経過したか否かを判定し、Y
ESのときにはS17に進みNoのときにはS13に進
む。
In S12, the second set time T8 (for example, 1.2
sec (see Figure 10) has elapsed, and Y
When the answer is ES, the process advances to S17, and when the answer is No, the process advances to S13.

S13では、三次元マツプからフィードフォワード補正
係数としてのリーンバーン補正係数LBCを機関回転速
度Nと基本噴射量’rpとに基づいて検索する。
In S13, a lean burn correction coefficient LBC as a feedforward correction coefficient is searched from the three-dimensional map based on the engine rotational speed N and the basic injection amount 'rp.

ここで、前記リーンバーン補正係数はロード走行時に空
燃比が最も希薄化され負荷の増大に伴って空燃比が理論
空燃比に近づくように三次元マツプに記憶されている。
Here, the lean burn correction coefficient is stored in a three-dimensional map so that the air-fuel ratio becomes the leanest during road running, and as the load increases, the air-fuel ratio approaches the stoichiometric air-fuel ratio.

一方、S15では、タイマのカウント値に+1を加算し
て新たなカウント値を得て、S16に進む。
On the other hand, in S15, +1 is added to the count value of the timer to obtain a new count value, and the process proceeds to S16.

S16では、タイマのカウント値が前記第1設定時間T
、を経過したか否かを判定し、YESのときにはS17
に進み、Noのときには322に進む。
In S16, the count value of the timer is equal to the first set time T.
, it is determined whether or not the period has elapsed, and if YES, the process proceeds to S17.
If the answer is No, the process proceeds to 322.

S17では、酸素センサ7の検出信号を読み込んで、S
18では酸素センサ7の検出信号に基づいて空燃比マツ
プから実際の空燃比を検索してS19に進む。
In S17, the detection signal of the oxygen sensor 7 is read and S17 is performed.
At step 18, the actual air-fuel ratio is searched from the air-fuel ratio map based on the detection signal of the oxygen sensor 7, and the process proceeds to step S19.

319では、検索された空燃比すなわち実際の空燃比と
目標希薄空燃比とを比較し、実際の空燃比がリッチのと
きにはS20に進みリーンのときにはS21に進む。
In step 319, the searched air-fuel ratio, that is, the actual air-fuel ratio, is compared with the target lean air-fuel ratio, and if the actual air-fuel ratio is rich, the process advances to S20, and if it is lean, the process advances to S21.

S20では、前回設定されたフィードバック補正係数と
してのリーンバーン補正係数LBCから所定値ΔLを減
算して実際の空燃比が目標希薄空燃比に近づくように新
たなリーンバーン補正係数LBCを設定する。
In S20, a predetermined value ΔL is subtracted from the previously set lean burn correction coefficient LBC as the feedback correction coefficient to set a new lean burn correction coefficient LBC so that the actual air-fuel ratio approaches the target lean air-fuel ratio.

一方、S21では前回設定されたリーンバーン補正係数
LBCに所定値ΔLを加算して、実際の空燃比が目標希
薄空燃比に近づくように新たなり一ンバーン補正係数L
BCを設定する。尚、実際の空燃比が目標希薄空燃比の
ときには前回のリーンバーン補正係数LBCを使用する
On the other hand, in S21, a predetermined value ΔL is added to the previously set lean burn correction coefficient LBC, and a new lean burn correction coefficient L is added so that the actual air-fuel ratio approaches the target lean air-fuel ratio.
Set BC. Note that when the actual air-fuel ratio is the target lean air-fuel ratio, the previous lean burn correction coefficient LBC is used.

そして、S14では、S13で検索されたリーンバーン
補正係数LBCまたはS20若しくはS21にて設定さ
れたリーンバーン補正係数LBCに基づいて燃料噴射量
Tiを次式により演算する。
Then, in S14, the fuel injection amount Ti is calculated by the following equation based on the lean burn correction coefficient LBC retrieved in S13 or the lean burn correction coefficient LBC set in S20 or S21.

Ti=TpxLBCXCOEFXKBLRC+Ts COEFは水温等を含む各種補正係数、Tsはバッテリ
電圧による補正係数KBLRCは理論空燃比制御時に燃
料噴射弁8の経時変化等を補正するために設定された学
習補正係数である。
Ti = Tpx LBC

一方、希薄空燃比制御条件と判定されず或いは判定され
ても第1設定時間T、の間はS22において実際の空燃
比が略理論空燃比になるように燃料噴射量Tiを次式に
より演算する。
On the other hand, during the first set time T, even if the lean air-fuel ratio control condition is not determined or determined, the fuel injection amount Ti is calculated by the following equation in S22 so that the actual air-fuel ratio becomes approximately the stoichiometric air-fuel ratio. .

Ti−TpXαXC0EFXKBLRC+Tsαは従来
例と同様に実際の空燃比が理論空燃比になるように設定
された空燃比フィードバック補正係数である。
Ti-TpXαXC0EFXKBLRC+Tsα is an air-fuel ratio feedback correction coefficient set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, as in the conventional example.

このようにして、S14若しくはS22にて演算された
燃料噴射量Tiは第4図に示すフローチャートに従って
例えば点火コイル2からのリファレンス信号(回転数)
に同期して駆動回路9を介して燃料噴射弁8に出力し燃
料噴射を行う。
In this way, the fuel injection amount Ti calculated in S14 or S22 is determined by the reference signal (rotational speed) from the ignition coil 2, for example, according to the flowchart shown in FIG.
In synchronization with this, the signal is output to the fuel injection valve 8 via the drive circuit 9 to perform fuel injection.

また、前記目標希薄空燃比は第5図のフローチャートに
従って設定される。すなわち、S41では、空燃比マツ
プから機関回転速度Nと基本噴射量Tpとに基づいて目
標希薄空燃比を検索し、S42では検索された目標希薄
空燃比をRAM等に記憶させ、その値を第3図のフロー
チャートにおいて使用する。
Further, the target lean air-fuel ratio is set according to the flowchart shown in FIG. That is, in S41, a target lean air-fuel ratio is searched from the air-fuel ratio map based on the engine rotational speed N and the basic injection amount Tp, and in S42, the searched target lean air-fuel ratio is stored in a RAM or the like, and the value is stored in the RAM or the like. It is used in the flowchart in Figure 3.

次にサージ判定ルーチンを第6図のフローチャートに基
づいて説明する。
Next, the surge determination routine will be explained based on the flowchart of FIG.

かかるルーチンは100m5ec毎に起動信号が入力さ
れて起動する。
This routine is started every 100 m5ec by inputting a start signal.

S51では、点火信号からの回転速度信号、車速信号を
読み込む。
In S51, the rotational speed signal and vehicle speed signal from the ignition signal are read.

S52では、回数メモリ(RAM)に記憶されたサンプ
リング回数nに+1を加算して新たなサンプリング回数
nとして、回数メモリに記憶させる。
In S52, +1 is added to the number of sampling times n stored in the number of times memory (RAM), and the result is stored in the number of times memory as a new number of sampling times n.

353では、前記サンプリング回数が11回になったか
否かを判定し、YESの時にはS54に進み回転速度メ
モリ (RAM)に記憶された回転速度を全て初期値(
例えば0)にする一方、NOのときには回転速度メモリ
を初期化することなく、S55に進む。
In step 353, it is determined whether or not the number of sampling times has reached 11. If YES, the process advances to step S54, where all the rotational speeds stored in the rotational speed memory (RAM) are set to the initial value (
For example, if the answer is NO, the process proceeds to S55 without initializing the rotation speed memory.

55では、検出された回転速度を新たに設定されたサン
プリング回数に対応する回転速度メモリのアドレスに記
憶させる。ここで、回転速度メモリには、100m5e
c毎に検出された回転速度がサンプリング回数(100
sec毎)に対応するアドレスに10種類すなわち1 
sec間のデータが第8図に示すように記憶可能になっ
ている。
In step 55, the detected rotational speed is stored in the address of the rotational speed memory corresponding to the newly set sampling number. Here, the rotation speed memory contains 100m5e.
The rotation speed detected every c is the sampling number (100
10 types, that is, 1 for the address corresponding to
Data for sec can be stored as shown in FIG.

S56では、サンプリング回数n−1に記憶された回転
速度N、と今回検出された回転速度Nnとからサンプリ
ング期間における回転速度の変化量ΔN (−N、−N
Oを演算する。ここで、サンプリング期間Δtは10抛
see、 200sec、 300sec、 500m
5ec及び1 secに設定されている。したがって、
サンプリング開始初期は、100m5ecのサンプリン
グ期間において回転速度の変化量ΔNが演算される。
In S56, the amount of change in rotational speed during the sampling period ΔN (-N, -N
Calculate O. Here, the sampling period Δt is 10 sec, 200 sec, 300 sec, 500 m
It is set to 5ec and 1 sec. therefore,
At the beginning of sampling, the amount of change ΔN in the rotational speed is calculated during a sampling period of 100 m5ec.

S57では、検出された車速vspから単位時間当算す
る。
In S57, the unit time is calculated from the detected vehicle speed vsp.

35Bでは演算された車速変化率Δvspから現在の運
転状態を判定し、加速運転判定時には359に進み減速
運転判定時にはS60に進む、さらに、定常運転判定時
には回転変動の判定を行うことなくS61に進む。
In 35B, the current driving state is determined from the calculated vehicle speed change rate Δvsp, and when acceleration driving is determined, the process proceeds to 359, and when deceleration driving is determined, the process proceeds to S60.Furthermore, when steady driving is determined, the process proceeds to S61 without determining rotation fluctuation. .

359では、S56にて演算された変化量ΔNとm個す
−ジ許容範囲一ΔNcとを比較し、−ΔNc〉ΔNのと
きには変化量ΔNが一側に大きく変動していると判定し
362に進み、−ΔNc≦ΔNのときには回転変動が小
さいと判定しS61に進む。
At step 359, the amount of change ΔN calculated at S56 is compared with the m-tolerance range -ΔNc, and when -ΔNc>ΔN, it is determined that the amount of change ΔN is greatly fluctuating to one side, and step 362 When -ΔNc≦ΔN, it is determined that the rotational fluctuation is small and the process advances to S61.

このようにして、加速運転時には変化量ΔNが一側に大
きく変動しているときにサージ発生と判定する。
In this way, during acceleration operation, it is determined that a surge has occurred when the amount of change ΔN is significantly fluctuating to one side.

一方、S60では前記変化量ΔNと+側す−ジ許容範囲
ΔNcとを比較し、ΔNC<ΔNのときには変化量ΔN
が+側に大きく変動していると判定しS62に進み、Δ
Nc≧ΔNのときには回転変動が小さいと判定しS61
に進む。
On the other hand, in S60, the amount of change ΔN is compared with the + side tolerance range ΔNc, and when ΔNC<ΔN, the amount of change ΔN
It is determined that Δ has changed significantly to the + side, and the process proceeds to S62, where
When Nc≧ΔN, it is determined that the rotational fluctuation is small and S61
Proceed to.

このようにして、減速運転時には変化量ΔNが+側に大
きく変動しているときにサージ発生と判定する。
In this way, during deceleration operation, it is determined that a surge has occurred when the amount of change ΔN is significantly fluctuating on the positive side.

S61では、サージ発生がない状態をフラッグ−〇とし
てRAM等に記憶させる一方、S62ではサージ発生が
あった状態をフラッグ=1としてRAM等に記憶させる
In S61, a state in which no surge has occurred is stored as a flag -0 in a RAM, etc., while in S62, a state in which a surge has occurred is stored in a RAM, etc. as a flag =1.

かかるサージ判定ルーチンにより100m5ec、 2
00+5sec、 300m5ec、 500m5ec
及び1 secのサンプリング期間においてサージ判定
を行う。
With this surge judgment routine, 100m5ec, 2
00+5sec, 300m5ec, 500m5ec
Then, a surge determination is performed during a sampling period of 1 sec.

次に、空燃比補正ルーチンを第7図のフローチャートに
基づいて説明する。このルーチンは10m5ec毎に動
作する。
Next, the air-fuel ratio correction routine will be explained based on the flowchart of FIG. This routine runs every 10m5ec.

S71では、車速信号、空燃比検出信号等の各種信号を
読み込む。
In S71, various signals such as a vehicle speed signal and an air-fuel ratio detection signal are read.

S72では、検出された車速から単位時間当りの車速変
化率Δvspを演算する。
In S72, a vehicle speed change rate Δvsp per unit time is calculated from the detected vehicle speed.

S73では、演算された車速変化率ΔVSFから定常運
転か否かを判定し、YESのときにはS74に進みNO
のときにはS76に進む。
In S73, it is determined whether or not the vehicle is in steady operation based on the calculated vehicle speed change rate ΔVSF, and if YES, the process advances to S74 and NO.
If so, the process advances to S76.

S74では、RAM等に記憶されているフラッグが1か
0かを判定し、フラッグ=1のときにはS75に進みフ
ラング=Oのときに376に進む。
In S74, it is determined whether the flag stored in the RAM or the like is 1 or 0. If the flag is 1, the process proceeds to S75, and if the flag is O, the process proceeds to 376.

S75では、検出された実際の空燃比A/FからΔA/
Fを減算して検出された空燃比を実際よりもΔA/Fだ
け希薄であると補正し、この補正された空燃比を第3図
のS18にて使用する。
In S75, ΔA/F is calculated from the detected actual air-fuel ratio A/F.
The air-fuel ratio detected by subtracting F is corrected to be leaner by ΔA/F than the actual one, and this corrected air-fuel ratio is used in S18 of FIG. 3.

S76では、検出された実際の空燃比A/Fを補正する
ことなく設定し、この値を第3図の318にて使用する
At S76, the detected actual air-fuel ratio A/F is set without correction, and this value is used at 318 in FIG.

このようにすると、サージ発生時には検出された空燃比
A/FがΔA/Fだけ実際よりも希薄側になるため、S
20及びS21にて設定されるフィードバック制御時の
リーンバーン補正係数LBCは前記ΔA/Fに対応する
分だけ目標希薄空燃比に対し濃側になるように補正され
る。これにより、酸素センサ7或いは燃料噴射弁8の経
時変化により実際の空燃比が第11図中のサージ発生ゾ
ーン内の0点に移行しても前記空燃比補正により実際の
空燃比がサージ発生時に比べて濃側になるように制御さ
れるため、第11図に示すようにサージ発生ゾーン内の
0点からサージ非発生ゾーン内のD点に空燃比が移行し
、サージ発生を防止できる。
By doing this, when a surge occurs, the detected air-fuel ratio A/F will be leaner than the actual one by ΔA/F, so S
The lean burn correction coefficient LBC during feedback control set in steps 20 and S21 is corrected so as to be on the rich side with respect to the target lean air-fuel ratio by an amount corresponding to ΔA/F. As a result, even if the actual air-fuel ratio shifts to 0 point within the surge generation zone in FIG. Since the air-fuel ratio is controlled to be on the rich side compared to that in FIG. 11, the air-fuel ratio shifts from point 0 in the surge generation zone to point D in the surge non-occurrence zone, and surge generation can be prevented.

また、第10図に示すように希薄空燃比制御条件と判定
された時から第1設定時間T、を経過するまでは差の絶
対値1ΔTplの大小に拘わらず判定直前と同様に実際
の空燃比が例えば理論空燃比になるようにフィードバッ
ク制御される。これにより、第9図に示すように希薄空
燃比制御領域外のA点からB点までの加速運転時に、希
薄空燃比制御領域を一時的に通過し希薄空燃比制御条件
が判定されても、前記第1設定時間T、の間希薄空燃比
制御がなされないため、実際の空燃比の希薄化を防止で
き加速性能を良好に維持できる。
In addition, as shown in FIG. 10, from the time when the lean air-fuel ratio control condition is determined until the first set time T has elapsed, the actual air-fuel ratio remains the same as immediately before the determination, regardless of the magnitude of the absolute value of the difference 1ΔTpl. is feedback-controlled so that it becomes, for example, the stoichiometric air-fuel ratio. As a result, even if the lean air-fuel ratio control condition is determined by temporarily passing through the lean air-fuel ratio control area during acceleration operation from point A to point B outside the lean air-fuel ratio control area as shown in FIG. Since lean air-fuel ratio control is not performed during the first set time T, it is possible to prevent the actual air-fuel ratio from becoming leaner and maintain good acceleration performance.

また、第1設定時間T1経過後においては前記差の絶対
値1ΔTplが所定値ΔTpLを超えているときには第
2設定時間T8が経過するまでは、三次元マツプにより
検索されたリーンバーン補正係数LBCに基づいて燃料
噴射量Tiが演算されるため、第10図に示すように、
第1設定時間T1経過後第2設定時間Tt経過するまで
は実際の空燃比が理論空燃比より希薄化された一定の希
薄空燃比に維持される。これにより、加速運転直後に希
薄空燃比制御がなされるときには、第1設定時間TI経
過後に実際の空燃比が理論空燃比から希薄空燃比に急激
に低下するので、希薄空燃比制御への移行時に排気中の
NOx排出量を低減しつつ希薄空燃比制御により燃費の
向上を図ることができる。
Further, if the absolute value 1ΔTpl of the difference exceeds the predetermined value ΔTpL after the first set time T1 has elapsed, the lean burn correction coefficient LBC searched by the three-dimensional map will not be used until the second set time T8 has elapsed. Since the fuel injection amount Ti is calculated based on the following, as shown in FIG.
The actual air-fuel ratio is maintained at a constant lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio until the second set time Tt has elapsed after the first set time T1 has elapsed. As a result, when lean air-fuel ratio control is performed immediately after acceleration driving, the actual air-fuel ratio rapidly decreases from the stoichiometric air-fuel ratio to the lean air-fuel ratio after the first set time TI has elapsed, so when transitioning to lean air-fuel ratio control, It is possible to improve fuel efficiency by controlling the lean air-fuel ratio while reducing the amount of NOx emissions in the exhaust gas.

一方、差の絶対値1ΔTplが所定値以下すなわち超緩
加速運転成いは定常運転から希薄空燃比制御に移行する
ときには、前記第1設定時間T。
On the other hand, when the absolute value 1ΔTpl of the difference is less than or equal to the predetermined value, that is, when transition is made from ultra-slow acceleration operation or steady operation to lean air-fuel ratio control, the first set time T.

経過後に酸素センサ7により検出された実際の空燃比が
目標希薄空燃比になるようにフィードバック制御するよ
うにしたので、第10図中破線で示すように、フィード
バック制御初期に実際の空燃比は、目標希薄空燃比に経
時と共に徐々に近づいた後、目標希薄空燃比付近におい
てフィードバック制御される。これにより、希薄空燃比
制御への移行時に機関出力が経時と共に徐々に低下する
ので、運転フィーリングの悪化を抑制できる。
Since the feedback control is performed so that the actual air-fuel ratio detected by the oxygen sensor 7 after the elapse of time becomes the target lean air-fuel ratio, the actual air-fuel ratio at the beginning of the feedback control is as shown by the broken line in FIG. After gradually approaching the target lean air-fuel ratio over time, feedback control is performed near the target lean air-fuel ratio. Thereby, since the engine output gradually decreases over time when shifting to lean air-fuel ratio control, it is possible to suppress deterioration of driving feeling.

尚、本実施例では、基本噴射量の単位時間当りの変化率
すなわち前回と今回との差の絶対値1ΔTplから希薄
空燃比制御開始直前の機関運転状態を判定するようにし
たが、吸入負圧、スロットル弁開度、トルク、スロット
ル弁の開口面積等の変化率から判定するようにしてもよ
い。
In this embodiment, the engine operating state immediately before the start of lean air-fuel ratio control is determined from the rate of change of the basic injection amount per unit time, that is, the absolute value 1ΔTpl of the difference between the previous and current times. The determination may be made from the rate of change of the throttle valve opening, torque, opening area of the throttle valve, etc.

また、本実施例では、サージが発生したときに希薄空燃
比制御中のフィードバック制御時に実際の空燃比が濃側
になるように補正するようにしたが、マツプにより設定
されたリーンバーン補正係数LBCにてフィードフォワ
ード制御するときにも実際の空燃比が濃側になるように
前記リーンバーン補正係数LBCを補正してもよい。さ
らに、サージ発生時には目標希薄空燃比を所定flt?
a側になるように補正してもよい。
In addition, in this embodiment, when a surge occurs, the actual air-fuel ratio is corrected to be on the rich side during feedback control during lean air-fuel ratio control, but the lean burn correction coefficient LBC set by the map The lean burn correction coefficient LBC may also be corrected so that the actual air-fuel ratio becomes rich when performing feedforward control. Furthermore, when a surge occurs, the target lean air-fuel ratio is set to a predetermined value flt?
It may be corrected to be on the a side.

〈発明の効果〉 本発明は、以上説明したように、負荷変化率が所定値以
上のときに希薄空燃比制御をフィードフォワード制御に
より急激に希薄化空燃比に近づけた後フィードバック制
御により行う一方、負荷変化率が所定値未満のときにフ
ィードバック制御により希薄空燃比制御を行うようにし
たので、例えば加速運転直後からの希薄空燃比制御時に
はN。
<Effects of the Invention> As explained above, the present invention performs lean air-fuel ratio control by rapidly approaching the lean air-fuel ratio by feedforward control and then by feedback control when the load change rate is equal to or higher than a predetermined value. Since lean air-fuel ratio control is performed by feedback control when the load change rate is less than a predetermined value, for example, when performing lean air-fuel ratio control immediately after acceleration operation, N.

X排出量の低減化を図りつつ、燃費の向上を図れる一方
、例えば定常運転時の希薄空燃比制御時には、空燃比を
徐々に希薄空燃比に近づけることにより機関出力を徐々
に低下させるため、運転フィーリングの向上を図れる。
While reducing X emissions and improving fuel efficiency, for example, during lean air-fuel ratio control during steady operation, engine output is gradually reduced by gradually bringing the air-fuel ratio closer to the lean air-fuel ratio. You can improve your feeling.

また、回転変動が所定値以上のときに空燃比が濃側にな
るように補正するようにしたので、酸素センサ或いは燃
料噴射弁の経時変化により実際の空燃比が目標希薄空燃
比から希薄側にずれて回転変動が生じても、この回転変
動を防止できる。
In addition, since the air-fuel ratio is corrected so that it becomes rich when the rotational fluctuation is greater than a predetermined value, the actual air-fuel ratio may shift from the target lean air-fuel ratio to the lean side due to changes in the oxygen sensor or fuel injection valve over time. Even if rotational fluctuation occurs due to deviation, this rotational fluctuation can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第7図は同上のフローチ
ャート、第8図〜第11図は同上の作用を説明するため
の図である。 1・・・制御装置  2・・・点火コイル  3・・・
エアフローメータ  4・・・水温センサ  5・・・
車速センサ  6・・・アイドルスイッチ  7・・・
酸素センサ  8・・・燃料噴射弁  9・・・駆動回
路特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第3図その2 第4図 第5図 第7図 第8図 第9図 大 頑ダ官戯
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Figs. 3 to 7 are flowcharts of the same, and Figs. It is a figure for explaining. 1... Control device 2... Ignition coil 3...
Air flow meter 4...Water temperature sensor 5...
Vehicle speed sensor 6... Idle switch 7...
Oxygen sensor 8...Fuel injection valve 9...Drive circuit Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 3, Part 2 Figure 4, Figure 5, Figure 7, Figure 8 Figure 9 Big Gunda Kangi

Claims (1)

【特許請求の範囲】[Claims] 所定の運転領域で所定の希薄空燃比制御条件が検出され
たときに実際の空燃比が理論空燃比より希薄化されるよ
うに希薄空燃比制御を行う内燃機関の電子制御燃料噴射
装置において、機関の実際の空燃比を検出する空燃比検
出手段と、理論空燃比より希薄な目標希薄空燃比を設定
する目標希薄空燃比設定手段と、機関の負荷を検出する
負荷検出手段と、検出された負荷に基づいて負荷変化率
を演算する負荷変化率演算手段と、演算さた負荷変化率
が所定値以上か否かを判定する負荷変化率判定手段と、
前記設定された希薄空燃比となるようにフィードフォワ
ード補正係数を設定するフィードフォワード補正係数設
定手段と、検出された実際の空燃比に基づいて実際の空
燃比が目標希薄空燃比になるようにフィードバック補正
係数を設定するフィードバック補正係数設定手段と、負
荷変化率が所定値以上と判定されたときに希薄空燃比制
御初期の所定時間の間は前記フィードフォワード補正係
数を選択しその後フィードバック補正係数を選択する第
1選択手段と、負荷変化率が所定値未満と判定されたと
きに希薄空燃比制御開始時から前記フィードバック補正
係数を選択する第2選択手段と、第1若しくは第2選択
手段により選択された補正係数に基づいて燃料噴射量を
設定する燃料噴射量設定手段と、設定された燃料噴射量
に応じて燃料噴射弁を駆動する駆動手段と、機関の回転
変動を検出する回転変動検出手段と、検出された回転変
動が所定値以上のときに、実際の空燃比が前記設定され
た目標希薄空燃比に対し所定値だけ濃化するように、前
記フィードフォワード補正係数とフィードバック補正係
数との少なくとも一方若しくは前記設定された目標希薄
空燃比を補正する空燃比補正手段と、を備えたことを特
徴とする内燃機関の電子制御燃料噴射装置。
In an electronically controlled fuel injection system for an internal combustion engine that performs lean air-fuel ratio control such that when a predetermined lean air-fuel ratio control condition is detected in a predetermined operating region, the actual air-fuel ratio is leaner than the stoichiometric air-fuel ratio. air-fuel ratio detection means for detecting an actual air-fuel ratio of the engine; target lean air-fuel ratio setting means for setting a target lean air-fuel ratio leaner than the stoichiometric air-fuel ratio; load detection means for detecting engine load; load change rate calculation means for calculating the load change rate based on the load change rate; load change rate determination means for determining whether the calculated load change rate is equal to or greater than a predetermined value;
Feedforward correction coefficient setting means for setting a feedforward correction coefficient so that the set lean air-fuel ratio is achieved; and feedback so that the actual air-fuel ratio becomes the target lean air-fuel ratio based on the detected actual air-fuel ratio. Feedback correction coefficient setting means for setting a correction coefficient; and when it is determined that the load change rate is equal to or higher than a predetermined value, the feedforward correction coefficient is selected for a predetermined time at the beginning of the lean air-fuel ratio control, and then the feedback correction coefficient is selected. a first selection means for selecting the feedback correction coefficient from the start of lean air-fuel ratio control when the load change rate is determined to be less than a predetermined value; a fuel injection amount setting means for setting the fuel injection amount based on the set correction coefficient; a driving means for driving the fuel injection valve according to the set fuel injection amount; and a rotation fluctuation detection means for detecting engine rotation fluctuation. , at least the feedforward correction coefficient and the feedback correction coefficient so that when the detected rotational fluctuation is equal to or greater than a predetermined value, the actual air-fuel ratio is enriched by a predetermined value with respect to the set target lean air-fuel ratio. An electronically controlled fuel injection device for an internal combustion engine, comprising an air-fuel ratio correcting means for correcting one or the set target lean air-fuel ratio.
JP28601686A 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine Pending JPS63140838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28601686A JPS63140838A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28601686A JPS63140838A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63140838A true JPS63140838A (en) 1988-06-13

Family

ID=17698891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28601686A Pending JPS63140838A (en) 1986-12-02 1986-12-02 Electronic control fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63140838A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813131A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS58124040A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS60125739A (en) * 1983-12-09 1985-07-05 Nippon Soken Inc Air-fuel ratio controlling apparatus for internal- combustion engine
JPS60212653A (en) * 1984-04-06 1985-10-24 Nissan Motor Co Ltd Fuel supply controlling apparatus for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813131A (en) * 1981-07-15 1983-01-25 Nippon Denso Co Ltd Air-fuel ratio control method
JPS58124040A (en) * 1982-01-20 1983-07-23 Toyota Motor Corp Air-fuel ratio control method for internal-combustion engine
JPS60125739A (en) * 1983-12-09 1985-07-05 Nippon Soken Inc Air-fuel ratio controlling apparatus for internal- combustion engine
JPS60212653A (en) * 1984-04-06 1985-10-24 Nissan Motor Co Ltd Fuel supply controlling apparatus for engine

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS6165038A (en) Air-fuel ratio control system
US5052177A (en) Air-fuel ratio feedback control system having single air-fuel ratio sensor downstream of or within three-way catalyst converter
US4662339A (en) Air-fuel ratio control for internal combustion engine
JPS63140838A (en) Electronic control fuel injection device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2521039B2 (en) Engine air-fuel ratio control device
JPS63140839A (en) Electronic control fuel injection device for internal combustion engine
JPH08177576A (en) Air-fuel ratio control device for engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP3230401B2 (en) Engine air-fuel ratio control device
JP2672494B2 (en) Air-fuel ratio control method for internal combustion engine
JPS63140840A (en) Electronic control fuel injection device for internal combustion engine
JPS63186937A (en) Electronically controlled fuel injection device for internal combustion engine
JPS62271945A (en) Electronic control type fuel injection device for internal combustion engine
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0545803Y2 (en)
JP3564923B2 (en) Engine air-fuel ratio control device
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
JP3397086B2 (en) Engine combustion fluctuation control device
JP2924577B2 (en) Engine stability control device
JPS63176636A (en) Electronic control type fuel injector for internal combustion engine
JPS6394047A (en) Deceleration fuel decrement controller for electronic control fuel injection internal combustion engine