JPS63176636A - Electronic control type fuel injector for internal combustion engine - Google Patents

Electronic control type fuel injector for internal combustion engine

Info

Publication number
JPS63176636A
JPS63176636A JP815287A JP815287A JPS63176636A JP S63176636 A JPS63176636 A JP S63176636A JP 815287 A JP815287 A JP 815287A JP 815287 A JP815287 A JP 815287A JP S63176636 A JPS63176636 A JP S63176636A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
lean
lean air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP815287A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP815287A priority Critical patent/JPS63176636A/en
Publication of JPS63176636A publication Critical patent/JPS63176636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To suppress surge by concentrating the air fuel ratio when the variation of revolution over a prescribed value is detected in the lean air fuel ratio operation. CONSTITUTION:In the ordinary operation state, the fundamental injection quantity signal supplied from a fundamental injection quantity setting means A is corrected through an air fuel ratio correcting means D by using the correction coefficient of a feed/forward correction coefficient setting means B so that a lean air fuel ratio is obtained. When the revolution variation quantity detected by a revolution variation detecting means C exceeds a prescribed value, the air fuel ratio is corrected by the air fuel ratio correcting means D so that the air fuel ratio becomes larger than an aimed lean air fuel ratio. Therefore, the surge in the lean air fuel ratio operation can be suppressed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置の従来例として以下の
ようなものがある(実願昭60−066558号参照)
<Prior art> The following is a conventional example of an electronically controlled fuel injection device for an internal combustion engine (see Utility Application No. 60-066558).
.

すなわち、エアフローメータ等により検出された吸入空
気流量Qと機関回転速度Nとから基本噴射量Tp=Kx
Q/N (Kは定数)を演算すると共に、主として水温
に応じた各種補正係数C0EFと実際の空燃比が理論空
燃比になるように設定された空燃比フィードバック補正
係数αとバッテリ電圧による補正係数Tsとを演算した
後、定常運転時における燃料噴射1tTi=TpXcO
EF×α+Tsを演算する。
That is, from the intake air flow rate Q detected by an air flow meter etc. and the engine rotation speed N, the basic injection amount Tp=Kx
In addition to calculating Q/N (K is a constant), various correction coefficients C0EF mainly depending on the water temperature, an air-fuel ratio feedback correction coefficient α set so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio, and a correction coefficient based on the battery voltage are calculated. After calculating Ts, fuel injection during steady operation 1tTi=TpXcO
Calculate EF×α+Ts.

そして、例えばシングルポイントインジェクションシス
テム(以下SPI方式)では、機関の2回転毎に点火信
号等に同期して燃料噴射弁に対し前記燃料噴射量Tiに
対応するパルス中の噴射パルス信号を出力し機関に燃料
を供給する。
For example, in a single point injection system (hereinafter referred to as SPI system), an injection pulse signal among pulses corresponding to the fuel injection amount Ti is outputted to the fuel injection valve in synchronization with an ignition signal etc. every two revolutions of the engine. to provide fuel.

ところで、近年燃費の向上や排気の浄化等を目的として
、機関の低速低負荷運転領域において、実際の空燃比が
理論空燃比よりも薄くなるように空燃比制御するように
したものがある。
Incidentally, in recent years, for the purpose of improving fuel efficiency and purifying exhaust gas, some engines have been designed to control the air-fuel ratio so that the actual air-fuel ratio becomes thinner than the stoichiometric air-fuel ratio in the low-speed, low-load operating region of the engine.

即ち、高出力を必要とせず希薄燃焼させても良い所定の
低速低負荷運転領域であることが判定されると、実際の
空燃比が略理論空燃比となるように設定される燃料噴射
量(以下、理論空燃比制御と呼ぶ)を、目標空燃比を切
り換えて実際の空燃比が所定の希薄空燃比となるように
減量設定して燃料噴射制御(以下、希薄空燃比制御と呼
ぶ)するものであり、これにより燃料消費量を少なくす
ると共に、排気中の有害成分を低減しようとするもので
ある。
In other words, when it is determined that the operation is in a predetermined low-speed, low-load operating region that does not require high output and may allow lean combustion, the fuel injection amount ( A system that controls fuel injection by switching the target air-fuel ratio (hereinafter referred to as stoichiometric air-fuel ratio control) and setting a reduction so that the actual air-fuel ratio becomes a predetermined lean air-fuel ratio (hereinafter referred to as lean air-fuel ratio control). This aims to reduce fuel consumption and reduce harmful components in exhaust gas.

〈発明が解決しようとする問題点〉 ところで、排気中の酸素濃度すなわち実際の空燃比を検
出する酸素センサとして、理論空燃比付近の値を主とし
て検出するものを使用しているときには、理論空燃比制
御時には酸素センサの検出値に基づいて、実際の空燃比
を理論空燃比に近づけるフィードバック制御を行うこと
ができる。しかし、希薄空燃比制御時には前記酸素セン
サの検出値を使用できないので、フィードバンク制御を
行うことができない。
<Problems to be Solved by the Invention> By the way, when an oxygen sensor that mainly detects a value near the stoichiometric air-fuel ratio is used as an oxygen sensor for detecting the oxygen concentration in exhaust gas, that is, the actual air-fuel ratio, During control, feedback control can be performed to bring the actual air-fuel ratio closer to the stoichiometric air-fuel ratio based on the detected value of the oxygen sensor. However, since the detected value of the oxygen sensor cannot be used during lean air-fuel ratio control, feedbank control cannot be performed.

このため、従来においては希薄空燃比制御時には、予め
設定された目標希薄空燃比になるようにフィードフォワ
ード制御により燃料噴射量を制御するようにしている。
For this reason, conventionally, during lean air-fuel ratio control, the fuel injection amount is controlled by feedforward control so as to reach a preset target lean air-fuel ratio.

ところで、燃料噴射弁の低噴射量領域では、噴射パルス
中と噴射量との直線性が悪く燃料噴射量を高精度に制御
できない。
By the way, in the low injection amount region of the fuel injection valve, the linearity between the injection pulse and the injection amount is poor, and the fuel injection amount cannot be controlled with high precision.

これにより、希薄空燃比制御をフィードフォワード制御
により行うと、目標希薄空燃比への制御精度が悪く、実
際の空燃比が目標希薄空燃比より過度に希薄化されたと
きには、サージ(回転変動)が増大し、運転性の悪化を
招くという不具合がある。
As a result, when lean air-fuel ratio control is performed by feedforward control, control accuracy to the target lean air-fuel ratio is poor, and when the actual air-fuel ratio becomes excessively leaner than the target lean air-fuel ratio, surges (rotational fluctuations) occur. There is a problem in that this increases the amount of fuel and causes deterioration in drivability.

本発明は、このような実状に鑑みてなされたもので、希
薄空燃比制御を可能にしつつサージを抑制できる内燃機
関の電子制御燃料噴射装置を提供することを目的とする
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronically controlled fuel injection device for an internal combustion engine that can suppress surge while enabling lean air-fuel ratio control.

く問題点を解決するための手段〉 このため、本発明は第1図に示すように、機関運転状態
に応じて基本噴射量を設定する基本噴射量設定手段Aと
、実際の空燃比が理論空燃比より希薄な目標希薄空燃比
になるようにフィードフォワード補正係数を設定するフ
ィードフォワード補正係数設定手段Bと、希薄空燃比制
御中の機関の回転変動を検出する回転変動検出手段Cと
、検出された回転変動が所定値以上のときに、前記設定
されたフィードフォワード補正係数を、理論空燃比より
希薄な希薄空燃比領域にて実際の空燃比が前記目標希薄
空燃比に対し濃化するように、補正する空燃比補正手段
りと、補正若しくは前記設定されたフィードフォワード
補正係数と前記基本噴射量とに基づいて燃料噴射量を設
定する燃料噴射量設定手段Eと、設定された燃料噴射量
に基づいて燃料噴射弁Fを駆動する駆動手段Gと、を備
えるようにした。
Means for Solving Problems> For this reason, the present invention, as shown in FIG. Feedforward correction coefficient setting means B for setting a feedforward correction coefficient so as to obtain a target lean air-fuel ratio that is leaner than the air-fuel ratio; and rotational fluctuation detection means C for detecting rotational fluctuations of the engine during lean air-fuel ratio control. When the rotational fluctuation is greater than a predetermined value, the set feedforward correction coefficient is adjusted so that the actual air-fuel ratio is enriched relative to the target lean air-fuel ratio in a lean air-fuel ratio region leaner than the stoichiometric air-fuel ratio. an air-fuel ratio correction means for correcting, a fuel injection amount setting means E for setting a fuel injection amount based on the feedforward correction coefficient corrected or set above and the basic injection amount, and a set fuel injection amount. and a driving means G for driving the fuel injection valve F based on the fuel injection valve F.

く作用〉 このようにして、所定値以上の回転変動が発生したとき
に理論空燃比より希薄な希薄空燃比領域にてフィードフ
ォワード制御により実際の空燃比を濃化し、もって回転
変動を抑制するようにした。
In this way, when rotational fluctuations exceeding a predetermined value occur, the actual air-fuel ratio is enriched by feedforward control in a lean air-fuel ratio region that is leaner than the stoichiometric air-fuel ratio, thereby suppressing rotational fluctuations. I made it.

〈実施例〉 以下に、本発明の一実施例を第2図〜第7図に基づいて
説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 7.

第2図において、例えばマイクロコンピュータからなる
制御袋W1には、点火コイル2から出力される点火信号
(回転速度信号)、エアフローメータ3から出力される
吸入空気流量信号、水温センサ4から出力される冷却水
温度信号、車速センサ5から出力される車速信号、アイ
ドルスイッチ6からのON・OFF信号、酸素センサ7
 (排気中の酸素濃度によって理論空燃比付近の空燃比
を主として検出できるセンサ)からの空燃比検出信号、
とが入力されている。制御装置1は、第3図〜第7図に
示すフローチャートに従って作動し、燃料噴射弁8に駆
動回路9を介して駆動パルス信号を出力するようになっ
ている。
In FIG. 2, a control bag W1 consisting of a microcomputer, for example, receives an ignition signal (rotational speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and a water temperature sensor 4. Coolant temperature signal, vehicle speed signal output from vehicle speed sensor 5, ON/OFF signal from idle switch 6, oxygen sensor 7
(a sensor that can mainly detect the air-fuel ratio near the stoichiometric air-fuel ratio depending on the oxygen concentration in the exhaust gas);
is entered. The control device 1 operates according to the flowcharts shown in FIGS. 3 to 7, and outputs a drive pulse signal to the fuel injection valve 8 via the drive circuit 9.

ここでは、制御装置1が基本噴射量設定手段とフィード
フォワード補正係数設定手段と空燃比補正手段と燃料噴
射量設定手段とを構成する。また、制御装置1と駆動回
路9とにより駆動手段を構成し、点火コイル2の点火信
号により回転速度を検出するため、点火コイル2が回転
変動検出手段を構成する。
Here, the control device 1 constitutes basic injection amount setting means, feedforward correction coefficient setting means, air-fuel ratio correction means, and fuel injection amount setting means. Further, the control device 1 and the drive circuit 9 constitute a drive means, and since the rotational speed is detected by the ignition signal of the ignition coil 2, the ignition coil 2 constitutes a rotation fluctuation detection means.

次に作用を第3図〜第8図のフローチャートに従って説
明する。
Next, the operation will be explained according to the flowcharts shown in FIGS. 3 to 8.

まず、サージ判定ルーチンを第3図のフローチャートに
基づいて説明する。
First, the surge determination routine will be explained based on the flowchart of FIG.

かかるルーチンは100m5ec毎に起動信号が入力さ
れて起動する。
This routine is started every 100 m5ec by inputting a start signal.

Slでは、点火信号からの回転速度信号、車速信号を読
み込む。
Sl reads the rotational speed signal and vehicle speed signal from the ignition signal.

S2では、回数メモリ (RAM)に記憶されたサンプ
リング回数nに+1を加算して新たなサンプリング回数
nとして、回数メモリに記憶させる。
In S2, +1 is added to the number of sampling times n stored in the number of times memory (RAM), and the result is stored in the number of times memory as a new number of sampling times n.

S3では、前記サンプリング回数が11回になったか否
かを判定し、YESの時にはS4に進み回転速度メモリ
(RAM)に記憶された回転速度を全て初期値(例えば
0)にする一方、Noのときには回転速度メモリを初期
化することなく、S5に進む。
In S3, it is determined whether the sampling number has reached 11 times or not. If YES, the process advances to S4 and all rotational speeds stored in the rotational speed memory (RAM) are set to initial values (for example, 0), while if NO, the process proceeds to S4. Sometimes, the process proceeds to S5 without initializing the rotational speed memory.

S5では、検出された回転速度を新たに設定されたサン
プリング回数に対応する回転速度メモリのアドレスに記
憶させる。ここで、回転速度メモリには、100m5e
c毎に検出された回転速度サンプリング回数(100s
ec毎)に対応するアドレスに10種類すなわち1se
c間のデータが記憶可能になっている。
In S5, the detected rotational speed is stored in the address of the rotational speed memory corresponding to the newly set number of sampling times. Here, the rotation speed memory contains 100m5e.
Number of rotational speed samplings detected every c (100s
10 types of addresses corresponding to each
Data between C and C can be stored.

S6では、サンプリング回数n=lに記憶された回転速
度N、と今回検出された回転速度Nnとからサンプリン
グ期間における回転速度の変化量ΔN (=N、l−N
+ )を演算する。ここで、サンプリング期間Δtは1
00m5ec、 200sec、 300sec、 5
00m5ec及び1 secに設定されている。したが
って、サンプリング開始初期は、100m5ecのサン
プリング期間において回転速度の変化量ΔNが演算され
る。
In S6, the amount of change in rotational speed during the sampling period ΔN (=N, l−N
+ ) is calculated. Here, the sampling period Δt is 1
00m5ec, 200sec, 300sec, 5
00m5ec and 1 sec. Therefore, at the beginning of sampling, the amount of change ΔN in the rotational speed is calculated in a sampling period of 100 m5ec.

S7では、検出された車速VSFから単位時間当演算す
る。
In S7, the unit time is calculated from the detected vehicle speed VSF.

S8では演算された車速変化率ΔV3pから現在の運転
状態を判定し、加速運転判定時にはS9に進み減速運転
判定時にはSIOに進む。さらに、定常運転判定時には
回転変動の判定を行うことなくSllに進む。
In S8, the current driving state is determined from the calculated vehicle speed change rate ΔV3p, and when acceleration driving is determined, the process advances to S9, and when decelerating driving is determined, the process advances to SIO. Furthermore, when determining steady operation, the process proceeds to Sll without determining rotational fluctuation.

S9では、S6にて演算された変化量ΔNと一側す−ジ
許容範囲一ΔNcとを比較し、−ΔNcシΔNのときに
は変化量ΔNが一側におきく変動していると判定しS1
2に進み、−ΔNc≦ΔNのときには回転変動が小さい
と判定し311に進む。
In S9, the amount of change ΔN calculated in S6 is compared with the one-sided shift tolerance range -ΔNc, and when it is -ΔNc ΔN, it is determined that the amount of change ΔN is fluctuating toward one side.
The process proceeds to step 2, and when -ΔNc≦ΔN, it is determined that the rotational fluctuation is small, and the process proceeds to step 311.

このようにして、加速運転時には変化量ΔNが一側に大
きく変動しているときにサージ発生と判定する。
In this way, during acceleration operation, it is determined that a surge has occurred when the amount of change ΔN is significantly fluctuating to one side.

一方、SIOでは前記変化量ΔNと+側す−ジ許容範囲
ΔNcとを比較し、ΔNC<ΔNのときには変化量ΔN
が+側に大きく変動していると判定しS12に進み、Δ
Nc≧ΔNのときには回転変動が小さいと判定し311
に進む。
On the other hand, in SIO, the amount of change ΔN is compared with the + side tolerance range ΔNc, and when ΔNC<ΔN, the amount of change ΔN
It is determined that Δ has changed significantly to the + side, and the process proceeds to S12, where
When Nc≧ΔN, it is determined that the rotational fluctuation is small and 311
Proceed to.

このようにして、減速運転時には変化量ΔNが+側に大
きく変動しているときにサージ発生と判定する。
In this way, during deceleration operation, it is determined that a surge has occurred when the amount of change ΔN is significantly fluctuating on the positive side.

Sllでは、サージ発生がない状態をサージフラッグF
s=OとしてRAM等に記憶させる一方、S12ではサ
ージ発生があった状態をサージフラッグFs””1とし
てRAM等に記憶させる。
In Sll, the surge flag F indicates the state where no surge occurs.
While s=O is stored in the RAM or the like, in S12, the state in which a surge has occurred is stored in the RAM or the like as the surge flag Fs""1.

かかるサージ判定ルーチンにより100m5ec、 2
00m5ec+ 300m5ec、 500m5ec及
び1 secのサンプリング期間において希薄空燃比制
御におけるサージ判定を行う。
With this surge judgment routine, 100m5ec, 2
Surge determination in lean air-fuel ratio control is performed during sampling periods of 00m5ec+300m5ec, 500m5ec, and 1 sec.

さらに、サージが発生したと判定されたときには、S1
3で今回のサージ判定が初回のサージ判定か否かを判定
し、YESのときにはS14に進み、Noのときにはサ
ージ判定ルーチンを終了させる。
Furthermore, when it is determined that a surge has occurred, S1
In step 3, it is determined whether the current surge determination is the first surge determination, and if YES, the process proceeds to S14, and if NO, the surge determination routine is ended.

S14では、RAM等に記憶された後述の空燃比設定係
数nと噴射時間設定値iとを0にリセットする。
In S14, an air-fuel ratio setting coefficient n and an injection time setting value i, which will be described later, stored in a RAM or the like are reset to zero.

次に、希薄空燃比制御判定ルーチンを第4図に基づいて
説明すると、S21では、点火信号、吸入空気流量信号
等の各種信号を読み込む。
Next, the lean air-fuel ratio control determination routine will be explained based on FIG. 4. In S21, various signals such as an ignition signal and an intake air flow rate signal are read.

322では、検出された各種運転状態に基づいて希薄空
燃比制御条件が成立したか否かを判定し、YESのとき
にはS23に進みNoのときにはS24に進む。
In 322, it is determined whether the lean air-fuel ratio control condition is satisfied based on the detected various operating states, and if YES, the process advances to S23, and if NO, the process advances to S24.

希薄空燃比制御成立条件としては、機関負荷(例えば基
本噴射量)が所定範囲の低負荷域で、回転速度が所定範
囲の低回転域で、冷却水温度が所定4M (例えば80
°C)以上で、車速か所定値(例えば8 km / h
 )以上で、かつアイドル運転時以外(アイドルスイッ
チ6がOFFのとき)のときがある。
The conditions for establishing lean air-fuel ratio control are that the engine load (for example, basic injection amount) is in a low load range within a predetermined range, the rotation speed is in a low rotation range within a predetermined range, and the cooling water temperature is within a predetermined 4M (for example, 80
°C) or above, the vehicle speed is set to a predetermined value (e.g. 8 km/h)
) and above, and there are times when the engine is not idling (when the idle switch 6 is OFF).

S23では、今回の希薄空燃比制御条件成立判定が初回
の希薄空燃比制御条件成立判定か否かを判定し、YES
のときには325に進み、N’Oのときには、S25を
通過させることな(S26に進む。
In S23, it is determined whether the current determination that the lean air-fuel ratio control condition is met is the first determination that the lean air-fuel ratio control condition is met, and the answer is YES.
If , the process proceeds to 325, and if N'O, the process does not pass through S25 (proceeds to S26).

325では、RAMに記憶された空燃比設定係数nを初
期値(n−#FFH≠0)にリセットした後326に進
む。
In 325, the air-fuel ratio setting coefficient n stored in the RAM is reset to the initial value (n-#FFH≠0), and then the process proceeds to 326.

S26では、希薄空燃比制御条件が成立したことをリー
ンフラッグFL=1としてRAMに記憶させる。
In S26, the fact that the lean air-fuel ratio control condition is satisfied is stored in the RAM as a lean flag FL=1.

一方、S24では希薄空燃比制御条件が成立しないこと
をリーンフラッグF L ”’ OとしてRAMに記憶
させる。
On the other hand, in S24, the fact that the lean air-fuel ratio control condition is not satisfied is stored in the RAM as a lean flag FL'''O.

次に目標空燃比設定ルーチンを第5図のフローチャート
に従って説明すると、S31ではリーンフラッグFLが
1かOかを判定し、F t = 1のときずなわち希薄
空燃比制御条件が成立したときには332に進みF=O
のときにはS34に進む。
Next, the target air-fuel ratio setting routine will be explained according to the flow chart of FIG. 5. In S31, it is determined whether the lean flag FL is 1 or O, and when F t = 1, that is, when the lean air-fuel ratio control condition is satisfied, the lean flag FL is set to 332. Proceed to F=O
If so, the process advances to S34.

S32では、空燃比が理論空燃比より希薄の目標希薄空
燃比になるように設定されたフィードフォワード補正係
数としてのリーンバーン補正係数LBCMAPを、基本
噴射量’rpと回転速度とに基づいて希薄空燃比マツプ
から検索した後、333に進む。
In S32, the lean burn correction coefficient LBCMAP is set as a feedforward correction coefficient so that the air-fuel ratio becomes a target lean air-fuel ratio leaner than the stoichiometric air-fuel ratio. After searching from the fuel ratio map, proceed to 333.

S33では、空燃比が略理論空燃比になるように設定さ
れた後述の混合比補正係数K m l’ +水温補正係
数KTo等の補正係数をOに設定する。
In S33, a correction coefficient such as a mixture ratio correction coefficient K m l' + water temperature correction coefficient KTo, which will be described later, is set to O so that the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio.

一方、S34では、前記混合比補正係数にイ1等の補正
係数をマツプから検索する。
On the other hand, in S34, a correction coefficient such as A1 is searched from the map for the mixture ratio correction coefficient.

また、第6図のフローチャートに示すように、イグニソ
ションスインチがオンされたときに空燃比設定係数nを
初期値にリセットする。
Further, as shown in the flowchart of FIG. 6, when the ignition switch is turned on, the air-fuel ratio setting coefficient n is reset to the initial value.

次に燃料の噴射量制御ルーチンを第7図のフローチャー
トに従って説明する。このルーチンは10m5ec毎に
起動される。
Next, the fuel injection amount control routine will be explained according to the flowchart shown in FIG. This routine is started every 10m5ec.

S51では、点火信号から得られた機関回転速度Nと吸
入空気流量Qとから基本噴射量Tp  (=KS52で
は、リーンフラッグFLが1か0かを判定し、FL=1
のときすなわち希薄空燃比制御条件が成立しているとき
には353に進みFL−0のときにはS54に進む。
In S51, the basic injection amount Tp is determined from the engine speed N obtained from the ignition signal and the intake air flow rate Q (= In KS52, it is determined whether the lean flag FL is 1 or 0, and FL=1
In other words, when the lean air-fuel ratio control condition is satisfied, the process proceeds to 353, and when FL-0, the process proceeds to S54.

S53では、サージフラッグF、が1か0かを判定し、
F3−0のときすなわちサージ非発生時にはS55に進
み、FS=1のときすなわちサージが発生していると判
定されいるときには356に進む。
In S53, it is determined whether the surge flag F is 1 or 0,
When F3-0, that is, no surge has occurred, the process proceeds to S55, and when FS=1, that is, it is determined that a surge has occurred, the process proceeds to 356.

S55では、RAMに記憶されている空燃比設定係数n
が初期値(n=#FFH)か否かを判定し、YESのと
きには機関の始動後サージが発生していないとしS57
に進みNoのときには機関始動後にサージ発生の経歴が
あったと判定し364に進む。
In S55, the air-fuel ratio setting coefficient n stored in the RAM is
It is determined whether or not is the initial value (n=#FFH), and if YES, it is assumed that no surge has occurred after the engine has started, and S57
If the answer is No, it is determined that there has been a history of surge occurrence after the engine was started, and the process advances to 364.

356では、前回の噴射時間設定値iに+1を加算して
新たな噴射時間設定値iを設定した後に858に進む。
At 356, +1 is added to the previous injection time setting value i to set a new injection time setting value i, and then the process proceeds to 858.

S58では、新たに設定された噴射時間設定値iが10
になったか否かを判定し、YESのときにはS59に進
みNoのときにはS59を通過することなく360に進
む。
In S58, the newly set injection time setting value i is 10.
If it is YES, the process proceeds to S59, and if NO, the process proceeds to 360 without passing through S59.

S59では、前回の空燃比設定係数nに+1を加算して
新たな空燃比設定係数nを設定すると共に噴射時間設定
値iを0にリセットさせる。したがって、このルーチン
が10m5ec毎に起動され、噴射時間設定値iが0か
ら10になるまですなわち100m5ec経過する期間
では、空燃比設定係数nは同一値をとるようになり、1
00m5ec経過毎に新たな空燃比設定係数nが設定さ
れる。
In S59, +1 is added to the previous air-fuel ratio setting coefficient n to set a new air-fuel ratio setting coefficient n, and the injection time setting value i is reset to zero. Therefore, this routine is started every 10 m5ec, and the air-fuel ratio setting coefficient n takes the same value until the injection time setting value i goes from 0 to 10, that is, 100m5ec.
A new air-fuel ratio setting coefficient n is set every 00 m5ec.

360では、新たに設定された空燃比設定係数nが最大
値nmax  (例えばn −# F E H)になっ
たか否かを判定し、YESのときには361に進みNO
のときには362に進む。
In 360, it is determined whether the newly set air-fuel ratio setting coefficient n has reached the maximum value nmax (for example, n - # F E H), and if YES, the process advances to 361 and NO.
If so, proceed to 362.

361では、空燃比設定係数nが最大値n maxを超
えないように前記空燃比設定係数nを最大値nl1la
xにクランプして362に進む。ここで、前記最大値n
1sXは実際の空燃比が理論空燃比より希薄な希薄空燃
比になるように設定されている。
In 361, the air-fuel ratio setting coefficient n is set to the maximum value nl1la so that the air-fuel ratio setting coefficient n does not exceed the maximum value nmax.
Clamp to x and proceed to 362. Here, the maximum value n
1sX is set so that the actual air-fuel ratio becomes a lean air-fuel ratio that is leaner than the stoichiometric air-fuel ratio.

S62では、新たなリーンバーン補正係数LBCを次式
により演算する。
In S62, a new lean burn correction coefficient LBC is calculated using the following equation.

LBC=LBCMAP+nXΔF 尚、ΔFはクランプ濃化係数である。LBC=LBCMAP+nXΔF Note that ΔF is a clamp concentration coefficient.

S63では、各種補正係数C0EFを前記S33にて得
られた補正係数に基づいて次式により演算して設定しS
67に進む。
In S63, various correction coefficients C0EF are calculated and set by the following equations based on the correction coefficients obtained in S33.
Proceed to 67.

CoEF=1+KIIr+KT11・・・+KHo7し
たがって、混合比補正係数に−等の補正係数が333に
おいてOに設定されるため、各種補正係数C’OE F
は1に設定される。
CoEF=1+KIIr+KT11...+KHo7 Therefore, since a correction coefficient such as - is set to O in 333 as a mixture ratio correction coefficient, various correction coefficients C'OE F
is set to 1.

一方、リーンフラッグFL=0のときすなわち希薄空燃
比制御条件が不成立のときには、354において各種補
正係数C0EFt−334にて得られた混合比補正係数
に□、等の補正係数に基づいて次式により演算して設定
し366に進む。
On the other hand, when the lean flag FL=0, that is, when the lean air-fuel ratio control condition is not satisfied, the following equation is calculated based on the mixture ratio correction coefficient obtained in the various correction coefficients C0EFt-334 in 354 and the correction coefficients such as □. Calculate and set, and proceed to 366.

C0EF=1 +Kmr+Kt、4+・・・十KHoT
したがって、このときには、各種補正係数C0EFは1
を超える値に設定される。
C0EF=1 +Kmr+Kt, 4+...10KHoT
Therefore, at this time, the various correction coefficients C0EF are 1
is set to a value greater than .

S65では、酸素センサ7により検出された実際の空燃
比に基づいて空燃比が理論空燃比になるようにフィード
バンク補正係数としての空燃比フィードバック補正係数
αを設定しS66に進む。
In S65, the air-fuel ratio feedback correction coefficient α is set as a feed bank correction coefficient so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the actual air-fuel ratio detected by the oxygen sensor 7, and the process proceeds to S66.

また、リーンフラッグFL=1のときすなわち希薄空燃
比制御条件が成立し、かつサージフラッグF3=0のと
きでかつ機関始動後にサージが発生していないときには
、S57で332にて検索されたリーンバーン補正係数
L B CMA Pを設定し、S63に進む。
Furthermore, when the lean flag FL=1, that is, the lean air-fuel ratio control condition is satisfied, and when the surge flag F3=0, and no surge has occurred after the engine is started, the lean burn searched in 332 is performed in S57. The correction coefficient L B CMA P is set, and the process proceeds to S63.

また、FL=1でかつFS=0であっても機関始動後に
1回でもサージ発生が判定されたときには、S64で前
記362と同様にリーンバーン補正係数LBCを演算す
る。尚、このときの空燃比設定係数nは例えば前記最大
値n、、Xになっている。
Further, even if FL=1 and FS=0, if it is determined that a surge has occurred even once after the engine is started, a lean burn correction coefficient LBC is calculated in S64 in the same manner as in 362 above. Note that the air-fuel ratio setting coefficient n at this time is, for example, the maximum value n, .

366では、燃料噴射量Tiを次式により演算する。At 366, the fuel injection amount Ti is calculated using the following equation.

Ti=TpXα (orLBCMAP、LBC)XCO
EF+TS 尚、T、はバッテリ補正係数である。     □鱈し
て、演算された燃料噴射量Tiに基づいて例えば点火コ
イル2からのリファレンス信号(回転数)に同期して駆
動回路9を介して燃料噴射弁8に出力し燃料噴射を行う
Ti=TpXα (orLBCMAP, LBC)XCO
EF+TS Note that T is a battery correction coefficient. Then, based on the calculated fuel injection amount Ti, it is output to the fuel injection valve 8 via the drive circuit 9 in synchronization with, for example, a reference signal (rotation speed) from the ignition coil 2 to perform fuel injection.

このように燃料噴射制御を行うと、希薄空燃比制御条件
が成立しかつサージが現在及び機関始動直後からの過去
において発生しないときには、リーンバーン補正係数L
 B CMA Pに基づいてフィードフォワード制御に
より実際の空燃比が希薄空燃比になるように希薄空燃比
制御が行われる(S57、 363.及び566)。し
たがって、この運転領域では、燃費の向上及び排気の浄
化等を図れる。
When fuel injection control is performed in this way, when the lean air-fuel ratio control condition is satisfied and no surge has occurred at present or in the past immediately after engine startup, the lean burn correction coefficient L
Lean air-fuel ratio control is performed by feedforward control based on B CMA P so that the actual air-fuel ratio becomes the lean air-fuel ratio (S57, 363. and 566). Therefore, in this operating range, it is possible to improve fuel efficiency and purify exhaust gas.

一方、希薄空燃比制御条件が不成立のときには燃料噴射
制御がフィードバック制御により実際の空燃比が理論空
燃比になるように制御される(S54、 365及び5
66)。
On the other hand, when the lean air-fuel ratio control condition is not satisfied, the fuel injection control is controlled by feedback control so that the actual air-fuel ratio becomes the stoichiometric air-fuel ratio (S54, 365, and 5).
66).

さらに、サージが発生した直後には、希薄空燃比制御条
件が成立しても、空燃比設定係数nを100m5ec毎
に増大させてフィードフォワード制御により実際の空燃
比(希薄空燃比)を徐々に濃化する。
Furthermore, immediately after a surge occurs, even if the lean air-fuel ratio control conditions are met, the air-fuel ratio setting coefficient n is increased every 100 m5ec to gradually increase the actual air-fuel ratio (lean air-fuel ratio) by feedforward control. become

そして、所定の希薄空燃比になったころで、実際の空燃
比をその希薄空燃比になるように制御する。
Then, when a predetermined lean air-fuel ratio is reached, the actual air-fuel ratio is controlled to become the lean air-fuel ratio.

これにより、燃料噴射弁8の低噴射量域での噴射特性が
悪く、希薄空燃比制御により実際の空燃比が過度に希薄
化されサージが発生しても、燃費の向上を図りつつ実際
の空燃比が濃化されサージの発生を抑制でき、もって運
転性を向上できる。
As a result, even if the injection characteristics of the fuel injector 8 are poor in the low injection amount range and the actual air-fuel ratio is excessively lean due to the lean air-fuel ratio control and a surge occurs, the actual air-fuel ratio can be maintained while improving fuel efficiency. The fuel ratio is enriched and surge generation can be suppressed, thereby improving drivability.

尚、本実施例では、サージ発生時に希薄空燃比制御に徐
々に濃化させるようにしたが、瞬時に濃化するようにし
てもよい。
In this embodiment, when a surge occurs, the lean air-fuel ratio control is performed to gradually enrich the air-fuel ratio, but it may be possible to enrich the air-fuel ratio instantaneously.

〈発明の効果〉 本発明は、以上説明したように、希薄空燃比制御中にサ
ージが発生したときに、希薄空燃比を濃化するようにし
たので、実際の空燃比を過度に希薄化するのを防止でき
るため、燃費の向上を図りつつサージ発生を抑制でき、
もって運転性の向上を図れる。
<Effects of the Invention> As explained above, the present invention enriches the lean air-fuel ratio when a surge occurs during lean air-fuel ratio control, thereby preventing the actual air-fuel ratio from becoming excessively lean. Since it is possible to prevent surge generation, it is possible to improve fuel efficiency and suppress the occurrence of surges.
This allows for improved drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第7図は同上のフローチ
ャートである。 1・・・制御装置  2・・・点火コイル  3・・・
エアフロメータ  7・・・酸素センサ  8・・・燃
料噴射弁  9・・・駆動回路
FIG. 1 is a diagram corresponding to claims of the present invention, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIGS. 3 to 7 are flowcharts of the same. 1... Control device 2... Ignition coil 3...
Air flow meter 7...Oxygen sensor 8...Fuel injection valve 9...Drive circuit

Claims (1)

【特許請求の範囲】[Claims] 所定の運転領域で所定の希薄空燃比制御条件が検出され
たときに実際の空燃比が理論空燃比より希薄化されるよ
うに希薄空燃比制御をフィードフォワード制御にて行う
内燃機関の電子制御燃料噴射装置において、機関運転状
態に応じて基本噴射量を設定する基本噴射量設定手段と
、実際の空燃比が理論空燃比より希薄な目標希薄空燃比
になるようにフィードフォワード補正係数を設定するフ
ィードフォワード補正係数設定手段と、希薄空燃比制御
中の機関の回転変動を検出する回転変動検出手段と、検
出された回転変動が所定値以上のときに、前記設定され
たフィードフォワード補正係数を、理論空燃比より希薄
な希薄空燃比領域にて実際の空燃比が前記目標希薄空燃
比に対し濃化するように、補正する空燃比補正手段と、
補正若しくは前記設定されたフィードフォワード補正係
数と前記基本噴射量とに基づいて燃料噴射量を設定する
燃料噴射量設定手段と、設定された燃料噴射量に基づい
て燃料噴射弁を駆動する駆動手段と、を備えたことを特
徴とする内燃機関の電子制御燃料噴射装置。
Electronically controlled fuel for an internal combustion engine that performs lean air-fuel ratio control using feedforward control so that when a predetermined lean air-fuel ratio control condition is detected in a predetermined operating region, the actual air-fuel ratio is leaner than the stoichiometric air-fuel ratio. The injection device includes a basic injection amount setting means for setting a basic injection amount according to engine operating conditions, and a feed for setting a feedforward correction coefficient so that the actual air-fuel ratio becomes a target lean air-fuel ratio leaner than the stoichiometric air-fuel ratio. forward correction coefficient setting means; rotation fluctuation detection means for detecting rotational fluctuations of the engine during lean air-fuel ratio control; an air-fuel ratio correction means that corrects the actual air-fuel ratio in a lean air-fuel ratio region leaner than the air-fuel ratio, so that the actual air-fuel ratio is richer than the target lean air-fuel ratio;
a fuel injection amount setting means for setting a fuel injection amount based on the basic injection amount and a feedforward correction coefficient that has been corrected or set; and a driving means that drives a fuel injection valve based on the set fuel injection amount. An electronically controlled fuel injection device for an internal combustion engine, comprising:
JP815287A 1987-01-19 1987-01-19 Electronic control type fuel injector for internal combustion engine Pending JPS63176636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP815287A JPS63176636A (en) 1987-01-19 1987-01-19 Electronic control type fuel injector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP815287A JPS63176636A (en) 1987-01-19 1987-01-19 Electronic control type fuel injector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63176636A true JPS63176636A (en) 1988-07-20

Family

ID=11685345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP815287A Pending JPS63176636A (en) 1987-01-19 1987-01-19 Electronic control type fuel injector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63176636A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104133A (en) * 1975-02-19 1976-09-14 Bosch Gmbh Robert Nannenkannokihakukukongokiuntennoshoteigenkaihenosetsukindoohyojisurushingonokeiseihohooyobisochi
JPS5951147A (en) * 1982-09-16 1984-03-24 Toyota Motor Corp Control of air-fuel ratio of internal-combustion engine for car
JPS6013938A (en) * 1983-07-05 1985-01-24 Nippon Soken Inc Air-fuel ratio controlling apparatus for internal-combustion engine
JPS60182328A (en) * 1984-02-29 1985-09-17 Nissan Motor Co Ltd Air-fuel ratio controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104133A (en) * 1975-02-19 1976-09-14 Bosch Gmbh Robert Nannenkannokihakukukongokiuntennoshoteigenkaihenosetsukindoohyojisurushingonokeiseihohooyobisochi
JPS5951147A (en) * 1982-09-16 1984-03-24 Toyota Motor Corp Control of air-fuel ratio of internal-combustion engine for car
JPS6013938A (en) * 1983-07-05 1985-01-24 Nippon Soken Inc Air-fuel ratio controlling apparatus for internal-combustion engine
JPS60182328A (en) * 1984-02-29 1985-09-17 Nissan Motor Co Ltd Air-fuel ratio controller

Similar Documents

Publication Publication Date Title
JPH02207159A (en) Catalyst deterioration judging device for internal combustion engine
JPH04342847A (en) Air fuel ratio control device of internal combustion engine
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
US20030213476A1 (en) Method and arrangement for correcting a fuel quantity which is supplied to an internal combustion engine
JPS61205348A (en) Initial adjusting method of air-fuel ratio controller for internal-combustion engine
JPS63176636A (en) Electronic control type fuel injector for internal combustion engine
JPS63186937A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS63176640A (en) Electronic control type fuel injector for internal combustion engine
JP2521039B2 (en) Engine air-fuel ratio control device
JP2590941B2 (en) Fuel injection amount learning control device for internal combustion engine
JPS63140838A (en) Electronic control fuel injection device for internal combustion engine
JP2712556B2 (en) Fuel injection amount control device for internal combustion engine
JPS6313012B2 (en)
JPH02104942A (en) Device for feeding mixed fuel of internal combustion engine
JPS62271945A (en) Electronic control type fuel injection device for internal combustion engine
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
JP2705267B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH04143435A (en) Air-fuel ratio control method of internal combustion engine
JPS6053642A (en) Air-fuel ratio control method in electronically controlled fuel injection type internal- combustion engine
JPH0646013B2 (en) Air-fuel ratio control method for fuel supply device for internal combustion engine
JPS63140839A (en) Electronic control fuel injection device for internal combustion engine
JPH0432939B2 (en)
JPH01310146A (en) Ignition timing controller of internal combustion engine
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine