JPH01298109A - Method for controlling manganese content at the time of stopping blowing in converter - Google Patents

Method for controlling manganese content at the time of stopping blowing in converter

Info

Publication number
JPH01298109A
JPH01298109A JP12713888A JP12713888A JPH01298109A JP H01298109 A JPH01298109 A JP H01298109A JP 12713888 A JP12713888 A JP 12713888A JP 12713888 A JP12713888 A JP 12713888A JP H01298109 A JPH01298109 A JP H01298109A
Authority
JP
Japan
Prior art keywords
blowing
manganese
content
time
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12713888A
Other languages
Japanese (ja)
Other versions
JP2687432B2 (en
Inventor
Hiroaki Miyahara
弘明 宮原
Kaoru Yamada
山田 馨
Koji Toyoda
豊田 剛治
Hiroaki Ishikawa
博章 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63127138A priority Critical patent/JP2687432B2/en
Publication of JPH01298109A publication Critical patent/JPH01298109A/en
Application granted granted Critical
Publication of JP2687432B2 publication Critical patent/JP2687432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To control Mn content in molten steel to be aimed at good accuracy and to improve the hitting ratio of C content at the time of stopping blowing by obtaining assumed Mn content from measured values of temp. and C content of the molten steel at the end stage of refining at the time of steelmaking refining in a converter from dephosphorized molten iron as raw material and further, comparing the assumed Mn at the time of stopping the blowing obtd. from end point control model. CONSTITUTION:At the time of producing the molten steel by decarburized refining with oxygen blowing after charging the pre-dephosphorized molten iron into the oxygen top and bottom flowing converter, the temp. and C content in the molten steel at end stage of blowing are measured with the sub-lance and the assumed value of Mn in the end stage of the blowing is obtd. from these measured values. At the same time, the assumed Mn content at the time of stopping the blowing is obtd. based on the assumed C content and temp. at the time of stopping the blowing calculated with the end point control model from the above both measured values. From the assumed Mn, etc., at the end stage of the flowing and the assumed Mn content at the time of stopping the flowing, O2 quality consumed with oxidized loss of Mn, is calculated, and the oxidized loss O2 quantity for Mn is added to the additional O2 quantity needed to decarburization and the raising temp. calculated with the end point model and the end point blowing is executed and Mn content at the time of stopping the blowing into the converter is controlled and C level in the molten steel at the end stage is accurately hit to the aimed value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、脱燐溶銑を利用した転炉吹錬において、目標
とする鋼浴のマンガン量を精度良く制御する転炉吹止マ
ンガン制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a converter blow-off manganese control method for precisely controlling the target manganese content in a steel bath in converter blowing using dephosphorized hot metal. It is related to.

[従来の技術] 従来の転炉終点制御技術は、鋼浴のマンガン量が低い(
0,2〜0.5νt%)条件下で制御を行うためのもの
である。しかしながら、吹錬末期のサブランス測定によ
る情報に基づいて鋼浴のマンガン量を推定し、それを吹
止マンガン制御に利用する方法については、具体的な提
案がされていない。
[Conventional technology] Conventional converter end point control technology has a low manganese content in the steel bath (
This is for controlling under conditions (0.2 to 0.5 νt%). However, no specific proposal has been made regarding a method for estimating the amount of manganese in a steel bath based on information obtained from sublance measurements at the end of blowing and using this for control of manganese at the end of blowing.

[発明が解決しようとする課題] 従来の転炉終点制御技術は、以上のような条件下で終点
制御を行うものであり、脱燐溶銑を利用した転炉吹錬で
は、マンガン鉱石の炉内直接還元により、鋼浴マンガン
が0.5〜l 、 5vt%と高く、従来技術をそのま
ま適用すると、マンガン酸化の影響が反映されないため
、終点制御精度が悪化し、吹止連中率が低下する等の問
題点があった。
[Problem to be solved by the invention] Conventional converter end point control technology performs end point control under the conditions described above, and in converter blowing using dephosphorized hot metal, manganese ore is Due to direct reduction, the steel bath manganese content is as high as 0.5 to 5 vt%, and if the conventional technology is applied as is, the effect of manganese oxidation will not be reflected, resulting in poor end point control accuracy and a decrease in the blow-off rate. There was a problem.

本発明は、脱燐溶銑を利用した転炉吹錬において、上記
従来技術の問題点を解決するために、従来のダイナミッ
クコントロールに、マンガン酸化によって失われる酸素
量を反映することによって、終点マンガン制御の情度向
上を図ることを目的とする転炉吹上マンガン制御方法を
提供するものである。
In order to solve the above-mentioned problems of the conventional technology in converter blowing using dephosphorized hot metal, the present invention provides end-point manganese control by reflecting the amount of oxygen lost due to manganese oxidation in the conventional dynamic control. The purpose of the present invention is to provide a method for controlling manganese blowing up in a converter with the aim of improving the quality of manganese.

[課題を解決するための手段] この発明に係る転炉吹止マンガン制御方法は、脱燐溶銑
を利用した転炉精錬法で、鋼浴の成分及び温度を目標値
に合せるための転炉終点制御方法において、吹錬末期に
鋼浴の炭素量と温度を測定し、得られた測定値に基づき
、吹錬末期の推定マンガン量を求め、さらに終点制御モ
デルから計算された吹止予想炭素量並びに吹止予想温度
に基づいて、吹止予想推定マンガン量を求め、吹錬末期
推定マンガン量と吹止予想マンガン量から、マンガン酸
化ロスで消費される酸素量を計算し、終点制御モデルに
て計算した脱炭及び昇温に必要な追加酸素量にマンガン
酸化ロス酸素量を加えて、終点制御を行う転炉吹止マン
ガン制御方法である。
[Means for Solving the Problems] The converter blow-off manganese control method according to the present invention is a converter refining method using dephosphorized hot metal, and the converter end point is adjusted to adjust the composition and temperature of the steel bath to target values. In the control method, the carbon content and temperature of the steel bath are measured at the final stage of blowing, and based on the measured values, the estimated manganese content at the final stage of blowing is calculated, and the expected carbon content at the end of blowing is calculated from the end point control model. Based on the expected temperature at the end of blowing, the estimated amount of manganese at the end of blowing is calculated, and the amount of oxygen consumed due to manganese oxidation loss is calculated from the estimated amount of manganese at the end of blowing and the expected amount of manganese at the end of blowing. This is a converter blow-off manganese control method that performs end point control by adding the amount of oxygen loss due to manganese oxidation to the calculated amount of additional oxygen required for decarburization and temperature rise.

〔作用] 本発明者等は、前述の如き従来技術における問題点を解
決するために、吹錬末期の炭素量とマンガン量との関係
を調査した結果、鋼浴の炭素量(vt%)と鋼浴マンガ
ンffi(wt%)との関係が第1図のような関係にあ
ることを求めた。これより、鋼浴マンガンは、脱炭遷移
点[C]Tまで、マンガン鉱石の還元により、増加傾向
となり、脱炭遷移点[C]□以降は、鉄の酸化反応に伴
うスラグ中全鉄分増加により、逆に減少傾向をたどるこ
とが判明した。
[Function] In order to solve the problems in the prior art as described above, the present inventors investigated the relationship between the carbon content and the manganese content at the final stage of blowing, and found that the carbon content (vt%) of the steel bath It was determined that the relationship with steel bath manganese ffi (wt%) was as shown in FIG. From this, the steel bath manganese tends to increase due to the reduction of manganese ore until the decarburization transition point [C]T, and after the decarburization transition point [C]□, the total iron content in the slag increases due to the oxidation reaction of iron. It was found that, on the contrary, it followed a decreasing trend.

従って、吹錬末期に鋼浴に吹込まれる酸素は、脱炭反応
、鉄酸化反応の他に、マンガン酸化反応によって消費さ
れるものもある。
Therefore, the oxygen blown into the steel bath at the final stage of blowing is consumed not only by decarburization reactions and iron oxidation reactions, but also by manganese oxidation reactions.

そこで、マンガン酸化によって消費される酸素量を求め
るために、以下の手法を適用した。
Therefore, the following method was applied to determine the amount of oxygen consumed by manganese oxidation.

まず、吹錬末期のサブランス測定時の鋼浴マンガンを得
るために、マンガン平衡式[(1)]と、マンガンバラ
ンス式C(2)]から、吹吹錬期の推定マンガン成分[
Mn]sを求める。
First, in order to obtain the manganese in the steel bath at the time of sublance measurement at the end of blowing, from the manganese balance equation [(1)] and manganese balance equation C(2)], the estimated manganese content at the blowing stage [
Find Mn]s.

log(Mn)s/[Mnl s=log (A/ C
O]s)+B/Ts+C・(1) WsTx  [Mr+コS +  シSI、X (Mn
)s  ”   vP x  [:Mn1P+δ × 
v     ・・・(2) n0RE 但し、 (Mn)+ ニスラグ中Mn成分、Ti:溶鋼温度[M
nl  :溶鋼中Mn成分、W、:重量J [C]:溶鋼中C成分、δ:Mn鉱石中Mn含有率。
log(Mn)s/[Mnl s=log(A/C
O]s)+B/Ts+C・(1) WsTx [Mr+CoS+SiSI,X (Mn
)s ” vP x [:Mn1P+δ ×
v...(2) n0RE However, (Mn)+ Mn component in varnish slag, Ti: Molten steel temperature [M
nl: Mn component in molten steel, W: weight J [C]: C component in molten steel, δ: Mn content in Mn ore.

A、B、C:定数。A, B, C: constants.

1−8:サブランス測定時、E:吹止時、P:溶銑。1-8: At the time of sublance measurement, E: At the time of blow-off, P: Hot metal.

j−3T:溶鋼、 SLニスラグ、P:溶銑。j-3T: Molten steel, SL Nislag, P: Hot metal.

Nn0RE  : Mn鉱石 (2)式を(Mn)sについて解き、(1)式の(Mn
)sに代入し、非線形方程式を解く。
Nn0RE: Mn ore Solve equation (2) for (Mn)s and solve (Mn) of equation (1)
) and solve the nonlinear equation.

これは、Newton−Rhapson法等により、電
子計算機にて簡単に解くことが出来る。
This can be easily solved using a computer using the Newton-Rhapson method or the like.

同時に、サブランスにて測定した炭素量と溶鋼温度より
、目標とする炭素量と温度を得るために必要な酸素−を
ダイナミックコントロールより計算する。
At the same time, the amount of oxygen required to obtain the target carbon content and temperature is calculated using dynamic control based on the carbon content and molten steel temperature measured by the sublance.

通常、ダイナミックコントロールの計算結果は、目標温
度を確保するため、炭素を吹下げる場合もあり、吹止予
想炭素量と、吹止予想温度を同時計算を行うのが公知で
ある。
Usually, the calculation result of dynamic control is that carbon may be blown down in order to ensure the target temperature, and it is known to simultaneously calculate the expected amount of carbon at the end of blow-off and the expected end-of-flow temperature.

゛そこで、吹止予想炭素量と、吹止予想温度から、(1
) 、 (2)式より、吹止予想マンガン成分[Mn1
Eを求めることが出来る。計算方法は前述の通りである
。この時、マンガン酸化によって、消費される酸素量は
、 △O−([M]3−[Mn]E) Xl0155n X11.2X  WT・・・(3) 但し、 △O:マンガン酸化ロス消費酸素量。
゛Therefore, from the expected amount of carbon at the end of the blow and the expected temperature at the end of the blow, (1
), From equation (2), the predicted manganese component [Mn1
We can find E. The calculation method is as described above. At this time, the amount of oxygen consumed by manganese oxidation is: △O-([M]3-[Mn]E) .

Mn WT二全全装入量 として計算することが出来る。Mn WT2 total charging amount It can be calculated as

(3)式で求めた△σMnを、ダイナミックコントロー
ル計算で求めた追加酸素量△Oに加え、△0−△O+△
0  ・・・(4) T    c    On 但し、 △0 ニド−タル追加酸素量 △0 :ダイナミックコントロール追加酸素量C として、追加酸素量△0.を求めることが出来る。
Adding △σMn obtained by formula (3) to the additional oxygen amount △O obtained by dynamic control calculation, △0−△O+△
0...(4) T c On However, △0 Nidotal additional oxygen amount △0: As the dynamic control additional oxygen amount C, the additional oxygen amount △0. can be found.

このとき実際の吹錬では、サブランス測定時の積算酸素
量から、追加酸素量△OTだけ吹込んだところで、吹錬
を終了すればよい。
At this time, in the actual blowing, the blowing may be completed when an additional oxygen amount ΔOT is blown from the cumulative oxygen amount at the time of sublance measurement.

なお、サブランス測定時以降に鉄鉱石を投入した場合は
、鉄鉱石含有酸素量分(20ON3/T)を追加酸素量
に反映させる必要があることはいうまでもない。
It goes without saying that if iron ore is introduced after sublance measurement, the amount of oxygen contained in the iron ore (20ON3/T) needs to be reflected in the amount of additional oxygen.

次に、本発明方法の実施例について述べる。Next, examples of the method of the present invention will be described.

[実施例コ 250T上底吹き転炉に、脱燐溶銑C4,2%、St 
tr。
[Example 250T top-bottom blowing converter was equipped with dephosphorized hot metal C4.2%, St
tr.

MnO,16%、P 0.017%を装入し、目標吹止
炭素0.140%、吹止マンガン1.40%、吹止温度
1640°Cにて吹錬を実施した。
MnO, 16%, P 0.017% were charged, and blowing was carried out at a target blow-off carbon of 0.140%, blow-stop manganese 1.40%, and blow-off temperature of 1640°C.

吹錬末期にサブランスによって炭素量及び温度を測定し
たところ、炭素量0.607%、温度1604℃であっ
た。
When the carbon content and temperature were measured using a sublance at the end of blowing, the carbon content was 0.607% and the temperature was 1604°C.

ここで、次の(1) 、 (2)式より、log(Mn
)    /[:Mnl  s −1og  (A/ 
 [Cコ。 )+BITs+C・・・(1〉 WX[Mnコ   +  W    x  (Mn)s
 −WP x  [Mn]PST      S   
  SL +δ× ν     ・・・(2) n0RE 但し、 (Mn)  ニスラグ中Mn成分 Tl:溶鋼温度[M
nl  :溶鋼中Mn成分  W、:重量J [C]:溶鋼中C成分 δ;Mn鉱石中Mn含有率A、
B、C:定数 i=s:サブランス測定時、E:吹止時、P:溶銑。
Here, from the following equations (1) and (2), log(Mn
) /[:Mnl s -1og (A/
[C. )+BITs+C...(1> WX[Mnko + W x (Mn)s
-WP x [Mn] PST S
SL +δ× ν...(2) n0RE However, (Mn) Mn component in the varnish slag Tl: Molten steel temperature [M
nl: Mn component in molten steel W, : Weight J [C]: C component in molten steel δ; Mn content in Mn ore A,
B, C: constant i=s: during sublance measurement, E: during blow-off, P: hot metal.

j−3T二溶鋼、 SL: スラグ、P:溶銑。j-3T two molten steel, SL: slag, P: hot metal.

Mn0RE  : Mn鉱石 推定マンガン成分[Mn1Sを求めたところ、[Mnl
3−1.56%を得た。
Mn0RE: Mn ore estimated manganese component [Mn1S was calculated, [Mnl
3-1.56% was obtained.

同時に、ダイナミックコントロールモデルより、吹止予
想炭素量0.144%、予想温度1643℃、追加酸素
量△O=125ONm3.冷却用鉄鉱石0.6Tを得た
At the same time, from the dynamic control model, the expected blow-off carbon content is 0.144%, the expected temperature is 1643°C, and the additional oxygen amount ΔO = 125ONm3. 0.6T of iron ore for cooling was obtained.

そこで、吹止予想炭素量と温度から、再び上記の(1)
 、 (2)式より、吹止予想マンガンを求めたところ
、[MnコE−1,31%が得られた。
Therefore, based on the expected carbon content and temperature, the above (1)
When the predicted manganese blowout was calculated from the formula (2), [MncoE-1, 31% was obtained.

さらに、次の(3)式よりマンガン酸化で消費される酸
素量を計算したところ、 ΔT:)  −14Nm3を得た。
Furthermore, when the amount of oxygen consumed by manganese oxidation was calculated from the following equation (3), ΔT:) -14Nm3 was obtained.

Mn △σ −([M]   [Mn]E) X 1010l
X11.2X  WT・・・(3) 但し、 ΔT5:マンガン酸化ロス消費酸素量 n ■、:全装入量 そこで、鉄鉱石0.BTを炉内に投入し、追加酸素量と
して、 ” 1144N[D” を吹込んだ後、吹止めたところ、吹止炭素(1,147
X吹止マンガン1.34%、温度1643℃にて連中率
のよい結果が得られた。
Mn △σ − ([M] [Mn]E) X 1010l
X 11.2 After putting BT into the furnace and blowing in ``1144N [D'' as an additional amount of oxygen, when the blow-off was stopped, the blow-off carbon (1,147
A good result with a good continuity rate was obtained at a temperature of 1643° C. with an X-blown manganese content of 1.34%.

次の第1表に本発明方法と従来方法との効果の比較を示
す。
Table 1 below shows a comparison of the effects of the method of the present invention and the conventional method.

また第2図及び第3図に目標マンガンと吹止マンガンの
関係を夫々本発明方法と従来方法の場合についてグラフ
にて示した。
Further, FIGS. 2 and 3 are graphs showing the relationship between the target manganese and the blowout manganese for the method of the present invention and the conventional method, respectively.

第1表並びに第2図及び第3図に示す如く、本発明の転
炉吹止マンガン制御方法によれば、目標マンガン(wt
%)−実績マンガン(vt%)は、平均値で0.051
%、σで0.072%であり、従来法における平均値0
.231%、σ0.319%に比較して、推定精度を向
上せしめていることは明らかである。
As shown in Table 1 and FIGS. 2 and 3, according to the converter blow-off manganese control method of the present invention, the target manganese (wt
%) - Actual manganese (vt%) is 0.051 on average
%, σ is 0.072%, and the average value in the conventional method is 0.
.. It is clear that the estimation accuracy is improved compared to 231% and σ0.319%.

尚、本発明方法による吹止マンガン制御方法は、脱燐溶
銑を利用した転炉吹錬において、吹止マンガンの大小に
かかわらず適用出来る。
The blow-off manganese control method according to the method of the present invention can be applied to converter blowing using dephosphorized hot metal regardless of the size of blow-off manganese.

[発明の効果コ 本発明の転炉吹止マンガン制御方法は、脱燐溶銑を利用
した転炉吹錬に適用することにより、転炉吹止時点にお
けるマンガン量の推定精度を向上せしめ、吹止炭素量及
び温度の同時連中率が向上し、その結果、吹止マンガン
及び炭素量不適中による再吹錬比率が大幅に減少する効
果が得られた。
[Effects of the Invention] By applying the converter blow-off manganese control method of the present invention to converter blowing using dephosphorized hot metal, it improves the accuracy of estimating the amount of manganese at the time of converter blow-off, and The simultaneous success rate of carbon content and temperature was improved, and as a result, the effect of significantly reducing the reblowing ratio due to unsuitable manganese and carbon content was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吹錬末期における鋼浴炭素とマンガンとの関係
を示す説明図、第2図は本発明方法の実施例における目
標マンガンと吹止マンガンの関係を示すグラフ、第3図
は従来法における目標マンガンと吹止マンガンの関係を
示すグラフである。
FIG. 1 is an explanatory diagram showing the relationship between steel bath carbon and manganese at the final stage of blowing, FIG. 2 is a graph showing the relationship between target manganese and blow-off manganese in an embodiment of the method of the present invention, and FIG. It is a graph showing the relationship between target manganese and blow-off manganese.

Claims (1)

【特許請求の範囲】[Claims] 脱燐溶銑を利用した転炉精錬法で、鋼浴の成分及び温度
を目標値に合せるための転炉終点制御方法において、吹
錬末期に前記鋼浴の炭素量と温度を測定し、得られた測
定値に基づき、吹錬末期の推定マンガン量を求め、さら
に終点制御モデルから計算された吹止予想炭素量並びに
吹止予想温度に基づいて、吹止予想推定マンガン量を求
め、吹錬末期推定マンガン量と吹止予想マンガン量から
、マンガン酸化ロスで消費される酸素量を計算し、終点
制御モデルにて計算した脱炭及び昇温に必要な追加酸素
量にマンガン酸化ロス酸素量を加えて、終点制御を行う
ことを特徴とする転炉吹止マンガン制御方法。
In a converter refining method using dephosphorized hot metal, the carbon content and temperature of the steel bath are measured at the end of blowing in a converter end point control method for adjusting the composition and temperature of the steel bath to target values. Based on the measured values, the estimated amount of manganese at the end of blowing is calculated, and the estimated amount of manganese at the end of blowing is calculated based on the expected amount of carbon at the end of blowing and the expected temperature at the end of blowing calculated from the end point control model. Calculate the amount of oxygen consumed by manganese oxidation loss from the estimated amount of manganese and the expected amount of manganese at blow-off, and add the amount of oxygen lost from manganese oxidation to the additional amount of oxygen required for decarburization and temperature rise calculated using the end point control model. A converter blow-off manganese control method characterized by performing end point control.
JP63127138A 1988-05-26 1988-05-26 Converter blowout manganese control method Expired - Lifetime JP2687432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127138A JP2687432B2 (en) 1988-05-26 1988-05-26 Converter blowout manganese control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127138A JP2687432B2 (en) 1988-05-26 1988-05-26 Converter blowout manganese control method

Publications (2)

Publication Number Publication Date
JPH01298109A true JPH01298109A (en) 1989-12-01
JP2687432B2 JP2687432B2 (en) 1997-12-08

Family

ID=14952556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127138A Expired - Lifetime JP2687432B2 (en) 1988-05-26 1988-05-26 Converter blowout manganese control method

Country Status (1)

Country Link
JP (1) JP2687432B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256511A (en) * 1985-09-04 1987-03-12 Nippon Kokan Kk <Nkk> Method for controlling converter blowing
JPS6318014A (en) * 1986-07-09 1988-01-25 Nippon Kokan Kk <Nkk> Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256511A (en) * 1985-09-04 1987-03-12 Nippon Kokan Kk <Nkk> Method for controlling converter blowing
JPS6318014A (en) * 1986-07-09 1988-01-25 Nippon Kokan Kk <Nkk> Method for controlling flow rate of bottom blowing gas for metallurgical refining furnace

Also Published As

Publication number Publication date
JP2687432B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JP6314484B2 (en) Hot metal dephosphorization method
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
JPH01298109A (en) Method for controlling manganese content at the time of stopping blowing in converter
KR101008072B1 (en) Method for Refinig Molten Pig Iron in Converter
JPH05263120A (en) Method for controlling blowing in converter
JPS62158810A (en) Method for determining main material charging quantity in converter operation
JP2001011521A (en) Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
JPH0433846B2 (en)
JP4110676B2 (en) Converter blowing control method and converter blowing control device
JP3823907B2 (en) Estimating the amount of decarburization in converter steel and converter operation using this method
JPS59568B2 (en) Oxygen converter blowing control method
JPH06264129A (en) Method for controlling end point of steelmaking in converter
JP7319538B2 (en) Converter blowing control device, converter blowing control method and program
JPS6246605B2 (en)
JPS6246606B2 (en)
JPH0533029A (en) Method for deciding charging quantity of main raw material in converter operation
JPH0641626A (en) Oxygen blowing control method of converter
JPS5855519A (en) Controlling method for operation of aod furnace with computer simulation
JPH0434606B2 (en)
JP3874530B2 (en) Converter operation method
JPH036312A (en) Method for controlling blowing in converter
JPS63203716A (en) Method for controlling refining of molten iron
JPH0310012A (en) Steelmaking method in converter
JPH093518A (en) Method for controlling end point of blowing in converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 11