JPS6313012B2 - - Google Patents

Info

Publication number
JPS6313012B2
JPS6313012B2 JP56026061A JP2606181A JPS6313012B2 JP S6313012 B2 JPS6313012 B2 JP S6313012B2 JP 56026061 A JP56026061 A JP 56026061A JP 2606181 A JP2606181 A JP 2606181A JP S6313012 B2 JPS6313012 B2 JP S6313012B2
Authority
JP
Japan
Prior art keywords
air
engine
fuel ratio
feedback correction
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56026061A
Other languages
Japanese (ja)
Other versions
JPS57143143A (en
Inventor
Hiroyuki Domyo
Toshimi Murai
Motoharu Sueishi
Ichiro Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP2606181A priority Critical patent/JPS57143143A/en
Publication of JPS57143143A publication Critical patent/JPS57143143A/en
Publication of JPS6313012B2 publication Critical patent/JPS6313012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御装置に関する。[Detailed description of the invention] The present invention relates to an air-fuel ratio control device for an internal combustion engine.

排気ガス中の特定成分濃度を検出するように機
関の排気系に設けた濃度センサ、例えば酸素成分
濃度を検出するO2センサの検出信号に応じて機
関に供給される混合気の空燃比をフイードバツク
制御する空燃比制御装置は周知である。例えば電
子制御燃料噴射式(EFI式)の機関においては、
機関の吸入空気流量を表わす吸気量信号あるいは
吸気マニホールド部の負圧を表わす吸気管負圧信
号と機関の毎分回転数あるいは回転速度を表わす
速度信号とに基づいて燃料噴射弁の1回の噴射時
間に関する基本噴射時間を算出し、O2センサか
らの検出信号に基づいてこの基本噴射時間を補正
することによつて最終的な噴射時間を得、これに
よつて燃料噴射弁の駆動を行うことにより空燃比
のフイードバツク制御が行われる。
Feedbacks the air-fuel ratio of the air-fuel mixture supplied to the engine according to the detection signal of a concentration sensor installed in the engine's exhaust system to detect the concentration of a specific component in exhaust gas, such as an O2 sensor that detects the concentration of oxygen components. The controlling air-fuel ratio control device is well known. For example, in electronically controlled fuel injection (EFI) engines,
A single injection of the fuel injection valve is performed based on an intake air amount signal representing the intake air flow rate of the engine or an intake pipe negative pressure signal representing the negative pressure in the intake manifold, and a speed signal representing the number of revolutions per minute or rotational speed of the engine. Calculate the basic injection time in terms of time, correct this basic injection time based on the detection signal from the O 2 sensor to obtain the final injection time, and drive the fuel injection valve based on this. Feedback control of the air-fuel ratio is performed.

この種の空燃比制御装置において、O2センサ
からの信号によるフイードバツク補正量は、機関
が充分暖機している際は、空燃比を理論値に制御
する必要上充分大きくとれるようにすることが望
ましいが、機関温度が低い場合、即ち機関の冷間
時このフイードバツク補正量による燃料の減量が
大きくなると次の如き問題が生じる。即ち、機関
は一般に冷間時にはリツチな空燃比が要求され、
このため、冷間時はベース空燃比(フイードバツ
ク補正を行わない際の空燃比)を理論空燃比より
はるかにリツチ側に設定するが、このような時に
O2センサの信号に基づいて燃料が減量する側に
多量のフイードバツク補正を行うと、機関に供給
される混合気の空燃比が理論空燃比に制御されて
しまい、初期の目的が達成できなくなり、その結
果、もたつき、バツクフアイア等が生じて運転特
性が大幅に悪化してしまう。
In this type of air-fuel ratio control device, the amount of feedback correction based on the signal from the O 2 sensor must be large enough to control the air-fuel ratio to the stoichiometric value when the engine is sufficiently warmed up. Although this is desirable, when the engine temperature is low, that is, when the engine is cold, the following problem occurs when the amount of fuel reduced by the feedback correction amount becomes large. In other words, an engine generally requires a rich air-fuel ratio when it is cold;
For this reason, during cold conditions, the base air-fuel ratio (the air-fuel ratio without feedback correction) is set far richer than the stoichiometric air-fuel ratio.
If a large amount of feedback correction is performed to reduce fuel based on the O 2 sensor signal, the air-fuel ratio of the mixture supplied to the engine will be controlled to the stoichiometric air-fuel ratio, making it impossible to achieve the initial objective. As a result, sluggishness, backfire, etc. occur, resulting in a significant deterioration in driving characteristics.

従つて本発明は従来技術の上述した問題点を解
決するものであり、その目的は、機関の冷間時に
おいても、また温間時においても最適なフイード
バツク補正を行うことができる空燃比制御装置を
提供することにある。
Therefore, the present invention solves the above-mentioned problems of the prior art, and its purpose is to provide an air-fuel ratio control device that can perform optimal feedback correction both when the engine is cold and when the engine is warm. Our goal is to provide the following.

上述の目的を達成する本発明の特徴は、排気ガ
ス中の特定成分濃度を検出する濃度センサと、該
濃度センサの検出出力に応じて空燃比のフイード
バツク補正量を算出する第1の手段と、該フイー
ドバツク補正量に応じて内燃機関に供給される混
合気の空燃比を調整する空燃比調整機構とを含む
空燃比制御装置において、機関の温度を検出する
温度センサと、該温度センサの検出出力に応じて
前記フイードバツク補正量の燃料減量側の上限値
を変化させる第2の手段とを備え、機関温度が低
い場合は機関温度が高い場合より前記フイードバ
ツク補正量の燃料減量側の上限値が小さくなるよ
うにしたことにある。
The features of the present invention that achieve the above object include: a concentration sensor that detects the concentration of a specific component in exhaust gas; a first means that calculates a feedback correction amount of the air-fuel ratio according to the detection output of the concentration sensor; An air-fuel ratio control device including an air-fuel ratio adjustment mechanism that adjusts an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine according to the feedback correction amount, a temperature sensor that detects the temperature of the engine, and a detection output of the temperature sensor. and a second means for changing the upper limit value on the fuel reduction side of the feedback correction amount according to the engine temperature, and when the engine temperature is low, the upper limit value on the fuel reduction side of the feedback correction amount is smaller than when the engine temperature is high. It's because I made it happen.

以下図面を用いて本発明を詳細に説明する。 The present invention will be explained in detail below using the drawings.

第1図は本発明の一実施例の構成を表わすブロ
ツク図である。同図において、10は機関の排気
通路12に設けられたO2センサである。O2セン
サ10は、周知の如く、排気ガス中の酸素濃度を
検出することにより、機関の現在の空燃比状態が
理論空燃比よりリツチ側にあるかリーン側にある
かを表わす信号を出力するもので、リツチ側にあ
る場合は、約1.0V、リーン側にある場合は約0.1
〜0.2Vの信号を出力する。このO2センサ10か
らの出力信号は、演算増幅器等から構成される比
較器14の非反転入力端子に印加されて0.45〜
0.5V程度の比較基準電圧と比較される。比較器
14の出力は、演算増幅器及び積分コンデンサ等
から構成される積光器18の反転入力端子に印加
され、時間に関して積分せしめられる。従つて積
分器18の出力電圧は、機関の空燃比がリツチで
あるとO2センサ10が判別した場合に徐々に減
少し、逆にリーンと判別した場合に徐々に増大す
る。この積分器18の出力電圧がフイードバツク
補正量であり、本発明においては、この出力電圧
が後述するように、機関の冷却水温に応じて制御
せしめられるのである。
FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. In the figure, 10 is an O 2 sensor provided in the exhaust passage 12 of the engine. As is well known, the O2 sensor 10 outputs a signal indicating whether the current air-fuel ratio state of the engine is richer or leaner than the stoichiometric air-fuel ratio by detecting the oxygen concentration in the exhaust gas. If it is on the rich side, it will be about 1.0V, and if it is on the lean side, it will be about 0.1V.
Outputs ~0.2V signal. The output signal from this O 2 sensor 10 is applied to a non-inverting input terminal of a comparator 14 consisting of an operational amplifier etc.
It is compared with a comparison reference voltage of about 0.5V. The output of the comparator 14 is applied to an inverting input terminal of an optical integrator 18 composed of an operational amplifier, an integrating capacitor, etc., and is integrated with respect to time. Therefore, the output voltage of the integrator 18 gradually decreases when the O 2 sensor 10 determines that the air-fuel ratio of the engine is rich, and increases gradually when the O 2 sensor 10 determines that the engine air-fuel ratio is lean. The output voltage of the integrator 18 is the feedback correction amount, and in the present invention, this output voltage is controlled in accordance with the engine cooling water temperature, as will be described later.

積分器18の出力電圧は、燃料噴射弁24の1
回の噴射時間を演算する噴射時間演算回路20に
送り込まれる。この演算回路20は、機関の吸入
空気流量を表わす吸気量信号あるいは吸気管負圧
を表わす吸気管負圧信号と機関の回転速度を表わ
す速度信号とから噴射弁24の基本噴射時間に対
応するパルス幅を有する基本噴射パルスを形成
し、積分器18からのフイードバツク補正量に応
じてこの基本噴射パルスのパルス幅を補正処理す
る周知のものであり、例えば特開昭47―9751号、
特開昭49―67016号、及び特開昭54―42536号明細
書等に詳細にその内容が開示されている。演算回
路20からの噴射パルスは、駆動回路22に送り
込まれて駆動パルス電流となり、燃料噴射弁24
がこれにより駆動せしめられる。演算回路20に
おいて形成される噴射パルスのパルス幅は、積分
器18の出力電圧、即ちフイードバツク補正量が
大きくなると大きくなり、従つて噴射燃料量が増
大し、出力電圧が小さくなると小さくなつて噴射
燃料量が減少するように制御され、これによつて
空燃比のフイードバツク補正制御が行われること
になる。
The output voltage of the integrator 18 is
The injection time calculation circuit 20 calculates the injection time for each injection. This arithmetic circuit 20 generates a pulse corresponding to the basic injection time of the injection valve 24 from an intake air amount signal representing the intake air flow rate of the engine or an intake pipe negative pressure signal representing the intake pipe negative pressure, and a speed signal representing the engine rotation speed. This is a well-known method in which a basic injection pulse having a width is formed and the pulse width of this basic injection pulse is corrected according to the feedback correction amount from the integrator 18.
The contents are disclosed in detail in the specifications of JP-A-49-67016 and JP-A-54-42536. The injection pulse from the arithmetic circuit 20 is sent to the drive circuit 22 and becomes a drive pulse current, which causes the fuel injection valve 24
is driven by this. The pulse width of the injection pulse formed in the arithmetic circuit 20 increases as the output voltage of the integrator 18, that is, the feedback correction amount increases, and accordingly, the amount of injected fuel increases, and as the output voltage decreases, it decreases and the injected fuel increases. The amount is controlled to decrease, thereby performing feedback correction control of the air-fuel ratio.

積分器18の反転入力端子と出力端子との間に
は、帰還抵抗26、トランジスタ28のコレク
タ・エミツタ、及び逆バイアス防止用のダイオー
ド30を直列接続した回路が接続されており、ト
ランジスタ28のベースには、電源とアースとの
間に接続した分割抵抗32及び34の中点と、抵
抗36を介して水温検出回路38の出力端子とが
接続されている。水温検出回路38は、機関の冷
却水温度に応じた電圧THWを出力するものであ
り、電源とアース間に、サーミスタ38aがアー
ス側となるように直列接続されたサーミスタ38
a及び抵抗38bから構成されている。その出力
端子はサーミスタ38aの非接地側端子で構成さ
れており、従つて、機関の冷却水温が低くなる
と、その出力電圧THWは高くなり、冷却水温が
高くなるとTHWは低くなる。その結果、トラン
ジスタ28のベース電位が冷却水温に応じて変化
し、このトランジスタ28の飽和するコレクタ―
エミツタ間電圧が変化せしめられることになる。
以下、この様子を機関の空燃比制御と合わせて説
明する。
A circuit in which a feedback resistor 26 , the collector/emitter of a transistor 28 , and a diode 30 for preventing reverse bias are connected in series is connected between the inverting input terminal and the output terminal of the integrator 18 . is connected to the midpoint of dividing resistors 32 and 34 connected between the power supply and ground, and to the output terminal of a water temperature detection circuit 38 via a resistor 36. The water temperature detection circuit 38 outputs a voltage THW according to the engine cooling water temperature, and includes a thermistor 38 connected in series between the power supply and the ground so that the thermistor 38a is on the ground side.
a and a resistor 38b. Its output terminal is constituted by the non-grounded side terminal of the thermistor 38a, and therefore, as the engine cooling water temperature decreases, its output voltage THW increases, and as the cooling water temperature increases, THW decreases. As a result, the base potential of the transistor 28 changes depending on the cooling water temperature, and the collector potential of the transistor 28 becomes saturated.
The emitter voltage will be changed.
This situation will be explained below along with engine air-fuel ratio control.

第1図には示されていないが、演算回路20
は、水温センサ38の出力電圧を受け取り、その
電圧に応じて噴射パルスのパルス幅を制御する水
温補正制御を行つており、機関の冷却水温が低い
場合、噴射パルス幅が大きくなつて機関の空燃比
状態はリツチとなる。O2センサ10がこれを検
知して、リツチを表わす電圧(約1.0V)を出力
すると、積分器18の出力電圧は前述のように、
徐々に低下して行き、これにより、フイードバツ
ク補正が行われて噴射パルスのパルス幅が小さく
なるように、即ち、空燃比がリーンとなるように
制御される。しかしながら、この場合、水温セン
サ38の出力電圧THWが高いため、トランジス
タ28のベース電位も高くなつており、積分器1
8の出力の電位がある点まで下がるとこのトラン
ジスタ28が飽和導通して積分器18の入力電圧
が下げられ、従つてその出力電圧を上げる形とな
り、積分器18の出力の電位はこの点で平衡状態
となる。即ち、積分器18の出力電圧はO2セン
サ10が以後たとえリツチであると判別していて
も、これ以上低下せず、従つて噴射パルス幅を小
さくしようとするフイードバツク補正量がこれ以
上大きくならない。冷却水温が上昇すると、これ
に応じてトランジスタ28のベース電位は低下し
て行き、従つてこのトランジスタ28の飽和、し
や断点もこれにつれて変化し、その結果、積分器
18の出力電位の平衡点も低下して行く。即ち、
フイードバツク補正量の上限値は、冷却水温が上
昇するにつれて大きくなる。冷却水温がある程度
上昇すると、トランジスタ28のベース電位はも
はやこのトランジスタ28が飽和できない状態ま
で低下し、従つて以降は、トランジスタ28が常
にしや断状態となるため、噴射パルス幅を小さく
する方向のフイードバツク補正量は従来と同様に
大きな値をとることができる。
Although not shown in FIG. 1, the arithmetic circuit 20
receives the output voltage of the water temperature sensor 38 and performs water temperature correction control to control the pulse width of the injection pulse according to the voltage. When the engine cooling water temperature is low, the injection pulse width increases and the engine is emptied. The fuel ratio becomes rich. When the O 2 sensor 10 detects this and outputs a voltage (approximately 1.0V) representing the richness, the output voltage of the integrator 18 becomes as described above.
As a result, feedback correction is performed and the pulse width of the injection pulse is reduced, that is, the air-fuel ratio is controlled to be lean. However, in this case, since the output voltage THW of the water temperature sensor 38 is high, the base potential of the transistor 28 is also high, and the integrator 1
When the potential of the output of the integrator 18 drops to a certain point, the transistor 28 becomes saturated and conducts, lowering the input voltage of the integrator 18 and increasing its output voltage.At this point, the potential of the output of the integrator 18 becomes It becomes an equilibrium state. That is, the output voltage of the integrator 18 will not decrease any further even if the O 2 sensor 10 determines that the injection pulse width is rich, and therefore the feedback correction amount for reducing the injection pulse width will not increase any further. . As the cooling water temperature rises, the base potential of the transistor 28 decreases accordingly, and the saturation point and cutoff point of the transistor 28 also change accordingly, and as a result, the output potential of the integrator 18 becomes unbalanced. The points are also going down. That is,
The upper limit value of the feedback correction amount increases as the cooling water temperature increases. When the cooling water temperature rises to a certain extent, the base potential of the transistor 28 drops to the point where the transistor 28 can no longer be saturated.Therefore, since the transistor 28 is always in a slow state, it is necessary to reduce the injection pulse width. The feedback correction amount can take a large value as in the conventional case.

第2図は、上述した冷却水温とフイードバツク
補正量の燃料減量側の上限値との関係を表わして
いる。同図からも明らかのように、冷却水温が−
20℃の場合は、トランジスタ28のベース電位が
高いから、積分器18の出力電圧が低下し始めて
すぐ平衡となり、フイードバツク補正量の燃料減
量側の上限値は5%程度となる。冷却水温が上昇
するとこれにつれてフイードバツク補正量の上記
上限値は大きくなり、冷却水温が20℃を越える
と、トランジスタ28が積分器18の出力電圧に
係りなく常にしや断状態となるから以後、フイー
ドバツク補正量の上記上限値は約20%と比較的大
きい値となり、機関暖機後は従来と同様の上限値
となる。
FIG. 2 shows the relationship between the above-mentioned cooling water temperature and the upper limit value of the feedback correction amount on the fuel reduction side. As is clear from the figure, the cooling water temperature is -
In the case of 20° C., since the base potential of the transistor 28 is high, the output voltage of the integrator 18 begins to decrease and reaches equilibrium immediately, and the upper limit value on the fuel reduction side of the feedback correction amount is about 5%. As the cooling water temperature rises, the above-mentioned upper limit value of the feedback correction amount increases accordingly, and when the cooling water temperature exceeds 20°C, the transistor 28 is always in a weak state regardless of the output voltage of the integrator 18, so that from then on, the feedback correction amount becomes larger. The above-mentioned upper limit value of the correction amount is a relatively large value of about 20%, and after the engine warms up, it becomes the same upper limit value as before.

なお、水温に基づく上述のフイードバツク補正
量の燃料減量側の上限値の可変制御は、O2セン
サ10がリツチと判別し、噴射パルス幅を小さく
しようとフイードバツク補正するときのみ行われ
る。即ち、O2センサ10がリーンと判別した場
合は、ダイオード30及びトランジスタ28に逆
方向に電圧が印加されるため、これらの回路はし
や断状態となり全く作動しない。
The above-mentioned variable control of the upper limit value of the feedback correction amount on the fuel reduction side based on the water temperature is performed only when the O 2 sensor 10 determines that the fuel is rich and feedback correction is performed to reduce the injection pulse width. That is, when the O 2 sensor 10 determines that the O 2 sensor 10 is lean, a voltage is applied to the diode 30 and the transistor 28 in the opposite direction, so that these circuits are cut off and do not operate at all.

以上詳細に説明したように本発明によれば、空
燃比のフイードバツク補正量の燃料減量側の上限
値が、機関温度が低いときに機関温度が高いとき
よりも小さくなるように機関温度に応じて制御さ
れるため、機関低温時に空燃比のリーン側への過
大な制御を防止することができ、もたつき、バツ
クフアイア等の生じることのない良好な運転特性
を得ることができ、しかも機関暖機後は従来と同
様の制御を行うことができる。また、機関温度の
上昇に応じてそのフイードバツク補正量の燃料減
量側の上限値が徐々に増大せしめられるため、各
温度に応じた最適な空燃比制御を行うことが可能
となる。
As explained in detail above, according to the present invention, the upper limit value on the fuel reduction side of the air-fuel ratio feedback correction amount is adjusted according to the engine temperature so that it is smaller when the engine temperature is low than when the engine temperature is high. Therefore, it is possible to prevent the air-fuel ratio from being excessively controlled toward the lean side when the engine is cold, and it is possible to obtain good operating characteristics without sluggishness or backfire, and moreover, after the engine has warmed up. Control similar to conventional methods can be performed. Further, since the upper limit value of the feedback correction amount on the fuel reduction side is gradually increased as the engine temperature rises, it becomes possible to perform optimal air-fuel ratio control according to each temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロツク図、第2
図は冷却水温に対するフイードバツク補正量燃料
減量側の上限値の変化を表わす特性図である。 10…O2センサ、14…比較器、18…積分
器、20…噴射時間演算回路、24…燃料噴射
弁、28…トランジスタ、38…水温検出回路。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure is a characteristic diagram showing the change in the upper limit value of the feedback correction amount fuel reduction side with respect to the cooling water temperature. DESCRIPTION OF SYMBOLS 10... O2 sensor, 14...Comparator, 18...Integrator, 20...Injection time calculation circuit, 24...Fuel injection valve, 28...Transistor, 38...Water temperature detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 排気ガス中の特定成分濃度を検出する濃度セ
ンサと、該濃度センサの検出出力に応じて空燃比
のフイードバツク補正量を算出する第1の手段
と、該フイードバツク補正量に応じて内燃機関に
供給される混合気の空燃比を調整する空燃比調整
機構とを含む空燃比制御装置において、機関の温
度を検出する温度センサと、該温度センサの検出
出力に応じて前記フイードバツク補正量の燃料減
量側の上限値を変化させる第2の手段とを備え、
機関温度が低い場合は機関温度が高い場合より前
記フイードバツク補正量の燃料減量側の上限値が
小さくなるようにしたことを特徴とする空燃比制
御装置。
1. A concentration sensor that detects the concentration of a specific component in exhaust gas, a first means that calculates an air-fuel ratio feedback correction amount according to the detection output of the concentration sensor, and a first means that supplies the feedback correction amount to the internal combustion engine according to the feedback correction amount. An air-fuel ratio control device that includes an air-fuel ratio adjustment mechanism that adjusts the air-fuel ratio of an air-fuel mixture that is mixed with air, a temperature sensor that detects the temperature of the engine, and a fuel reduction side of the feedback correction amount according to the detected output of the temperature sensor. and a second means for changing the upper limit of
An air-fuel ratio control device characterized in that when the engine temperature is low, the upper limit value of the feedback correction amount on the fuel reduction side is smaller than when the engine temperature is high.
JP2606181A 1981-02-26 1981-02-26 Air-to-fuel ratio control device Granted JPS57143143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2606181A JPS57143143A (en) 1981-02-26 1981-02-26 Air-to-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2606181A JPS57143143A (en) 1981-02-26 1981-02-26 Air-to-fuel ratio control device

Publications (2)

Publication Number Publication Date
JPS57143143A JPS57143143A (en) 1982-09-04
JPS6313012B2 true JPS6313012B2 (en) 1988-03-23

Family

ID=12183162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2606181A Granted JPS57143143A (en) 1981-02-26 1981-02-26 Air-to-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS57143143A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230532A (en) * 1984-04-28 1985-11-16 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
JPS61183435U (en) * 1985-05-08 1986-11-15
JPH06103283B2 (en) * 1988-06-20 1994-12-14 トヨタ自動車株式会社 Oxygen sensor controller
JP3887871B2 (en) * 1997-04-14 2007-02-28 株式会社デンソー Air-fuel ratio control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460623A (en) * 1977-10-03 1979-05-16 Gen Motors Corp Fuel controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460623A (en) * 1977-10-03 1979-05-16 Gen Motors Corp Fuel controller

Also Published As

Publication number Publication date
JPS57143143A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS6356416B2 (en)
JPH0379542B2 (en)
JPS6313012B2 (en)
JPH03275954A (en) Control device for air-fuel ratio of internal combustion engine using fuel of different kind
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
US4612889A (en) Idle control method for an internal combustion engine
JPS62253936A (en) Electronically controlled fuel injection equipment for internal combustion engine
JPH02104942A (en) Device for feeding mixed fuel of internal combustion engine
JPS5949346A (en) Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type
JP2609230B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0517398Y2 (en)
JPH0318019B2 (en)
JPS6029899B2 (en) Exhaust sensor bias circuit of air-fuel ratio control device
JPS63205443A (en) Air-fuel ratio controller for internal combustion engine
JPS62637A (en) Air-fuel ratio control device of internal-combustion engine
JPS623159A (en) Intake secondary air supply device for internal-combustion engine
JPS63992Y2 (en)
JPH0545143B2 (en)
JPH0531247Y2 (en)
JPS63105256A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JPS6140440A (en) Fuel injection amount control device in internal combustion engine
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPS61106944A (en) Electronic control fuel injection device of internal-combustion engine