JPS6318329A - Liquid crystal element and its manufacture - Google Patents

Liquid crystal element and its manufacture

Info

Publication number
JPS6318329A
JPS6318329A JP16078286A JP16078286A JPS6318329A JP S6318329 A JPS6318329 A JP S6318329A JP 16078286 A JP16078286 A JP 16078286A JP 16078286 A JP16078286 A JP 16078286A JP S6318329 A JPS6318329 A JP S6318329A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
conductive film
crystal element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16078286A
Other languages
Japanese (ja)
Inventor
Fumie Fujimura
藤村 扶美江
Takashi Enomoto
隆 榎本
Naoya Nishida
直哉 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16078286A priority Critical patent/JPS6318329A/en
Publication of JPS6318329A publication Critical patent/JPS6318329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the yield of manufacture and to reduce the cost by giving high resistance to the top surface of the electrode pattern of a conductive film formed at least one of substrates. CONSTITUTION:An ITO film 12 with relatively low resistance is vapor-deposited on a glass substrate 11 and patterned. Then, laser light 13 is projected as a heating beam in an oxygen atmosphere diluted with nitrogen to heat and oxidize only the surface of the electrode pattern of the ITO film 12. Consequently, the surface of the ITO film 12' irradiated with the laser light is subjected to high resistance to increase in resistance by >=2 figures while the internal resistance of the ITO film is still low. Then, an oriented film (polyimide) is formed by coating. Consequently, an upper and a lower substrate are prevented from short-circuiting each other owing to a pinhole or break of the oriented film and the interface between the conductive film and an insulating film can be made clean.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶素子及びその製造方法に関し、特に、均
一なモノドメイン配向を得る液晶素子及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal element and a method for manufacturing the same, and particularly to a liquid crystal element that obtains uniform monodomain alignment and a method for manufacturing the same.

[従来の技術] 従来より、 ITQ (インジウム・チン・オキサイト
IndiuIIl−Tin−Oxide )膜は、低抵
抗て高い透過率を示すことから、透明導電膜として最も
よく用いられ、液晶表示素子の電極として欠かせないも
のとなっている。ITO膜は、通常、ガラス基板上にス
パッタリング蒸着によって生成され、エツチングによっ
て不要部分を除去し、所望の形状にバターニングされて
いる。
[Prior Art] ITQ (Indium Tin Oxide) film has been most commonly used as a transparent conductive film because it exhibits low resistance and high transmittance, and is used as an electrode for liquid crystal display devices. It has become indispensable. An ITO film is usually produced on a glass substrate by sputtering deposition, unnecessary portions are removed by etching, and the ITO film is patterned into a desired shape.

第5図は、上記の工程て形成された従来の液晶セルの断
面図である。85図において、液晶セルは、2枚のガラ
ス基板21.21aの少なくとも一方の基板面に [T
O膜22.22aを形成し、さらに配向膜23.23a
て被覆し、それらの間に液晶材24を挟持して構成され
ている。
FIG. 5 is a cross-sectional view of a conventional liquid crystal cell formed using the above process. In Figure 85, the liquid crystal cell has a [T
An O film 22.22a is formed, and an alignment film 23.23a is formed.
and a liquid crystal material 24 is sandwiched between them.

しかしながら、以上のような構成ては第3図に示す様に
配向膜23あるいは23aにピンホール25゜25aな
どにより上下電極がショートする危険か生じ、液晶表示
素子が表示不良となる。また、配向膜23.23aの膜
厚が厚いと液晶の駆動電圧がかかり、lCの負荷か大き
くなる。そこで配向膜23゜23aを薄くしなければな
らないが、 ITOのエッチにより配向膜23.23a
が連続的に形成されず、断切れ26が生じ、上下基板か
ショートする危険性があった。
However, with the above configuration, as shown in FIG. 3, there is a risk that the upper and lower electrodes may be short-circuited due to pinholes 25.degree. 25a in the alignment film 23 or 23a, resulting in poor display of the liquid crystal display element. Further, if the alignment film 23.23a is thick, a driving voltage is applied to the liquid crystal, and the LC load becomes large. Therefore, it is necessary to make the alignment film 23.23a thinner, but by etching the ITO, the alignment film 23.23a becomes thinner.
was not formed continuously, and there was a risk that a break 26 would occur, causing a short circuit between the upper and lower substrates.

第4図は、第3図に示した構成において、配向膜の欠陥
を補償するために絶縁膜を形成させた従来の液晶セルの
断面図である。第4図において、液晶セルは2枚のガラ
ス基板21.21aの少なくとも一方の基板面に IT
O膜22.22aを形成し、さらに絶縁膜27.27a
で被覆し、さらに配向11g23゜23aを形成し、そ
れらの間に液晶材24を挟持して構成されている。
FIG. 4 is a cross-sectional view of a conventional liquid crystal cell in which an insulating film is formed to compensate for defects in the alignment film in the configuration shown in FIG. In FIG. 4, the liquid crystal cell is placed on at least one of the two glass substrates 21 and 21a.
An O film 22.22a is formed, and an insulating film 27.27a is formed.
11g, 23°23a are formed, and a liquid crystal material 24 is sandwiched between them.

ところが配向膜の欠陥を補償するために形成された絶縁
膜27.27aは液晶駆動電圧を大きくし、ICに負荷
をかけるのみならず、 ITO膜22.22aと絶縁膜
の界面を汚染する恐れがある。これらのような表示素子
は製品の歩留りの著しい低下につながり、ひいては製品
のコストアップを招くことになる。
However, the insulating film 27.27a formed to compensate for defects in the alignment film not only increases the liquid crystal drive voltage and places a load on the IC, but also poses a risk of contaminating the interface between the ITO film 22.22a and the insulating film. be. Display elements such as these lead to a significant decrease in product yield and, in turn, lead to an increase in product cost.

[発明が解決しようとする問題点] 本発明の目的は、上記の様な従来の技術の問題点に鑑み
、その解決を計り、製造上の歩留りを良好にすることが
できると共にコストダウンをはかることのできる液晶表
示及びその製造方法を提供するものである。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the conventional technology as described above, improve manufacturing yield, and reduce costs. The present invention provides a liquid crystal display capable of producing a liquid crystal display and a method for manufacturing the same.

[問題点を解決するための手段] 即ち、本発明の第1の発明は導電性被膜を有する2枚の
基板と、その間に挟持された液晶材を有する液晶素子に
おいて、少なくとも一方の基板に形成された導電性被膜
の電極パターンの表面が高抵抗化されていることを特徴
とする液晶素子である。
[Means for Solving the Problems] That is, the first aspect of the present invention is a liquid crystal element having two substrates each having a conductive film and a liquid crystal material sandwiched between the two substrates. The liquid crystal element is characterized in that the surface of the electrode pattern of the conductive film has a high resistance.

また、第2の発明は導電性被膜を有する2枚の基板と、
その間に挟持された液晶材を有する液晶素子の製造方法
において、少なくとも一方の基板に導電性被膜の電極パ
ターンを形成し、次いで該導電性被膜を酸化処理するこ
とにより、その表面を高抵抗化することを特徴とする液
晶素子の製造方法である。
Further, the second invention includes two substrates having a conductive film,
In a method of manufacturing a liquid crystal element having a liquid crystal material sandwiched between them, an electrode pattern of a conductive film is formed on at least one substrate, and then the conductive film is oxidized to make its surface high in resistance. This is a method for manufacturing a liquid crystal element characterized by the following.

本発明において、少なくとも一方の基板上に形成された
電極パターンの導電性被膜の表面を高抵抗化する方法は
該導電性被膜の表面に酸化剤あるいは酸化剤を含む雰囲
気中において加熱ビームを照射する方法、又は酸素プラ
ズマに曝することにより行うのが好ましい。
In the present invention, the method for increasing the resistance of the surface of the conductive film of the electrode pattern formed on at least one substrate is to irradiate the surface of the conductive film with an oxidizing agent or a heating beam in an atmosphere containing an oxidizing agent. Preferably, it is carried out by a method or by exposure to oxygen plasma.

また、導電性被膜としては ITO膜か好ましい。Further, as the conductive film, an ITO film is preferable.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図(a)〜(d)は、本発明の液晶素子の製造方法
の1例を示す工程図である。各図の順序に従って工程を
説明すると、まず第1図(a)に示される如く、ガラス
基板ll上に比較的低抵抗のITOff!12をスパッ
タリング蒸着により成膜する。これに、フォトレジスト
を塗布してマスク露光し、不要部のレジストを除去して
 ITO膜をバターニングする0次いで、第1図(b)
に示す如く、窒素希訳した酸素雰囲気中で加熱ビームと
して、例えばレーザー光13を照射することにより I
TOllJ12の電極パターンの表面のみを加熱酸化す
る。その結果、第1図(c)に示す如く、レーザー照射
されたITO$12′の表面は高抵抗化され、抵抗か2
桁以上大きくなり、一方、 ITO膜内部は低抵抗のま
まとなる。その後、第1図(d)に示す如く配向膜(ポ
リイミド)を塗布する。
FIGS. 1(a) to 1(d) are process diagrams showing one example of the method for manufacturing a liquid crystal element of the present invention. To explain the process according to the order of each figure, first, as shown in FIG. 1(a), a relatively low resistance IT Off! 12 is formed into a film by sputtering vapor deposition. A photoresist is applied to this, exposed using a mask, unnecessary parts of the resist are removed, and the ITO film is patterned.Next, as shown in Figure 1(b)
As shown in FIG.
Only the surface of the electrode pattern of TOllJ12 is heated and oxidized. As a result, as shown in Figure 1(c), the surface of the ITO $12' irradiated with the laser becomes highly resistive, and the resistance increases by 2.
The resistance increases by more than an order of magnitude, while the resistance inside the ITO film remains low. Thereafter, an alignment film (polyimide) is applied as shown in FIG. 1(d).

この様にして得られた基板を2枚互に対向せしめてシー
ル材で貼り合わせ、その間に通常の方法により液晶材を
注入することにより液晶素子を得ることかてきる。
A liquid crystal element can be obtained by placing two of the substrates thus obtained so as to face each other and bonding them together with a sealant, and then injecting a liquid crystal material between them using a conventional method.

本発明において用いられる液晶材としてはカイラルスメ
クチックC相を有する強誘電性液晶か好ましい。
The liquid crystal material used in the present invention is preferably a ferroelectric liquid crystal having a chiral smectic C phase.

また、加熱ビームの照射において、レーザービーム照射
位置に応じてレーザー出力を制御し、位置に応じて表面
酸化膜の厚さをITO膜の厚さの0〜100%に制御す
ることか好ましい。
Further, in the heating beam irradiation, it is preferable to control the laser output depending on the laser beam irradiation position and control the thickness of the surface oxide film to 0 to 100% of the ITO film thickness depending on the position.

次に、第2図(a)〜(d)は本発明の液晶素子の製造
方法の他の例を示す工程図である。各図の順序に従って
工程を説明すると、まず第2[M(a)に示される如く
、ガラス基板ll上に比較的低抵抗、例えば10−4Ω
cIlの ITO[12をスパッタリング蒸着により成
膜する。次いで、)オドレジストを塗布して、マスク露
光し、不要部のレジストを除去して ITOをパターニ
ングして電極パターンを形成する。これに第2図(b)
に示す如く、上記ガラス基板を酸素プラズマ雰囲気に一
定時間、例えば約10分間曝す。その結果 ITO膜の
表面部分の抵抗が104Ωcmに上昇し、一方、 IT
O膜内部は低抵抗のままとなる。その後第2図(d)に
示す如く配向膜(ポリイミド)を塗布する。
Next, FIGS. 2(a) to 2(d) are process diagrams showing another example of the method for manufacturing a liquid crystal element of the present invention. To explain the process according to the order of each figure, first, as shown in second [M(a)], a relatively low resistance, e.g.
A film of ITO[12 of cIl is formed by sputtering deposition. Next, a) odd resist is applied, exposed using a mask, unnecessary portions of the resist are removed, and the ITO is patterned to form an electrode pattern. In addition to this, Figure 2 (b)
As shown in Figure 2, the glass substrate is exposed to an oxygen plasma atmosphere for a certain period of time, for example, about 10 minutes. As a result, the resistance of the surface portion of the ITO film increased to 104Ωcm, while the
The resistance inside the O film remains low. Thereafter, an alignment film (polyimide) is applied as shown in FIG. 2(d).

この様にして得られた基板を2枚互に対向せしめてシー
ル材で貼り合わせ、その間に通常の方法により液晶材を
注入することにより液晶素子を得ることができる。
A liquid crystal element can be obtained by placing two of the substrates thus obtained so as to face each other and bonding them together with a sealant, and then injecting a liquid crystal material between them using a conventional method.

[作用] 本発明は、液晶素子の少なくとも一方の基板の導電性被
膜からなる電極パターンの表面を高抵抗化することによ
り、配向膜のピンホールや断切れ等による上下基板間の
ショートを防止し、さらに導電性被膜と絶縁膜の界面を
クリーンな状態にすることができる。
[Function] The present invention prevents short circuits between the upper and lower substrates due to pinholes or breaks in the alignment film by increasing the resistance of the surface of the electrode pattern made of a conductive film on at least one of the substrates of the liquid crystal element. Furthermore, the interface between the conductive film and the insulating film can be kept clean.

また、本発明において、加熱ビームの照射又はプラズマ
処理で ITO膜の抵抗が増す理由は次のように考えら
れる。即ち、第6図に示されるように、本来、  IT
OはIn、Oユの約4eVのバンドギャップの上端(コ
ンダクションバンド底端) Ec付近に、酸素欠陥やS
n←によるドナー準位E。を有するハンド構造になって
いる。  ITOの導電性はこのドナー準位からの電子
供給によるもので、上記の説明において抵抗値が変化す
るのは、加熱ビームの照射又は酸素プラズマによって酸
素欠陥か埋められ、ドナー準位及び電子密度が減少した
ためと考えられる。
Further, in the present invention, the reason why the resistance of the ITO film increases due to heating beam irradiation or plasma treatment is considered to be as follows. That is, as shown in Figure 6, originally IT
O is In, the upper end of the approximately 4 eV band gap of OU (bottom end of the conduction band), and oxygen defects and S
Donor level E due to n←. It has a hand structure. The conductivity of ITO is due to the supply of electrons from this donor level, and the reason why the resistance value changes in the above explanation is that oxygen vacancies are filled by heating beam irradiation or oxygen plasma, and the donor level and electron density change. This is thought to be due to the decrease.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例ま たて60mm、よこ60mm、厚さ 1.1■のガラス
基板上にスパッタリング蒸着法により厚さ 0.2μm
のITO膜を成膜した。
Example: 0.2 μm thick by sputtering vapor deposition on a glass substrate measuring 60 mm wide, 60 mm wide, and 1.1 mm thick.
An ITO film was formed.

次いで、前記ITO膜上にポジ型のフォトレジストを塗
布し、マスクを通して露光を行い、現像し、不要部のレ
ジストを除去して ITO膜の電極パターンを得た。
Next, a positive photoresist was coated on the ITO film, exposed to light through a mask, developed, and unnecessary portions of the resist were removed to obtain an electrode pattern of the ITO film.

次いで、該基板を密閉容器に収容し、容器内に酸素:窒
素= 1 : 100の混合気体を導入し、 ITO膜
に波長1.061Lm、ビーム径 100gm、数mW
のレーザー光を走査させて照射したところ、 ITO膜
の表面の抵抗値は約104ΩC11となった。尚、未照
射部分の中央部の抵抗値は約1O−4Ωcmであった。
Next, the substrate was placed in a sealed container, and a mixed gas of oxygen:nitrogen = 1:100 was introduced into the container, and a wavelength of 1.061 Lm, a beam diameter of 100 gm, and several mW were applied to the ITO film.
When the ITO film was scanned and irradiated with laser light, the resistance value of the surface of the ITO film was approximately 104ΩC11. The resistance value at the center of the non-irradiated portion was approximately 10-4 Ωcm.

次に、配向膜としてポリイミドを1000人の厚さに塗
布してストライブ状の ITOの透明電極を形成した基
板を得た。
Next, polyimide was applied as an alignment film to a thickness of 1000 nm to obtain a substrate on which striped ITO transparent electrodes were formed.

得られた基板の配向膜にラビング処理を行った後、基板
を2枚−軸性配向軸が互に平行になる様に対向させて、
セル厚1gmになる様に間隙を設けてシール材で貼着し
、強誘電性液晶であるチッソ社製のrcsIollJ 
 (商品名)を注入したところ、均一なモノドメインの
液晶素子を得ることができた。
After performing a rubbing treatment on the alignment film of the obtained substrate, the two substrates were placed facing each other so that their axial alignment axes were parallel to each other,
A gap is provided so that the cell thickness is 1 gm, and a sealing material is used to attach the ferroelectric liquid crystal, rcsIollJ manufactured by Chisso Corporation.
(trade name), a uniform monodomain liquid crystal element could be obtained.

また、得られた液晶素子を10000時間使用しても画
面は良好で品質の低下は認められなかった。
Furthermore, even after using the obtained liquid crystal element for 10,000 hours, the screen remained good and no deterioration in quality was observed.

実施例2 実施例1と同様の方法で得た ITO膜の電極パターン
を形成した基板を、酸素プラズマ中において、約10分
間曝したところ、 r ’r o Hの表面の抵抗値は
to’ΩC璽となった。
Example 2 A substrate with an ITO film electrode pattern formed thereon obtained in the same manner as in Example 1 was exposed to oxygen plasma for about 10 minutes, and the surface resistance value of r'r o H was to'ΩC. It became a seal.

次いで、得られた基板を用いて実施例1と同様の方法で
液晶素子を作製したところ、均一なモノドメインの画像
が得られ、また10000時間使用しても品質の低下は
認められなかった。
Next, when a liquid crystal element was produced using the obtained substrate in the same manner as in Example 1, a uniform monodomain image was obtained, and no deterioration in quality was observed even after 10,000 hours of use.

[発明の効果] 以上説明した通り、本発明によれば配向膜のピンホール
や断切れによる上下基板のショートの発生を防止するこ
とがてき、さらに導電性被膜と絶縁膜の界面をクリーン
な状態にすることができ、製品の歩留り向上及び性能ア
ップをはかることができる。
[Effects of the Invention] As explained above, according to the present invention, short circuits between the upper and lower substrates due to pinholes or breaks in the alignment film can be prevented, and the interface between the conductive film and the insulating film can be kept in a clean state. It is possible to improve product yield and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶素子の製造方法の1例を示す工程
図、第2図は他の例を示す工程図、第3図、第4図及び
第5図は従来の液晶セルの断面図および第6図はITO
のエネルギーバンドを示す説明図である。 11、21.21a ・−ガラス基板 12、22.22a・−ITO膜 12′・・・高抵抗化されたITO膜 13・・・レーザー光 14・・・酸素イオン 15、23.23a・・・配向膜 24・・・液晶材 25、25a・・・ピンホール 26・・・断切れ 27、27a・・・絶縁膜 EC・・・コンダクションバンド底端 E、・・・ドナー準位 EV・・・バレンスパント上端 E、・・・エネルギーギャップ 出°願人 キャノン株式会社 代理人  渡  辺  徳  廣 (・)F子7引11もエミ1□ッ 第3図 断を万才し 第4図 2a 第5図 第6図
Fig. 1 is a process diagram showing one example of the method for manufacturing a liquid crystal element of the present invention, Fig. 2 is a process diagram showing another example, and Figs. 3, 4, and 5 are cross sections of conventional liquid crystal cells. Figures and Figure 6 are ITO
It is an explanatory diagram showing the energy band of. 11, 21.21a - Glass substrate 12, 22.22a - ITO film 12'... ITO film 13 with increased resistance... Laser light 14... Oxygen ions 15, 23.23a... Alignment film 24...Liquid crystal material 25, 25a...Pinhole 26...Cuts 27, 27a...Insulating film EC...Conduction band bottom E,...Donor level EV...・Top end of Valenspant E...Energy Gap Applicant Norihiro Watanabe Canon Co., Ltd. Agent Figure 5 Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)導電性被膜を有する2枚の基板と、その間に挟持
された液晶材を有する液晶素子において、少なくとも一
方の基板に形成された導電性被膜の電極パターンの表面
が高抵抗化されていることを特徴とする液晶素子。
(1) In a liquid crystal element having two substrates each having a conductive film and a liquid crystal material sandwiched between them, the surface of the electrode pattern of the conductive film formed on at least one of the substrates has a high resistance. A liquid crystal element characterized by:
(2)液晶材がカイラルスメクチックC相を有する強誘
電性液晶である特許請求の範囲第1項記載の液晶素子。
(2) The liquid crystal element according to claim 1, wherein the liquid crystal material is a ferroelectric liquid crystal having a chiral smectic C phase.
(3)導電性被膜を有する2枚の基板と、その間に挟持
された液晶材を有する液晶素子の製造方法において、少
なくとも一方の基板に導電性被膜の電極パターンを形成
し、次いで該導電性被膜を酸化処理することにより、そ
の表面を高抵抗化することを特徴とする液晶素子の製造
方法。
(3) In a method for manufacturing a liquid crystal element having two substrates each having a conductive film and a liquid crystal material sandwiched between them, an electrode pattern of the conductive film is formed on at least one of the substrates, and then the conductive film is A method for manufacturing a liquid crystal element, characterized in that the surface of the liquid crystal element is made highly resistive by oxidizing the element.
(4)導電性被膜の酸化処理を酸化剤あるいは酸化剤を
含む雰囲気中において加熱ビームを照射することにより
行う特許請求の範囲第3項記載の液晶素子の製造方法。
(4) The method for manufacturing a liquid crystal element according to claim 3, wherein the oxidation treatment of the conductive film is performed by irradiating the conductive film with a heating beam in an oxidizing agent or an atmosphere containing an oxidizing agent.
(5)加熱ビームがレーザー光である特許請求の範囲第
4項記載の液晶素子の製造方法。
(5) The method for manufacturing a liquid crystal element according to claim 4, wherein the heating beam is a laser beam.
(6)レーザー光照射位置に応じてレーザー出力を制御
し、位置に応じて表面酸化膜の厚さを導電性被膜の厚さ
0〜100%に制御する特許請求の範囲第3項乃至第5
項のいずれかの項記載の液晶素子の製造方法。
(6) Claims 3 to 5 which control the laser output according to the laser beam irradiation position and control the thickness of the surface oxide film to 0 to 100% of the thickness of the conductive film according to the position.
A method for manufacturing a liquid crystal element according to any one of paragraphs.
(7)導電性被膜の酸化処理を酸素プラズマに曝するこ
とにより行う特許請求の範囲第3項記載の液晶素子の製
造方法。
(7) The method for manufacturing a liquid crystal element according to claim 3, wherein the oxidation treatment of the conductive film is carried out by exposing the conductive film to oxygen plasma.
JP16078286A 1986-07-10 1986-07-10 Liquid crystal element and its manufacture Pending JPS6318329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16078286A JPS6318329A (en) 1986-07-10 1986-07-10 Liquid crystal element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16078286A JPS6318329A (en) 1986-07-10 1986-07-10 Liquid crystal element and its manufacture

Publications (1)

Publication Number Publication Date
JPS6318329A true JPS6318329A (en) 1988-01-26

Family

ID=15722331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16078286A Pending JPS6318329A (en) 1986-07-10 1986-07-10 Liquid crystal element and its manufacture

Country Status (1)

Country Link
JP (1) JPS6318329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028654A (en) * 1991-12-27 2000-02-22 Rohm Co., Ltd. Liquid crystal display with electrode structure having small and high surface resistivity electrodes preventing accumulation of static electricity on electrode segments
KR20020032883A (en) * 2000-10-27 2002-05-04 한기관 Transparent ITO Pattern-Cutting Process Using Laser Marker
JP2002169156A (en) * 2000-11-30 2002-06-14 Sony Corp Method for manufacturing liquid crystal display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028654A (en) * 1991-12-27 2000-02-22 Rohm Co., Ltd. Liquid crystal display with electrode structure having small and high surface resistivity electrodes preventing accumulation of static electricity on electrode segments
KR20020032883A (en) * 2000-10-27 2002-05-04 한기관 Transparent ITO Pattern-Cutting Process Using Laser Marker
JP2002169156A (en) * 2000-11-30 2002-06-14 Sony Corp Method for manufacturing liquid crystal display

Similar Documents

Publication Publication Date Title
JPS6318329A (en) Liquid crystal element and its manufacture
JPS6374033A (en) Formation of pattern
JPH02223922A (en) Formation of spacer for liquid crystal gap
JPH0718996B2 (en) Liquid crystal display
JPH01169428A (en) Manufacture of liquid crystal display element
US5856853A (en) Short circuit preventing film of liquid crystal electro-optical device and manufacturing method thereof
JPS6311989A (en) Electro-optical display unit
JPH0441809B2 (en)
JP3171844B2 (en) Semiconductor single crystal thin film substrate liquid crystal light valve device
JPS6317430A (en) Liquid crystal element and its production
JPH0519265A (en) Method for forming liquid crystal oriented film
JPH11119222A (en) Production of orientation layer for liquid crystal display device and liquid crystal display device
JPH03167522A (en) Liquid crystal device fitted with transparent panel heater
JPH06301190A (en) Liquid crystal photo-mask, its manufacture, and exposing device
JPH0695133A (en) Liquid crystal electrooptical device
JPS5845009B2 (en) LCD display sealing
JPH05100236A (en) Production of liquid crystal display element
JP3592411B2 (en) Manufacturing method of thin film diode
JPH06202126A (en) Transparent electrode substrate and its production
JPH07218916A (en) Liquid crystal display panel, manufacture and driving method for same
JPH0254577A (en) Manufacture of thin film transistor
JPH0342626A (en) Production of thin-film diode
JPH01196021A (en) Manufacture of liquid crystal display element
JPH0327024A (en) Thin-film diode
JPH1138444A (en) Liquid crystal display device