JPS6318014A - Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace - Google Patents

Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace

Info

Publication number
JPS6318014A
JPS6318014A JP16163886A JP16163886A JPS6318014A JP S6318014 A JPS6318014 A JP S6318014A JP 16163886 A JP16163886 A JP 16163886A JP 16163886 A JP16163886 A JP 16163886A JP S6318014 A JPS6318014 A JP S6318014A
Authority
JP
Japan
Prior art keywords
oxygen
amount
molten steel
converter
amt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16163886A
Other languages
Japanese (ja)
Inventor
Munetaka Iwamoto
岩本 宗孝
Nobuo Kawamura
河村 信夫
Masachika Fukuda
福田 正親
Masahiro Kawakami
川上 正弘
Haruyoshi Tanabe
治良 田辺
Junichi Fukumi
純一 福味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16163886A priority Critical patent/JPS6318014A/en
Publication of JPS6318014A publication Critical patent/JPS6318014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To execute refining to control the content of C in a product molten steel to a target value with high accuracy by determining the balance of the gaseous oxygen in a converter in a converter operation from the kind of the steel to be produced and the raw materials to be used, stopping the refining by oxygen top blowing and blowing an inert gas from furnace bottom tuyeres to stir the molten steel when the amt. of the oxygen to be blown coincides with the determined value. CONSTITUTION:The molten iron is subjected to decarburization refining by the oxygen blown from an oxygen top blowing lance 2 in a converter having the lance 2 and the furnace bottom tuyeres 6. The total O0 of the amt. O1 of the oxygen necessary for decarburization, the amt. O2 of the oxygen required for oxidation of Si, Mn, P, etc., the amts. O3, O4, O5 of the oxygen generated in the reduction stage of Mn ore, iron ore and scale, and the amt. O6 of the oxygen required for oxidation of a carbonaceous material O0=O1+O2-O3-O4-O5+O6 is measured by an integrating flow meter 5 provided to a gaseous O2 supply pipe 4. The oxygen blowing is stopped and the inert gas such as Ar is blown from the furnace bottom tuyeres 6 into the converter to stir the molten steel 3 when the measured amt. coincides with the amt. of the oxygen set in an oxygen flow rate input pattern device 11 according to the steel kinds. The molten steel approximated to the target C grade with high accuracy by the final decarburization by the FeO in the molten steel is thus produced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、転炉等の冶金精錬炉において、その底部に
設けたガス吹込み口から吹込んで溶鋼を撹拌する底吹ガ
スの流−制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to flow control of bottom-blown gas that is blown into a metallurgical refining furnace such as a converter from a gas inlet provided at the bottom to stir molten steel. Regarding the method.

[従来の技術] 転炉吹錬においては、その前半の反応状況が最^の脱炭
速度を示す酸素供給律速であり、後半の反応状況は炭素
移動律速である。つまり、転炉吹錬の進行と共に、脱炭
遷移点CTを境にして、炉内反応状況は酸素供給律速か
ら炭素移動律速に変化する。転炉吹錬の後半になると、
酸素ランスから溶鋼に吹き込まれる上吹酸素ガス量が低
下するので、炉内の溶鋼撹拌力が低下し、溶鋼の鉄分の
酸化が著しくなる。この鉄分の酸化を防止するために、
従来、吹錬の後半において、上吹酸素ガス量を低下させ
るとともに、転炉底部に設けた底吹用の羽目(例えば、
ポーラスプラグ)を介して溶鋼中に吹込むガスの儲を増
大させて、底吹ガスによる溶鋼の撹拌力を強化している
。これにより、吹錬末期の溶鋼撹拌力が補充され、鉄分
及びマンガン等の有益成分の酸化が防止される。
[Prior Art] In converter blowing, the reaction situation in the first half is rate-limiting by oxygen supply, which shows the highest decarburization rate, and the reaction situation in the second half is rate-limiting by carbon transfer. That is, as the converter blowing progresses, the reaction situation in the furnace changes from oxygen supply rate-limiting to carbon transfer rate-limiting, with the decarburization transition point CT as the boundary. In the latter half of converter blowing,
Since the amount of top-blown oxygen gas blown into the molten steel from the oxygen lance decreases, the stirring power of the molten steel in the furnace decreases, and the oxidation of the iron content of the molten steel becomes significant. To prevent this iron from oxidizing,
Conventionally, in the latter half of blowing, the amount of top-blown oxygen gas was reduced, and bottom-blowing holes (for example,
This increases the amount of gas that is blown into the molten steel through the porous plug (porous plug), thereby strengthening the stirring power of the molten steel by the bottom blowing gas. This replenishes the molten steel stirring power at the final stage of blowing, and prevents oxidation of beneficial components such as iron and manganese.

[発明が解決しようとする問題点1 しかしながら、この従来の制御方法では、オペレータが
吹錬開始後の経過時間等を基に溶鋼の炭素濃度を経験的
に推定し、このオペレータの判断により底吹ガスの流量
を切替えている。撹拌による効果を実効あるものにする
ためには、底吹ガスの量を脱炭遷移点の直前で上昇させ
ることが好ましい。底吹ガス量の上昇が早すぎた場合に
は、ガスの使用量が増大して精錬コストが上昇し、一方
、底吹ガス愚の上昇が遅すぎた場合には、撹拌開始が遅
れて炭素の供給速度が低下し、鉄分が酸化するという問
題点がある。しかし、従来においては、前述の如く、オ
ペレータの経験的な判断により底吹ガス流儀を切替えて
いるので、その底吹ガス員の切替タイミングにおける炭
素濃度は大きくバラツキ、溶鋼の鉄分の酸化損失等を有
効に防止することはできない。
[Problem to be Solved by the Invention 1] However, in this conventional control method, the operator estimates the carbon concentration of molten steel empirically based on the elapsed time after the start of blowing, and the bottom blowing is determined by the operator's judgment. Switching the gas flow rate. In order to make the effect of stirring effective, it is preferable to increase the amount of bottom blowing gas just before the decarburization transition point. If the amount of bottom-blown gas rises too quickly, the amount of gas used will increase and refining costs will increase.On the other hand, if the amount of bottom-blown gas rises too slowly, the start of stirring will be delayed and carbon There is a problem that the supply rate of iron decreases and the iron content oxidizes. However, in the past, as mentioned above, the bottom-blowing gas style was switched based on the operator's empirical judgment, so the carbon concentration at the timing of switching the bottom-blowing gas member varied widely, and the oxidation loss of iron in the molten steel, etc. cannot be effectively prevented.

この発明はかかる事情に鑑みてなされたものであって、
吹錬中の溶鋼の炭素濃度を高精度で推定することができ
、底吹ガスの煽を常に適切なタイミングで切替えること
ができる冶金精錬炉における底吹ガスの流量制御方法を
提供することを目的とする。
This invention was made in view of such circumstances, and
The purpose of the present invention is to provide a method for controlling the flow rate of bottom blowing gas in a metallurgical refining furnace, which can estimate the carbon concentration of molten steel with high accuracy and always switch the bottom blowing gas at an appropriate timing. shall be.

E問題点を解決するための手段] この発明に係る冶金精錬炉における底吹ガスの流量制御
方法は、脱炭に要するMjliI量01、並びに該当す
る場合には、シリコン、鉄、マンガン及びリンの酸化に
要する酸素lIO2、マンガン鉱石の還元により生じる
酸素量03、鉄鉱石の還元により生じる酸素量04、ス
ケールの還元により生じる酸素量05並びに炭材の酸化
に要する酸素量06により下記数式により求まる全酸素
曇Onを基準にして、溶鋼中に吹き込まれた酸素量がこ
の全!I素量Ooを基準にして決まる所定値に一致した
場合に、精錬炉の底部に設けたガス吹込み口から溶鋼中
に吹込むガスの流量を変更することを特徴とする。
Means for Solving Problem E] The method for controlling the flow rate of bottom blowing gas in a metallurgical refining furnace according to the present invention reduces the amount of MjliI required for decarburization and, if applicable, The total amount of oxygen required for oxidation, lIO2, the amount of oxygen generated by the reduction of manganese ore, 03, the amount of oxygen generated by the reduction of iron ore, 04, the amount of oxygen generated by reduction of scale, 05, and the amount of oxygen required for oxidation of carbonaceous material, 06, is calculated using the following formula. Based on the oxygen cloud On, this is the total amount of oxygen blown into the molten steel! It is characterized in that the flow rate of the gas injected into the molten steel from the gas inlet provided at the bottom of the refining furnace is changed when it matches a predetermined value determined based on the I elementary amount Oo.

On =01+02−03−04−O5+Os・・・(
1) [作用〕 前記(1)式には、脱炭に使用される酸素量O1のほか
、該当する場合には、シリコン、鉄、マンガン及びリン
の酸化に要する酸素量02、マンガン鉱石の還元により
生じるl素置03、鉄鉱石の還元により生じる酸素量0
4、スケールの還元により生じる酸素量05並びに炭材
の酸化に要する酸素量06が考慮されており、これらに
関与するm素lを除外して炭素濃度を推定している。
On =01+02-03-04-O5+Os...(
1) [Function] In addition to the oxygen amount O1 used for decarburization, the above formula (1) also includes, if applicable, the oxygen amount O2 required for the oxidation of silicon, iron, manganese, and phosphorus, and the reduction of manganese ore. The amount of oxygen produced by the reduction of iron ore is 0.
4. The amount of oxygen produced by reduction of scale 05 and the amount of oxygen required for oxidation of carbon material 06 are taken into consideration, and the carbon concentration is estimated excluding ml involved in these.

このため、吹錬条件又は反応状況の相違に拘らず、炭素
濃度を高精度で推定することができる。従って、この推
定炭素濃度に基いて底吹ガス量を変更すれば、常に、適
切なタイミングで底吹ガスlを切替えることができる。
Therefore, the carbon concentration can be estimated with high accuracy regardless of differences in blowing conditions or reaction conditions. Therefore, by changing the amount of bottom blowing gas based on this estimated carbon concentration, the bottom blowing gas l can always be switched at an appropriate timing.

[実施例] 第1図はこの発明の実施例に係る底吹ガス儲制御方法を
実施するための装置を示す。転炉1には酸素ランス2が
挿入されており、このランス2には酸素ガス供給m(図
示せず)に接続されたパイプ4が接続されている。従っ
て、酸素ランス2にはこのパイプ4を介して酸素ガスが
供給され、その下端の吐出口から転炉内の溶鋼3に向け
てII素ガスが吐出される。
[Embodiment] FIG. 1 shows an apparatus for carrying out a bottom-blown gas profit control method according to an embodiment of the present invention. An oxygen lance 2 is inserted into the converter 1, and a pipe 4 connected to an oxygen gas supply m (not shown) is connected to the lance 2. Therefore, oxygen gas is supplied to the oxygen lance 2 via this pipe 4, and II elementary gas is discharged from the discharge port at the lower end toward the molten steel 3 in the converter.

このパイプ4の途中には、流量計及び流量調節弁(図示
せず)が介装されている。この流量計の検出出力は調節
計(図示せず)に入力され、この酸素ガス流量が調節計
に設定されている流量に一致するように、調節計は流量
調節弁を調節する。
A flow meter and a flow control valve (not shown) are interposed in the middle of the pipe 4. The detection output of this flowmeter is input to a controller (not shown), and the controller adjusts the flow rate control valve so that this oxygen gas flow rate matches the flow rate set in the controller.

パイプ4には、積算流量計5も介装されており、この積
算流量計5の出力は底吹ガス量の制御装置10に入力さ
れる。また、1lji[l装置10には、主原料の量、
副原料の量及び溶銑分析値が入力されており、パターン
入力装置11には各鋼種等毎に異なる酸素流量パターン
が設定されていて、マニュアルにより又はプロセスコン
ピュータ等からの信号により、所定の酸素流量パターン
が選択されて制−装置10に入力される。
An integrating flow meter 5 is also interposed in the pipe 4, and the output of this integrating flow meter 5 is input to a bottom blowing gas amount control device 10. In addition, the amount of the main raw material,
The amount of auxiliary raw materials and hot metal analysis values are input, and different oxygen flow patterns are set for each steel type in the pattern input device 11, and a predetermined oxygen flow rate is set manually or by a signal from a process computer, etc. A pattern is selected and input into the control device 10.

転炉1の底部には、ガス吹込み用の複数個の羽口6(例
えば、ポーラスプラグ)が設けられてお、す、この羽口
6には撹拌用ガス(例えば、Arガス)の供給源(図示
せず)に接続されたパイプ7が接続されている。このパ
イプ7には、流量計8−〇− 及び凍−調節弁9が介装されており、*a計8はパイプ
7を通流するArガスの流量を検出してその検出出力を
調節計12に出力し、弁9は調節計12から駆動信号を
受けてパイプ7を通流するA「ガスの流量を調節する。
A plurality of tuyeres 6 (for example, porous plugs) for blowing gas are provided at the bottom of the converter 1. These tuyeres 6 are used to supply stirring gas (for example, Ar gas). A pipe 7 connected to a source (not shown) is connected. This pipe 7 is equipped with a flow meter 8-〇- and a freezing control valve 9, and the *a meter 8 detects the flow rate of Ar gas flowing through the pipe 7 and sends the detected output to the controller. The valve 9 receives a drive signal from the controller 12 and adjusts the flow rate of the gas flowing through the pipe 7.

調節計12は制御装置10から入力されるArガス流量
設定値に一致するように、流量計8からの検出信号を基
に弁9の開度を調節する。
The controller 12 adjusts the opening degree of the valve 9 based on the detection signal from the flow meter 8 so as to match the Ar gas flow rate set value inputted from the control device 10 .

制御装置10は、以下の如くして、転炉内に吹き込まれ
た全酸素量01を基に溶鋼中の炭素濃度[C]を推定す
る。転炉自溶鋼中に導入された全酸素量O1は、下記(
1)式により現される。
The control device 10 estimates the carbon concentration [C] in the molten steel based on the total amount of oxygen 01 blown into the converter as follows. The total oxygen amount O1 introduced into the converter self-molten steel is as follows (
1) Expressed by the formula.

0@ −(h +02−Os −04−01+06・・
・(1) 但し、Os:II2炭に要する酸素量、02;シリコン
、マンガン及びリンの酸化に要する酸素量、 03 =マンガン鉱石の還元により生じる酸素l。
0@-(h +02-Os -04-01+06...
- (1) However, Os: II2 Amount of oxygen required for coal, 02: Amount of oxygen required for oxidizing silicon, manganese and phosphorus, 03 = Oxygen l generated by reduction of manganese ore.

04:鉄鉱石の還元により生じる酸素−1os ;スケ
ールの還元により生じる酸素量OI ;炭材の酸化に要
する酸素量。
04: Oxygen generated by reduction of iron ore -1os; Amount of oxygen generated by reduction of scale OI; Amount of oxygen required for oxidation of carbon material.

酸素ランスを介して転炉内に導入された酸素ガスが01
.02、Osとして消費される一方、03.04 、O
sとして酸素ガスが発生する。このため、全酸素量0+
と、0t−06との閣の収支バランスから、前記(1)
式が成立する。
The oxygen gas introduced into the converter through the oxygen lance is 01
.. 02,Os while 03.04,O
Oxygen gas is generated as s. Therefore, the total oxygen amount is 0+
From the cabinet's income and expenditure balance with 0t-06, the above (1)
The formula holds true.

脱炭に消費した酸素量01は、炭素濃度[C]がvt炭
遷移点〔C]@より高濃度側である場合は下記(2)式
にて現され、[C]が[C]@より低い場合には下記(
3)式にて現される。
The amount of oxygen consumed for decarburization 01 is expressed by the following equation (2) when the carbon concentration [C] is higher than the vt carbon transition point [C]@, and [C] is expressed as [C]@ If it is lower than below (
3) Expressed by the formula.

Os −(Wc −Wt  [C]/100)/Bs・
・・(2) 01− (Wc −V?  [C]s /100+Wt
([C]a −EC] )/100−1oa([CI@
−[C10)/ ([01−[C10) )/Bl  
    ・・・(3)この場合に、Wcは溶銑中の炭素
量であり、下記(4)式にて珊される。
Os − (Wc − Wt [C]/100)/Bs・
...(2) 01- (Wc -V? [C]s /100+Wt
([C]a -EC] )/100-1oa([CI@
-[C10)/([01-[C10))/Bl
(3) In this case, Wc is the amount of carbon in the hot metal, and is determined by the following formula (4).

Wc −W2  [C]t / 100・・・ (4) 但し、Wt:ll鋼の1L W2;銑鉄の■量、 [C1;底吹ガス流量切替タイミング又は底吹ガス種類
の切替タイミングの 目標炭素濃度、 [C]s  :脱炭遷移点における炭素濃度、[C]t
;初期炭素濃度、 [C10;脱炭限界点における炭素濃度、B謬 :最S
脱炭速度。
Wc - W2 [C]t / 100... (4) However, Wt: 1L of steel W2: ■ amount of pig iron, [C1: Target carbon of bottom-blown gas flow rate switching timing or bottom-blown gas type switching timing Concentration, [C]s: Carbon concentration at the decarburization transition point, [C]t
; initial carbon concentration, [C10; carbon concentration at decarburization limit point, B error: maximum S
Decarburization rate.

12炭に消費される酸素量o1は、その吹鋳峙期が脱炭
遷移点よりも前の酸素供給律速の段継では、前記(2)
式により現され、この(2)式に切替目標炭素濃度[C
]を代入すれば、そのときまでに脱炭に消費されている
べき酸素−01が求まる。
The amount of oxygen o1 consumed by the 12 coal is determined by the above (2) in the stage transition where the blow casting stage is before the decarburization transition point and the oxygen supply rate is limited.
The switching target carbon concentration [C
By substituting .

一方、吹錬が進行して、溶鋼の炭素濃度[C]が脱炭遷
移点を超えている場合には、M炭に消費される酸素量0
1は前記(3)式により現され、この(3)式に底吹ガ
ス流量又は底吹ガス種類の切替目標炭素濃度[C]を代
入すれば、そのときまでに消費されているべき酸素量0
!が求まる。
On the other hand, when blowing progresses and the carbon concentration [C] of the molten steel exceeds the decarburization transition point, the amount of oxygen consumed by M coal becomes 0.
1 is expressed by the above equation (3), and by substituting the bottom blowing gas flow rate or bottom blowing gas type switching target carbon concentration [C] into this equation (3), the amount of oxygen that should have been consumed by that time can be calculated. 0
! is found.

溶銑中のシリコンS1、マンガンMn及びリンPについ
ては、制−引「0は、転炉に装入する溶銑の成分分析値
(81、Mn及びpHりと転炉吹錬目標値との差から、
それらの酸化に消費される酸素−02を算出する。また
、鉄の酸化に要する酸素は転炉吹錬目標[C]から与え
られる終点スラグ(FEIO)目標値により算出する。
Regarding silicon S1, manganese Mn, and phosphorus P in hot metal, the limit value "0" is based on the component analysis value of hot metal charged to the converter (81, from the difference between Mn and pH value and the target value for converter blowing). ,
Calculate the oxygen-02 consumed in their oxidation. Further, the oxygen required for oxidizing iron is calculated based on the target end point slag (FEIO) value given from the converter blowing target [C].

一方、転炉内に投入されるMn鉱石、鉄鉱石及びスケー
ルについては、それらの還元によりaSが発生する。そ
の発生酸素量Os 、04及びOsは、Mn鉱石、鉄鉱
石及びスケールの転炉内装入量との関係で経験的に把握
されており、各チャージ毎に興なるMn鉱石等の装入層
を基にして算出される。
On the other hand, as for Mn ore, iron ore, and scale introduced into the converter, aS is generated by their reduction. The amount of oxygen generated, Os, 04, and Os, has been determined empirically in relation to the amount of Mn ore, iron ore, and scale input into the converter, and the amount of oxygen generated in each charge is determined by the amount of Mn ore, etc. Calculated based on

更に、予備処理溶銑の転炉吹錬の場合には、転炉内の熱
量が不足する場合があり、この場合には、炭材を転炉内
に投入して転炉内に熱を付加する。
Furthermore, in the case of converter blowing of pretreated hot metal, the amount of heat in the converter may be insufficient. .

この線材の鹸化にII索が消費されるので、制m装置1
0はその消費量06を炭材の投入量から算出する。
Since the II cable is consumed for saponification of this wire, the m control device 1
0 calculates the consumption amount 06 from the input amount of carbon material.

制n装置10はこのようにして算出した酸素量01乃至
06を前記(1)式に代入し、底吹ガス流量の切替目標
炭素濃度(例えば、脱炭遷移点の直前の炭素濃度)に対
応する全酸素量0++ @算出する。そして、IIII
ll装置10は積a重量計5が検出した全酸素量がこの
算出された全酸素量00に一致した時点で調節計12の
設定値を変更する。
The control device 10 substitutes the oxygen amounts 01 to 06 calculated in this way into the above equation (1), and switches the bottom blowing gas flow rate to correspond to the target carbon concentration (for example, the carbon concentration immediately before the decarburization transition point). Calculate the total oxygen amount 0++ @. And III
The II device 10 changes the set value of the controller 12 when the total oxygen amount detected by the product a weighing scale 5 matches the calculated total oxygen amount 00.

次に、この実施例の動作について説明する。制御装置1
0は、先ず、調節計12の設定値を所定の吹錬開始時の
底吹ガス流量に設定して酸素吹錬を開始する。制御装置
10は、主原料、副原料及び溶銑分析値に基づいて、前
記(1)乃至(4)式から、底吹ガス流量の切替の基準
になる全酸素量Ooを算出する。転炉内に吹き込まれた
全酸素量は積算流量計5により検出されており、III
 III Ii装10はこの積算流量計5により検出さ
れた全酸素量が、(1)式から算出された全酸素100
に一致した時点で、調節計12の設定値を衣類の底吹ガ
ス流量に変更する。
Next, the operation of this embodiment will be explained. Control device 1
0, first, the setting value of the controller 12 is set to a predetermined bottom blowing gas flow rate at the start of blowing, and oxygen blowing is started. The control device 10 calculates the total oxygen amount Oo, which serves as a reference for switching the bottom blowing gas flow rate, from equations (1) to (4) above, based on the main raw material, the auxiliary raw material, and the hot metal analysis value. The total amount of oxygen blown into the converter is detected by an integrated flowmeter 5, and III
III Ii device 10 is configured so that the total oxygen amount detected by this integrated flowmeter 5 is equal to the total oxygen amount calculated from equation (1).
When the value matches the value, the set value of the controller 12 is changed to the bottom blowing gas flow rate of the clothing.

制御装置10は、このようにして転炉に吹込まれた全酸
素量を基に順次底吹ガス流■を切替えていく。この底吹
ガス流量の切替は、各バッチ毎に異なる種々の吹錬条件
が考慮された酸素ガスの全Ionを基準にして求められ
た炭素濃度の推定値を基になされるから、反応状況に拘
らず常に最適のタイミングで底吹ガス流量を切替えるこ
とができる。従って、この発明によれば、転炉吹錬末期
の鋼浴撹拌力の低下を最小のガス量で補うことができ、
低コストで、溶鋼中の鉄分及びマンガンの酸化を防止し
、スラグ中のFe01度等を低値に維持することができ
る。
The control device 10 sequentially switches the bottom blowing gas flow (2) based on the total amount of oxygen blown into the converter in this manner. This switching of the bottom blowing gas flow rate is based on the estimated value of the carbon concentration obtained based on the total Ion of oxygen gas, which takes into account various blowing conditions that differ for each batch. Regardless of the situation, the bottom blowing gas flow rate can always be switched at the optimal timing. Therefore, according to this invention, the decrease in the steel bath stirring power at the final stage of converter blowing can be compensated for with the minimum amount of gas,
At low cost, it is possible to prevent the oxidation of iron and manganese in molten steel, and to maintain Fe01 degrees, etc. in slag at a low value.

第2図は、この発明の効果を示すグラフであって、横軸
は、転炉吹錬終点における溶鋼の炭素濃度であり、縦軸
は同じく終点におけるスラグ中の全鉄!(T、Fe)で
ある。図中、ハツチング領域は、従来の転炉吹錬におけ
る終点[C]と(T、Fe)との関係を示し、各プロッ
トはこの発明により底吹ガス流量を切替えた場合の終点
[C]と(T、Fe)との関係を示す。この図によると
、従来の(T、Fe)は、12乃至20%の範囲でバラ
ツキ、特に低炭素濃度まで脱炭する場合に(T、Fe)
の上昇が著しい。これに対し、この発明による場合は(
T、Fe)が約10%であり、従来よりも低いのに加え
、比較的低炭素濃度(0,05%)まで(T、Fe)の
上昇が抑制されている。
FIG. 2 is a graph showing the effects of this invention, in which the horizontal axis is the carbon concentration of molten steel at the end point of converter blowing, and the vertical axis is the total iron in the slag at the end point! (T, Fe). In the figure, the hatched area shows the relationship between the end point [C] and (T, Fe) in conventional converter blowing, and each plot shows the relationship between the end point [C] and (T, Fe) when the bottom blowing gas flow rate is changed according to the present invention. The relationship with (T, Fe) is shown. According to this figure, conventional (T, Fe) has a variation in the range of 12 to 20%, especially when decarburizing to a low carbon concentration, (T, Fe)
There has been a significant increase in On the other hand, in the case of this invention (
T, Fe) are about 10%, which is lower than conventional ones, and the increase in (T, Fe) is suppressed to a relatively low carbon concentration (0.05%).

第3図は、転炉内に造滓剤を実質的に投入しないレスス
ラグ吹錬における(T、Fe)と溶鋼中のマンガン歩留
との関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between (T, Fe) and manganese yield in molten steel in less slag blowing in which no slag-forming agent is substantially introduced into the converter.

転炉内の溶鋼中に投入されたマンガン鉱石の量は溶鋼1
トン当たり15乃至20koであり、転炉終点における
溶鋼温度は1630乃至1670℃である。この図から
明らかなように、(T、Fe)が高くなるに連れてスラ
グ中に移行するマンガンが増大して溶鋼中のマンガン歩
留が低下する。従来のように、(T、Fe)が12乃至
20%の場合にはマンガン歩留が約50%であるのに対
し、この発明のように、(T、Fe)が10%の場合に
は、マンガン歩留が65乃至70%と高い。
The amount of manganese ore put into the molten steel in the converter is molten steel 1
It is 15 to 20 ko per ton, and the molten steel temperature at the end point of the converter is 1630 to 1670°C. As is clear from this figure, as (T, Fe) increases, the amount of manganese transferred to the slag increases and the manganese yield in the molten steel decreases. Conventionally, when (T, Fe) is 12 to 20%, the manganese yield is about 50%, but as in this invention, when (T, Fe) is 10%, the manganese yield is about 50%. , the manganese yield is as high as 65 to 70%.

更に、第4図は、横軸に炭素濃度[C]をとり、縦軸に
脱炭速度dC/doをとって、転炉吹錬における脱炭速
度の推移を示すグラフ図である。図中、白丸は従来の転
炉吹錬における脱炭速度であり、黒丸はこの発明による
場合の脱炭速度である。
Furthermore, FIG. 4 is a graph showing the transition of the decarburization rate in converter blowing, with the horizontal axis representing the carbon concentration [C] and the vertical axis representing the decarburization rate dC/do. In the figure, white circles indicate the decarburization rate in conventional converter blowing, and black circles indicate the decarburization rate in the case of the present invention.

また、実線は脱炭反応が理想的に進行した場合の脱炭速
度の推移を示す。この図から明らかなように、従来は、
比較的高い炭素濃度の状態から脱炭速度が低下している
のに対し、この発明においては、脱炭遷移点の近傍にて
脱炭速度の低下が開始され、はぼ実線に沿って低下して
いる。これは、この発明においては、転炉吹錬末期にお
いても鋼浴撹拌が充分になされたことを示している。
Moreover, the solid line shows the transition of the decarburization rate when the decarburization reaction progresses ideally. As is clear from this figure, conventionally,
While the decarburization rate decreases from a relatively high carbon concentration state, in this invention, the decarburization rate starts to decrease near the decarburization transition point and decreases along the solid line. ing. This shows that in this invention, the steel bath was sufficiently stirred even at the final stage of converter blowing.

なお、上記実施例においては、全酸素量から溶鋼の炭素
濃度を推定し、この炭素濃度が所定値になったときに、
底吹酸素流量を変更している。しかし、この発明はこれ
に限らず、所定の炭素濃度にて求まる全酸素量を、底吹
ガスの種類(例えば、Arガス、酸素ガス、窒素ガス等
)を変更するタイミングをとるための情報に使用するこ
ともできる。
In the above example, the carbon concentration of molten steel is estimated from the total oxygen amount, and when this carbon concentration reaches a predetermined value,
The bottom blow oxygen flow rate is changed. However, the present invention is not limited to this, and the total oxygen amount determined at a predetermined carbon concentration can be used as information for determining the timing for changing the type of bottom blowing gas (for example, Ar gas, oxygen gas, nitrogen gas, etc.). You can also use

[発明の効果] この発明によれば、個々の操業毎に異なる種々の精錬条
件を考慮して求まる前記(1)式の全酸素量を基準にし
て、溶鋼中の炭素濃度を推定するから、個々のバッチ操
業毎に反応状況が異なるのに拘らず、常に高精度で炭素
濃度を推定することができる。従って、転炉吹錬におい
て、最適のタイミングで底吹ガス流−を変更することが
でき、低精錬コストで、溶鋼中の鉄分の損失を防止し、
スラグ中のFeO濃度を低値に維持することができる。
[Effects of the Invention] According to the present invention, the carbon concentration in molten steel is estimated based on the total oxygen amount in equation (1), which is determined by taking into account various refining conditions that differ for each individual operation. Carbon concentration can always be estimated with high accuracy even though the reaction conditions differ for each individual batch operation. Therefore, in converter blowing, the bottom blowing gas flow can be changed at the optimal timing, reducing refining costs and preventing loss of iron in molten steel.
The FeO concentration in the slag can be maintained at a low value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施状態を示す図、第2図は終点炭
素濃度と(T、Fe)との関係を示すグラフ図、第3図
は(T、Fe)とMn歩留との関係を示すグラフ図、第
4図はこの発明の効果を示すグラフ図、第5図は脱炭速
度の推移を示すグラフ図である。 1:転炉、2:ランス、3;溶鋼、5:積算流滲計、6
;羽口、8:流量計、9:バルブ、10:制御装置、1
1:入力装置、12:調節計出願人代理人 弁理士  
鈴江武彦 洟見濃&[C] 第2図 (T、Fe)  (’10) 炭素諸LLc]     <0ム) 第4図
Fig. 1 is a diagram showing the state of implementation of this invention, Fig. 2 is a graph showing the relationship between end point carbon concentration and (T, Fe), and Fig. 3 is a graph showing the relationship between (T, Fe) and Mn yield. FIG. 4 is a graph showing the effects of the present invention, and FIG. 5 is a graph showing changes in decarburization rate. 1: Converter, 2: Lance, 3: Molten steel, 5: Total flow meter, 6
; tuyere, 8: flow meter, 9: valve, 10: control device, 1
1: Input device, 12: Controller applicant patent attorney
Takehiko Suzue & [C] Figure 2 (T, Fe) ('10) Carbon LLc] <0m) Figure 4

Claims (1)

【特許請求の範囲】 脱炭に要する酸素量O_1、並びに該当する場合には、
シリコン、鉄、マンガン及びリンの酸化に要する酸素量
O_2、マンガン鉱石の還元により生じる酸素量O_3
、鉄鉱石の還元により生じる酸素量O_4、スケールの
還元により生じる酸素量O_5並びに炭材の酸化に要す
る酸素量O_6により下記数式により求まる全酸素量O
_0を基準にして、溶鋼中に吹き込まれた酸素量がこの
全酸素量O_0を基準にして決まる所定値に一致した場
合に、精錬炉の底部に設けたガス吹込み口から溶鋼中に
吹込むガスの流量を変更することを特徴とする冶金精錬
炉における底吹ガスの流量制御方法。 O_0=O_1+O_2−O_3−O_4−O_5+O
_6
[Claims] The amount of oxygen O_1 required for decarburization, and if applicable,
Amount of oxygen required for oxidation of silicon, iron, manganese and phosphorus O_2, amount of oxygen generated by reduction of manganese ore O_3
, the total oxygen amount O obtained from the following formula using the oxygen amount O_4 generated by the reduction of iron ore, the oxygen amount O_5 generated due to scale reduction, and the oxygen amount O_6 required for oxidation of carbonaceous material.
When the amount of oxygen injected into the molten steel matches a predetermined value determined based on the total oxygen amount O_0, the gas is injected into the molten steel from the gas injection port provided at the bottom of the refining furnace. A method for controlling the flow rate of bottom-blown gas in a metallurgical refining furnace, the method comprising changing the flow rate of the gas. O_0=O_1+O_2-O_3-O_4-O_5+O
_6
JP16163886A 1986-07-09 1986-07-09 Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace Pending JPS6318014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16163886A JPS6318014A (en) 1986-07-09 1986-07-09 Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16163886A JPS6318014A (en) 1986-07-09 1986-07-09 Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace

Publications (1)

Publication Number Publication Date
JPS6318014A true JPS6318014A (en) 1988-01-25

Family

ID=15738992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16163886A Pending JPS6318014A (en) 1986-07-09 1986-07-09 Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace

Country Status (1)

Country Link
JP (1) JPS6318014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298109A (en) * 1988-05-26 1989-12-01 Nkk Corp Method for controlling manganese content at the time of stopping blowing in converter
CN100439517C (en) * 2007-04-30 2008-12-03 武汉钢铁(集团)公司 Terminal low-oxygen control method for top bottom combined blowing converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298109A (en) * 1988-05-26 1989-12-01 Nkk Corp Method for controlling manganese content at the time of stopping blowing in converter
CN100439517C (en) * 2007-04-30 2008-12-03 武汉钢铁(集团)公司 Terminal low-oxygen control method for top bottom combined blowing converter

Similar Documents

Publication Publication Date Title
CN104250672B (en) A kind of method of combined blown converter high efficiency dephosphorating
CN108359766A (en) A kind of oxygen bottom blowing converter smelting process control method based on continuous measurement of molten steel temperature
CN113930575B (en) Converter double-slag smelting method for high-silicon high-phosphorus molten iron
Mukherjee et al. Production of low phosphorus steels from high phosphorus Indian hot metal: Experience at Tata Steel
JPS6318014A (en) Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace
JPS6318012A (en) Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
JP6844267B2 (en) Hot metal refining method
CA1205290A (en) Method of increasing the cold material charging capacity in the top-blowing production of steel
JPH11323420A (en) Pretreating method for molten iron
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP2000109924A (en) Method for melting extra-low sulfur steel
JP7469716B2 (en) Converter refining method
US4334922A (en) Process for metal-bath refining
US3251679A (en) Method of refining an iron melt
JP7477797B2 (en) Converter refining method
JPH0437135B2 (en)
JP2000309817A (en) Converter blowing method
JPS6318013A (en) Method for controlling end point of converter
RU2125100C1 (en) Method of steel melting in converter
SU1257097A1 (en) Method of steelmaking from chromium-treated iron in converter
US3254987A (en) Method of operating an iron-refining basic converter and for refining iron into steel
SU996457A1 (en) Method for blasting low-manganese cast iron
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JP2001279317A (en) Method for dephosphorizing molten iron
JPH0647690B2 (en) Apparatus and method for producing steel in top blowing container