KR101008072B1 - Method for Refinig Molten Pig Iron in Converter - Google Patents

Method for Refinig Molten Pig Iron in Converter Download PDF

Info

Publication number
KR101008072B1
KR101008072B1 KR1020030062227A KR20030062227A KR101008072B1 KR 101008072 B1 KR101008072 B1 KR 101008072B1 KR 1020030062227 A KR1020030062227 A KR 1020030062227A KR 20030062227 A KR20030062227 A KR 20030062227A KR 101008072 B1 KR101008072 B1 KR 101008072B1
Authority
KR
South Korea
Prior art keywords
molten steel
steel temperature
end point
oxygen
temperature
Prior art date
Application number
KR1020030062227A
Other languages
Korean (ko)
Other versions
KR20050024963A (en
Inventor
조길동
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020030062227A priority Critical patent/KR101008072B1/en
Publication of KR20050024963A publication Critical patent/KR20050024963A/en
Application granted granted Critical
Publication of KR101008072B1 publication Critical patent/KR101008072B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4646Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

본 발명은 제철소의 전로정련방법에 관한 것으로서, 전로정련완료 후의 용강온도 및 용존산소농도를 측정하지 않고 용강을 출강할 수 있는 전로정련방법을 제공하고자 하는데, 그 목적이 있는 것이다. The present invention relates to a converter refining method of an ironworks, and to provide a converter refining method capable of tapping molten steel without measuring molten steel temperature and dissolved oxygen concentration after completion of converter refining.

본 발명은 전로정련공정에 있어서 총산소량의 70-80%공급시점에서 용강온도 및 탄소농도를 측정하고, 다이나믹 용강온도 및 탄소농도중 어느 하나가 목표값과 동일 또는 낮은 경우에는 통상의 조건으로 취련을 행한 다음, 출강을 행하고, 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높은 경우에는 추정 종점 용강온도를 구하고, 추정 종점 용강온도가 목표 종점용강온도보다 높은 경우에는 이 추정 종점 용강온도가 목표 종점용강온도보다 낮게 될 때까지 냉각제를 투입하여 취련을 행한 다음, 용강온도 및 용존산소농도를 측정한 후, 출강을 행하고, 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 낮은 경우에는 추정 종점용존산소농도를 구하고, 상기 추정 종점용존산소농도가 700ppm 이하인 경우에는 취련을 행한 다음, 출강을 행하고, 상기 추정 종점용존산소농도가 700ppm을 초과하는 경우에는 추정 종점용존산소농도가 700ppm이하가 될 때까지 열원제를 투입하여 취련을 행한 다음, 출강을 행하는 전로정련방법을 그 요지로 한다.In the converter refining process, the molten steel temperature and carbon concentration are measured at a 70-80% supply point of total oxygen, and when either of the dynamic molten steel temperature and carbon concentration is equal to or lower than the target value, it is blown under normal conditions. Then, tapping is performed, and if the measured dynamic molten steel temperature and carbon concentration are both higher than the target value, the estimated endpoint molten steel temperature is obtained. If the estimated endpoint molten steel temperature is higher than the target endpoint molten steel temperature, the estimated endpoint molten steel temperature is After cooling by adding a coolant until the target end point temperature is lower than the target end point temperature, the molten steel temperature and dissolved oxygen concentration are measured, and tapping is performed. When the measured dynamic molten steel temperature and carbon concentration are lower than the target value, the estimated value is estimated. After determining the end point dissolved oxygen concentration, if the estimated end point dissolved oxygen concentration is 700ppm or less, after performing drilling, In the case where the estimated end point dissolved oxygen concentration exceeds 700ppm, the converter refining method is performed by adding heat source agent until the estimated end point dissolved oxygen concentration becomes 700ppm or less, and then tapping.

전로, 다이나믹, 출강, 정련, 종점용강온도, 종점산소농도Converter, dynamic, tapping, refining, end steel temperature, end oxygen concentration

Description

전로정련방법{Method for Refinig Molten Pig Iron in Converter}Method for Refining Molten Pig Iron in Converter

도 1은 출강중 탈산이 이루어지는 강종의 다이나믹을 충별화한 그래프1 is a graph that differentiates the dynamics of steel grades in which deoxidation occurs during tapping

도 2는 출강중 미탈산으로 출강하는 강종의 다이나믹을 층별화한 그래프2 is a graph of stratified dynamics of steel grades tapping with non-deoxidation during tapping

도 3은 전로 다이나믹 측정결과에 따른 작업방법을 나타내는 그래프3 is a graph showing a working method according to a converter dynamic measurement result

본 발명은 제철소의 전로정련방법에 관한 것으로서, 보다 상세하게는 전로 정련작업 완료후, 용강온도 및 용존산소농도를 측정하지 않고 출강할 수 있는 전로정련방법에 관한 것이다.The present invention relates to a converter refining method of an ironworks, and more particularly, to a converter refining method that can be pulled out without measuring the molten steel temperature and dissolved oxygen concentration after completion of the converter refining operation.

일반적으로, 전로정련방법은 전로의 내화물을 보호하기 위하여 노운전자가 잔류슬라그코팅작업을 실시한 후, 고철장입작업, 용선장입작업을 실시하는 동안에 취련작업자는 용선비,용선중의 성분(즉, 탄소,규소,망간,인,황),용선온도,고철등 35가지 이상의 정보를 이용하여 열적 바란스를 얻기 위하여 이전에 정련작업을 실시했던 차지(Charge)들과 비교하여 유사한 차지와 적정 열 바란스를 얻기 위하여 열배합을 실시하게 된다. In general, in the converter refining method, after the operator performs the residual slag coating work to protect the refractory of the converter, during the scrap-loading operation and the charter loading operation, the drilling worker performs the charter ratio and the components in the charter (ie, Carbon, silicon, manganese, phosphorus, sulphur), molten iron temperature, scrap metal, and more than 35 kinds of information to obtain a thermal balance, compared to the charges that had been previously refined to obtain a similar charge and appropriate heat balance Thermal blending is performed to obtain.

도 1 및 도 2에 도시된 바와 같이 출강작업중 탈산,미탈산에 따라 용강의 목표 온도가 달라지게 되며, 작업자들이 원하는 이상적인 다이나믹 온도,탄소는 도 1 및 도 2의 "Group 1"이다.As shown in FIGS. 1 and 2, the target temperature of the molten steel varies according to deoxidation and non-deoxidation during the tapping operation, and the ideal dynamic temperature desired by workers, carbon is “Group 1” of FIGS. 1 and 2.

용선장입이 완료되면 전로정련작업을 실시하게 되는데, 취련개시에서 65%시점까지는 전로내의 열적 바란스와 전로 내화물을 보호하고, 용선중의 불순물(규소,망간,인,황)등의 불순물 흡수능이 좋은 슬라그를 만들기 위하여 철광석, 생석회,형석,경소돌로마이트,페로실리콘등의 부원료를 투입하게 된다.After the chartering is completed, converter refining work is performed, and from the start of the drilling, it protects thermal balance and converter refractory in the converter, and absorbs impurities such as silicon, manganese, phosphorus, and sulfur in the charter. In order to make slag, additional materials such as iron ore, quicklime, fluorspar, small dolomite, and ferrosilicon will be added.

전로내의 정련반응은 산화반응으로 용선중의 불순물을 하기 반응식(1)과 같은 반응에 의하여 제거하게 된다.Refining reaction in the converter is an oxidation reaction to remove impurities in the molten iron by the reaction as shown in the following reaction formula (1).

[반응식 1]Scheme 1

C + 1/2O2 = CO(gas)C + 1/2 O 2 = CO ( gas )

Si + O2 = SiO2(Slag)Si + O 2 = SiO 2 ( Slag )

Mn + 1/2O2 = MnO(Slag)Mn + 1/2 O 2 = MnO ( Slag )

2P + 5/2O2 = P2O5(Slag)2P + 5/2 O2 = P 2 O 5 ( Slag )

전로정련과정중 전로노내의 온도를 측정하기 위하여 온도, 샘플링, 탄소를 알 수 있는 프로브를 장착하고 전로정련과정 70~80%시점이 되면 용강중의 탄소의 반응이 감소하는 율속단계에 접어드는 시점에서 용강의 온도 및 탄소를 서브랜스에 장착된 프로브를 이용하여 측정하게 되는데 이때를 다이나믹이라고 부른다.In order to measure the temperature in the converter furnace during the converter refining process, a probe which can know the temperature, sampling and carbon is equipped, and when the steel refining process is 70 ~ 80%, Temperature and carbon are measured using a probe mounted on a sub lance. This is called dynamic.

상기와 같이 현재 용강의 온도 및 탄소를 측정하는 목적은 전로정련 후 용강이 목표로 한 온도 및 용존산소농도를 갖도록 하려면 현재 용강의 온도 및 탄소를 어떻게 조절해야 하는지를 결정하기 위함이다. The purpose of measuring the temperature and carbon of the current molten steel as described above is to determine how to adjust the temperature and carbon of the current molten steel in order to have the target temperature and dissolved oxygen concentration after the refining of the converter.

작업자들은 도 1 및 도 2에 도시된 바와 같이 용강이 Group1에 속하는 온도, 탄소이면, 전로정련완료 후에 목적했던 용강의 온도 및 용존산소농도를 가지게 되므로, 도3의 ①의 경우처럼 목표를 수정하지 않고 그대로 정련작업을 속행하여 마치면 된다.1 and 2, if the molten steel is a temperature and carbon belonging to Group 1 as shown in Figs. 1 and 2, the target molten steel will have the temperature and dissolved oxygen concentration of the target molten steel after completion of converter refining. You can continue without refining.

또한 Group2의 경우는 다이나믹 시점이 늦은 경우에 해당하고, Group4의 경우는 다이나믹 시점이 빠른경우에 해당하므로 도 3에 도시한 ①의 경우처럼 목표를 수정하지 않고 그대로 정련작업을 실시하면 된다.In addition, in the case of Group 2, the dynamic viewpoint is late, and in the case of Group 4, the dynamic viewpoint is early, so that refining may be performed without modifying the target as in the case of ① shown in FIG.

Group3의 경우는 도 3에서의 ②의 경우에 해당되며 열바란스가 잘못된 경우로서광석등 냉각제가 많이 투입된 경우로 정련도중 열원제를 투입하여 도 3에서의 ④와 같은 방향으로 수정하지 않으면 안된다. In the case of Group 3, it corresponds to the case of ② in FIG. 3, and the heat balance is wrong, and a lot of coolant, such as ore, has been added, and a heat source must be added during refining to correct it in the same direction as ④ in FIG.

또한 Group5의 경우에는 도 3에서의 ③의 경우로 열바란스가 잘못되었고, 또한 노내의 슬라그풀림상태가 불량한것으로 작업자들이 판단하고 있으며 도 3에서의 ⑤와 같이 방향을 수정해야 한다. In addition, in case of Group 5, the worker has determined that the heat balance is wrong in case of ③ in FIG. 3 and that the slag loosening condition in the furnace is poor, and the direction must be corrected as in ⑤ in FIG.

상기와 같은 다이나믹에 대한 것은 작업자들이 직접판단하여 전로정련작업을 수행하고 있으며, 하기 관계식(1)과 같은 방법으로 필요산소사용량을 구하게 된다.As for the dynamic as described above, the workers directly determine the conversion and perform the converter, and the required oxygen consumption is obtained in the same manner as in the following relation (1).

[관계식 1][Relationship 1]

필요산소량 = (종점온도 - 다이나믹 측정온도)×승온계수 + 다이나믹 측정시 산소유량 Required oxygen = (end point temperature-dynamic measurement temperature) × temperature increase coefficient + oxygen flow rate during dynamic measurement

전로정련중 다시 작업자들이 용강온도 및 산소를 측정하기 위하여 프로브를 서브랜스에 장착한다. During the converter refining, workers attach probes to the sub-lances to measure molten steel temperature and oxygen.

정로정련작업이 완료되면 작업자는 서브랜스를 침적시켜 용강의 온도 및 산소를 확인하여 측정된 온도 및 산소가 목표온도이면 용강을 래들로 이송하는 단계인 출강작업을 실시하고, 목표온도 및 산소가 아니면 다시 재취련을 실시하게 된다.When the refining work is completed, the operator deposits the sub lance and checks the temperature and oxygen of the molten steel. If the measured temperature and oxygen are the target temperatures, the worker performs the tapping operation, which transfers the molten steel to the ladle. It will be re-retrained again.

상기한 종래의 전로출강방법을 기술한 것으로서 다음과 같은 문제점이 있다.As described above, the conventional converter tapping method has the following problems.

전로정련시 노내의 슬라그 량을 작업자가 수동으로 측정함으로 인하여 정확성이 떨어지므로, 다이나믹 측정후 목표온도까지 온도계산후 필요산소량을 사용하여 전로정련이 완료된 상태에서 온도 측정시 승온계수의 적용이 잘못되어 목표온도보다 낮게 나오는 경우에는 재취련을, 높게 나오는 경우에는 냉각을 실시하게 된다.Since the accuracy of the slag in the furnace is reduced by the operator's manual measurement during converter refining, the temperature rise factor is incorrectly applied when measuring the temperature in the state where the converter refining is completed using the required oxygen after the thermometer is calculated to the target temperature after dynamic measurement. If the temperature is lower than the temperature, the re-blowing is performed. If the temperature is higher, the cooling is performed.

재취련을 실시하는 경우에는 슬라그중의 철립증가로 용강의 실수율 저하 및 용강체류시간의 증가로 노체 내화물의 빠른 소손의 원인이 된다.In the case of re-refining, the increase of iron grains in slag causes the rapid decrease of furnace refractory material due to the decrease of error rate of molten steel and the increase of molten steel retention time.

냉각을 실시하게 되면 필요이상의 산소량을 용강에 공급하게 되어 용강중의 용존산소가 증가하게 되고 이로 인하여 출강작업중 탈산제가 증가하게 되고 결과적으로 래들내 용강중 비금속개재물을 증가시켜 품질을 악화시키게 된다.When cooling is performed, oxygen is supplied to the molten steel more than necessary to increase the dissolved oxygen in the molten steel, thereby increasing the deoxidizer during the tapping operation, and consequently increasing the non-metallic inclusions in the ladle to deteriorate the quality.

다이나믹 측정후 필요산소량을 구할 때 작업자가 수동으로 계산기를 이용하여 산출하고, 또한 작업자의 오감에 좌우하기 때문에 작업자의 잦은 실수에 의한 목표종점온도보다 높게 혹은 낮게 취지하는 문제점이 있다.When calculating the required oxygen amount after the dynamic measurement, the operator calculates manually using the calculator, and also depends on the five senses of the operator, there is a problem that the higher or lower than the target end point temperature caused by frequent mistakes of the operator.

필요산소량으로 전로 취지작업시 용강의 목표온도의 추정은 가능하지만 용존산소의 측정은 어렵기 때문에 작업자들이 목표온도로 취지하더라도 용존산소가 낮아 다시 재취련하는 문제점이 있다.Although it is possible to estimate the target temperature of the molten steel when the converter is pursuing the required oxygen amount, it is difficult to measure the dissolved oxygen, so even if the worker takes the target temperature, the dissolved oxygen is low.

또한, 전로 취지완료후 종점온도, 용강중의 용존산소를 측정하기 위해 서브랜스에 프로브를 장착하여 용강의 온도 및 용존산소를 측정하기 때문에 프로브사용에 의한 용강의 제조원가를 상승시키고, 그리고 취지완료후 용강의 온도,용존산소를 측정할 때 용강의 온도하락 및 용강의 체류시간 증가로 에너지 손실, 전로 내화물의 소손을 빨리 진행시키는 문제점이 있다.In addition, to measure the end temperature and dissolved oxygen in the molten steel after completion of the converter, the probe is mounted on the sub lance to measure the temperature and dissolved oxygen of the molten steel, thereby increasing the manufacturing cost of the molten steel by using the probe. When measuring the temperature and dissolved oxygen, there is a problem of rapidly reducing energy loss and burnout of refractory refractory due to a drop in temperature of molten steel and an increase in residence time of molten steel.

본 발명자는 상기한 종래기술의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 전로의 다이나믹 모델을 이용하여 전로정련이 완료된 후의 용강의 온도 및 용존산소를 예측하고 이를 이용하여 전로정련을 제어함으로써 일정한 경우에 전로정련완료 후의 용강온도 및 용존산소농도를 측정하지 않고 보다 신속하게 출강을 할 수 있는 전로정련방법을 제공하고자 하는데, 그 목적이 있는 것이다. MEANS TO SOLVE THE PROBLEM The present inventor made the research and experiment in order to solve the above-mentioned all the problems of the prior art, and proposes this invention based on the result, This invention uses the dynamic model of the converter, and after completion of converter refining, By predicting temperature and dissolved oxygen and controlling converter refining by using this, we want to provide converter refining method that can make tapping more quickly without measuring molten steel temperature and dissolved oxygen concentration after completion of converter refining in certain cases. There is this.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 전로정련방법에 있어서,In the converter refining method,

목표종점용강온도, 목표종점용존산소농도 및 목표종점탄소농도를 설정하고;Setting a target endpoint steel temperature, a target endpoint dissolved oxygen concentration and a target endpoint carbon concentration;

정련공정에 공급되는 총산소량의 70-80%공급시점에서 다이나믹 용강온도 및 탄소농도를 측정하고;Dynamic molten steel temperature and carbon concentration were measured at 70-80% of the total oxygen supplied to the refining process;

측정된 다이나믹 용강온도 및 탄소농도와 목표 종점용강온도 및 목표 종점탄소농도를 각각 대비하여 측정된 다이나믹 용강온도 및 탄소농도중 어느 하나가 목표값과 동일 또는 낮은 경우에는 통상의 조건으로 나머지 산소를 취입하면서 취련을 행한 다음, 출강을 행하고; When one of the measured dynamic molten steel temperature and carbon concentration is equal to or lower than the target value, the remaining oxygen is blown under normal conditions when the measured dynamic molten steel temperature and carbon concentration is compared to the target end molten steel temperature and target end carbon concentration. While performing the training, and then going to class;                     

측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높거나 낮은 경우에는 If the measured dynamic molten steel temperature and carbon concentration are both above or below the target value,

하기 식(2)에 의하여 다이나믹에서 종점까지 요구되는 필요산소량(f)를 구하고;The required oxygen amount f required from the dynamic to the end point is obtained by the following equation (2);

[관계식 2][Relationship 2]

f = (c × o) + (k ×t)f = (c × o) + (k × t)

[여기서, f = 필요 산소량[Where f = amount of oxygen required

c = (다이나믹에서 측정된 탄소농도-목표 종점탄소농도)(%)         c = (carbon concentration measured in dynamics-target end point carbon concentration) (%)

o = 탄소와 반응되는데 필요한 산소량(N㎥)         o = amount of oxygen required to react with carbon (Nm3)

k = 슬래그량에 따른 승온계수(℃/Nm3)k = temperature increase coefficient according to slag amount (℃ / Nm 3 )

t = (목표 종점용강온도-다이나믹에서 측정된 용강온도)(℃)]             t = (Target molten steel temperature-measured molten steel temperature at dynamic) (℃)]

측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높은 경우에는 하기 식(3)에 의하여 추정 종점 용강온도를 구하고, 이 추정 종점 용강온도가 목표 종점용강온도보다 낮은 경우에는 상기 식(2)에 의하여 구한 필요산소량만큼을 취입하면서 취련을 행한 다음, 출강을 행하고;When the measured dynamic molten steel temperature and carbon concentration are both higher than the target value, the estimated end point molten steel temperature is obtained by the following equation (3), and when the estimated end point molten temperature is lower than the target end point molten steel temperature, the equation (2) is obtained. Performing blowing while blowing in the required amount of oxygen determined by the method, and then tapping;

[관계식 3][Relationship 3]

종점용강온도(℃) = 필요산소량(N㎥) ÷ 슬라그에 따른 승온계수 End Steel Temperature (℃) = Required Oxygen (N㎥) ÷ Temperature Coefficient According to Slag

추정 종점 용강온도가 목표 종점용강온도보다 높은 경우에는 이 추정 종점 용강온도가 목표 종점용강온도보다 낮게 될 때까지 냉각제를 투입하고, 그 때의 필요산소량을 상기 식(2)에 의하여 구하고 이렇게 구한 필요산소량 만큼을 취입하면서 취련을 행한 다음, 종점용강온도 및 종점용존산소농도를 측정한 후, 출강을 행하고;If the estimated end point molten steel temperature is higher than the target end point molten steel temperature, a coolant is added until the estimated end point molten steel temperature is lower than the target end point molten steel temperature, and the required oxygen content at that time is obtained by the above formula (2). After blowing while blowing the amount of oxygen, the end steel temperature and end dissolved oxygen concentration were measured, and then tapping was performed;

측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 낮은 경우에는 하기 식 (4)에 의하여 추정 종점용존산소농도를 구하고;If the measured dynamic molten steel temperature and carbon concentration are both lower than the target value, the estimated end point dissolved oxygen concentration is obtained by the following equation (4);

[관계식 4][Relationship 4]

x = {(다이나믹에서 측정된 탄소 함량 ×0.1%의 탄소를 연소시키는데 필요한 산소량) × 1Nm3의 산소를 Kg으로 환산한 값 ×산소실수율}/용강량 + 필요산소량 ×0.5x = {(Oxygen amount required to burn carbon with carbon content × 0.1% as measured by dynamics) × Oxygen yield of 1 Nm 3 in terms of Kg × Oxygen chamber yield} / Molten steel amount + Oxygen required × 0.5

상기 추정 종점용존산소농도가 700ppm 이하인 경우에는 상기 식(2)에 의하여 구한 필요산소량만큼을 취입하면서 취련을 행한 다음, 출강을 행하고;When the estimated end-point dissolved oxygen concentration is 700 ppm or less, the blow is performed while blowing as much as the required oxygen amount determined by Equation (2), and then tapping is performed;

상기 추정 종점용존산소 농도가 700ppm을 초과하는 경우에는 추정 종점용존산소농도가 700ppm이하가 될 때까지 열원제를 투입하고 그 때의 필요산소량을 상기 식(2)에 의하여 구하고 이렇게 구한 필요산소량 만큼을 취입하면서 취련을 행한 다음, 출강을 행하는 것을 특징으로 하는 전로정련방법에 관한 것이다. When the estimated end point dissolved oxygen concentration exceeds 700 ppm, a heat source agent is added until the estimated end point dissolved oxygen concentration is 700 ppm or less, and the required oxygen amount at that time is obtained by the above formula (2). The present invention relates to a converter refining method comprising performing blowing while blowing, and then tapping.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 전로정련방법에 적용되는 것이다.The present invention is applied to the converter refining method.

본 발명에 따라 전로정련을 행하기 위해서는목표종점용강온도, 목표종점용존산소농도 및 목표종점탄소농도를 설정하는 것이 필요하다.In order to perform converter refining according to the present invention, it is necessary to set the target end point steel temperature, the target end point dissolved oxygen concentration, and the target end point carbon concentration.

정련공정에 공급되는 총산소량의 70-80%공급시점에서 다이나믹 용강온도 및 탄소농도를 측정한다.The dynamic molten steel temperature and carbon concentration are measured at 70-80% of the total oxygen supplied to the refining process.

전로정련공정에 취입되는 총산소량은 12,000∼14,000Nm3정도이다.The total oxygen injected into the converter refining process is about 12,000-14,000 Nm 3 .

상기와 같이 측정된 다이나믹 용강온도 및 탄소농도와 목표 종점용강온도 및 목표 종점탄소농도를 각각 대비하여 측정된 다이나믹 용강온도 및 탄소농도 중 어느 하나가 목표값과 동일 또는 낮은 경우에는 다이나믹 이후의 정련공정은 통상의 조건으로 나머지 산소를 취입하면서 행한 다음, 종점용강온도 및 종점용존산소농도의 측정없이 출강을 행한다.Refining process after dynamic when any one of the dynamic molten steel temperature and carbon concentration measured in comparison with the dynamic molten steel temperature and carbon concentration measured as described above and the target end molten steel temperature and target end carbon concentration is equal to or lower than the target value Is carried out while blowing the remaining oxygen under normal conditions, and then tapping without measuring the end-point steel temperature and the end-point dissolved oxygen concentration.

통상, 다이나믹 이후의 정련공정에서 산소취입(공급)량은 2,000∼3,500Nm3/min정도이다.Usually, the oxygen blowing (supply) amount is about 2,000 to 3,500 Nm 3 / min in the refining process after the dynamics.

상기와 같이 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높거나 낮은 경우에는 하기 식(2)에 의하여 다이나믹에서 종점까지 요구되는 필요산소량(f)를 구한다.When both the dynamic molten steel temperature and the carbon concentration measured as described above are higher or lower than the target value, the required oxygen amount f required from the dynamic to the end point is obtained by the following equation (2).

[관계식 2][Relationship 2]

f = (c × o) + (k ×t)f = (c × o) + (k × t)

[여기서, f = 필요 산소량[Where f = amount of oxygen required

c = (다이나믹에서 측정된 탄소농도-목표 종점탄소농도)(%)         c = (carbon concentration measured in dynamics-target end point carbon concentration) (%)

o = 탄소와 반응되는데 필요한 산소량(N㎥)         o = amount of oxygen required to react with carbon (Nm3)

k= 슬래그 량에 따른 승온계수(℃/Nm3)k = temperature increase coefficient according to the amount of slag (℃ / Nm 3 )

t = (목표 종점용강온도-다이나믹에서 측정된 용강온도)(℃)]             t = (Target molten steel temperature-measured molten steel temperature at dynamic) (℃)]

상기 슬래그 량에 따른 승온계수(k)는 하기 식(2a)에 의하여 구하는 것이 바람직하다.It is preferable to obtain the temperature rising coefficient k according to the amount of slag by the following formula (2a).

[관계식 2a] [Relationship 2a]                     

k = 10.4 + 0.765 x (슬래그 량)k = 10.4 + 0.765 x (the amount of slag)

슬래그량에 따른 승온계수(k)값의 예들이 하기 표 1에 제시되어 있다.
Examples of the temperature rise coefficient (k) value according to the slag amount are shown in Table 1 below.

슬래그 량(ton)Slag amount (ton) 승온계수(℃/Nm3)Temperature rise coefficient (℃ / Nm 3 ) 15∼2015 to 20 23±223 ± 2 21∼2521-25 28±228 ± 2 26∼3026-30 32±232 ± 2 31이상Over 31 35±235 ± 2

상기 식 2a에서 슬래그량은 하기 식(2aa)에 의하여 구할 수 있다.In the above formula 2a, the slag amount can be obtained by the following formula (2aa).

[관계식 2aa][Relationship 2aa]

슬래그량 = 잔류슬라그 + 생석회(정련작업 중 투입량) + 경소돌로마이트(정련작업 중 투입량) + 생돌로마이트(정련작업 중 투입량) + (용선 중 실리콘량-추정종점 실리콘) + (용선 중 망간량 -추정종점 망간) + (용선 중 인 - 추정종점 인) + (용선 중 티타늄 -추정 종점 티타늄) + 추정슬라그 중 토탈 에프이(T.Fe)Slag amount = residual slag + quicklime (input during refining operation) + light dolomite (input during refining operation) + pulmonary dolomite (input during refining operation) + (silicone in molten iron-estimated end point silicon) + (manganese in molten iron- Estimated end manganese) + (in middle of molten iron-estimated end in) + (titanium in molten iron-estimated end titanium) + total F of estimated slag (T.Fe)

상기 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높은 경우에는 하기 식(3)에 의하여 추정 종점 용강온도를 구하고, 이 추정 종점 용강온도가 목표 종점용강온도보다 낮은 경우에는 상기 식(2)에 의하여 구한 필요산소량만큼을 취입하면서 취련을 행한 다음, 종점용강온도 및 종점용존소농도의 측정없이 출강을 행한다.When the measured dynamic molten steel temperature and carbon concentration are both higher than the target value, the estimated end point molten steel temperature is obtained by the following equation (3), and when the estimated end point molten temperature is lower than the target end point molten steel temperature, the above equation (2) Blowing is performed while blowing the required amount of oxygen determined by the step, and tapping is performed without measuring the end-point steel temperature and the end-point dissolved oxygen concentration.

[관계식 3][Relationship 3]

종점용강온도(℃) = 필요산소량(N㎥) ÷ 슬라그에 따른 승온계수 End Steel Temperature (℃) = Required Oxygen (N㎥) ÷ Temperature Coefficient According to Slag                     

또한, 추정 종점 용강온도가 목표 종점용강온도보다 높은 경우에는 이 추정 종점 용강온도가 목표 종점용강온도보다 낮게 될 때까지 냉각제를 투입하고, 그 때의 필요산소량을 상기 식(2)에 의하여 구하고 이렇게 구한 필요산소량 만큼을 취입하면서 취련을 행한 다음, 종점용강온도 및 종점용존산소농도를 측정한 후 출강을 행하면 된다.In addition, when the estimated end point molten steel temperature is higher than the target end point molten steel temperature, a coolant is added until the estimated end point molten steel temperature is lower than the target end point molten steel temperature, and the required oxygen content at that time is obtained by the above formula (2). Blowing is performed while taking in the required amount of oxygen, and the tapping is performed after measuring the end point steel temperature and the end point dissolved oxygen concentration.

상기 냉각제의 투입량(kg)은 하기 식(3a)에 의하여 구하는 것이 바람직하다.It is preferable to calculate | fill the input amount (kg) of the said coolant by following formula (3a).

[관계식 3a][Relationship 3a]

냉각제 투입량(Kg)=(추정 종점 용강온도-목표 종점용강온도)(℃)×온도보정량(℃)Coolant input amount (Kg) = (Estimate end point molten steel temperature-target end point steel temperature) (℃) x Temperature compensation amount (℃)

냉각제별 온도보정량 및 산소발생량의 일례가 하기 표 2에 나타나 있다.
An example of the temperature correction amount and the oxygen generation amount for each coolant is shown in Table 2 below.

냉각제(Kg)Coolant (Kg) 온도보정량(℃)Temperature compensation amount (℃) 산소발생량 (N㎥)Oxygen generation amount (N㎥) 철광석ironstone 0.02330.0233 0.190.19 소결광Sintered ore 0.02090.0209 0.160.16 HBIHBI 0.00670.0067 0.020.02 단광Briquettes 0.00980.0098 0.0650.065

상기 표 2의 냉각제별 온도보정량 및 산소발생량을 고려하여 냉각제를 적절히 선택하면된다. The coolant may be appropriately selected in consideration of the temperature correction amount and oxygen generation amount for each coolant in Table 2 above.

상기와 같이, 종점용강온도 및 종점용존산소농도를 측정한 후 출강을 행하는 것은전로 정련작업시 작업자의 중대한 열적균형 계산 미스에 의해서 노내에 불순물을 흡수하는 능력이 떨어지는 슬래그가 제조되는 경우가 많이 발생하게 되므로, 보다 정확한 종점용강온도 및 종점용존산소농도 값을 얻기 위함이다.As described above, performing the tapping after measuring the end point steel temperature and the end point dissolved oxygen concentration often results in the manufacture of slag having a poor ability to absorb impurities in the furnace due to a significant thermal balance calculation miss during the converter refining operation. In order to generate more accurate end point steel temperature and end point dissolved oxygen concentration value.

한편, 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 낮은 경우에는 하기 식 (4)에 의하여 추정 종점용존산소농도(x)를 구한다.On the other hand, when the measured dynamic molten steel temperature and carbon concentration are both lower than the target value, the estimated end point dissolved oxygen concentration (x) is obtained by the following equation (4).

[관계식 4][Relationship 4]

x = {(다이나믹에서 측정된 탄소 함량 ×0.1%의 탄소를 연소시키는데 필요한 산소량) × 1Nm3의 산소를 Kg으로 환산한 값 ×산소실수율}/용강량 + 필요산소량 ×0.5x = {(Oxygen amount required to burn carbon with carbon content × 0.1% as measured by dynamics) × Oxygen yield of 1 Nm 3 in terms of Kg × Oxygen chamber yield} / Molten steel amount + Oxygen required × 0.5

다음에, 상기 추정 종점용존산소농도가 700ppm 이하인 경우에는 상기 식(2)에 의하여 구한 필요산소량만큼 취입하면서 취련을 행한 다음, 종점용강온도 및 종점용존산소농도의 측정없이 출강을 행하고, 700ppm을 초과하는 경우에는 추정 종점용존산소가 700ppm이하가 될 때까지 열원제를 투입하고 그때의 필요산소량을 상기 식(2)에 의하여 구하고 이렇게 구한 필요산소량만큼 취입하면서 취련을 행한 다음, 종점용강온도 및 종점용존산소농도의 측정없이 출강을 행하면 된다.Next, when the estimated end-point dissolved oxygen concentration is 700 ppm or less, blowing is carried out by blowing as much as necessary oxygen amount determined by the above formula (2), and then tapping is performed without measuring the end-point steel temperature and the end-point dissolved oxygen concentration, and exceeds 700 ppm. In this case, the heat source agent is added until the estimated end point dissolved oxygen is 700 ppm or less, the required oxygen content is calculated by the above formula (2), blown by blowing the required oxygen amount, and then the end melting steel temperature and the end point dissolved The tapping may be performed without measuring the oxygen concentration.

상기 열원제의 투입량(kg)은 하기 식(4a)에 의하여 구하는 것이 바람직하다.It is preferable to calculate | fill the input amount (kg) of the said heat source agent by following formula (4a).

[관계식 4a][Relationship 4a]

열원제 투입량(Kg) = 용존산소에 의한 온도보정량(℃) × 열원제에 따른 온도 보정량(℃)Heat source input amount (Kg) = Temperature correction amount due to dissolved oxygen (℃) × Temperature correction amount according to heat source agent (℃)

상기 용존산소에 의한 온도보정량은 하기 식(4aa)에 의하여 구해질 수 있다.The temperature correction amount by the dissolved oxygen can be obtained by the following formula (4aa).

[관계식 4aa][Relationship 4aa]

용존산소에 의한 온도보정량= 0.05 + 0.0343 x (추정종점용존산소농도-700) Temperature correction amount by dissolved oxygen = 0.05 + 0.0343 x (estimated end point dissolved oxygen concentration-700)                     

열원제별 온도보정량 및 필요산소량의 일례가 하기 표 3에 나타나 있다.
An example of the temperature correction amount and the required oxygen amount for each heat source agent is shown in Table 3 below.

열원제(Kg)Heat source agent (Kg) 온도보정량(℃)Temperature compensation amount (℃) 필요산소량 (N㎥)Required oxygen (N㎥) Fe-SiFe-Si 0.080.08 0.640.64 코 크 스Coke 0.01970.0197 0.930.93

상기 표 3의 열원제별 온도보정량 및 필요산소량을 고려하여 열원제를 적절히 선택하면된다. The heat source agent may be appropriately selected in consideration of the temperature correction amount and the required oxygen amount for each heat source agent of Table 3.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 4와 같이 종래방법[(1-10) 및 본 발명법[실시예(1-20)]에 따라 전로정련조업을 행하고, BAP 도착온도, 정련시간 및 종점용강온도 및 용존산소농도를 측정하고, 그 결과를 하기 표 4에 나타내었다.As shown in Table 4, the converter refining operation was carried out according to the conventional method [(1-10) and the present invention method [Example (1-20)], and the BAP arrival temperature, refining time and end point steel temperature and dissolved oxygen concentration were measured. And the results are shown in Table 4 below.

종래예(1~5)는 탈산강종을, 종래예(6~10)은 미탈산 강종을 정련한 것이고, 실시예(1~10)은 탈산강종을, 실시예(11~20)은 미탈산강종을 정련한 것이다.Conventional Examples (1 to 5) are deoxidized steel species, and Conventional Examples (6 to 10) are refined non-deoxidized steel species, Examples (1 to 10) are deoxidized steel species, and Examples (11 to 20) are deoxidized steel species. The steel grade is refined.

그리고, 실시예(8, 15, 16 및 17)은 추정 종점 용강온도가 목표 종점용강온도보다 높은 경우로서, 종점용강온도 및 종점용존산소농도를 측정하여 출강하는 종래의 출강법으로 출강을 실시하였는데, 이는 보통 용강의 성분중 인의 제어가 불량하여 일정시간동안 전로내에서 대기하여 전로 저취에서 불어주는 저취가스의 교반력과 슬라그와의 반응을 촉진시켜 주기 위하여 용강의 온도를 측정하여 그 시간을 확보할수 있도록 하기 위함이다. In Examples 8, 15, 16, and 17, when the estimated end point molten steel temperature is higher than the target end point molten steel temperature, the tapping is performed by the conventional tapping method of measuring the end point molten steel temperature and the end point dissolved oxygen concentration. This is usually because the control of phosphorus in the molten steel is poor, and the temperature is measured by measuring the temperature of the molten steel in order to promote the reaction between slag and the agitation power of the low-odor gas blowing from the low odor by waiting in the converter for a predetermined time. This is to ensure the security.                     

Figure 112003033400322-pat00001
Figure 112003033400322-pat00001

상술한 바와 같이, 본 발명은 전로의 다이나믹 모델을 이용하여 전로정련이 완료된 후의 용강온도 및 용존산소농도를 예측하여 전로정련완료을 한 상태에서 용강의 온도,용존산소를 측정하지 않고 곧바로 출강할 수 있으므로, 전로내 용강의 체류시간 단축으로 인한 전로 내화물 보호, 용강의 온도 저하, 용강온도와 산소를 측정하는 프로브 사용절감, 작업자들의 업무부하를 감소시키는 등의 실용상의 이점을 가져올 수 있는 효과가 있는 것이다. As described above, the present invention can predict the molten steel temperature and dissolved oxygen concentration after the converter refining is completed using the dynamic model of the converter, so that the steel can be moved immediately without measuring the temperature and dissolved oxygen in the converter refining state. In addition, it has the effect of bringing practical advantages such as protection of converter refractory due to shortened residence time of molten steel in converter, reduction of temperature of molten steel, use of probe to measure molten steel temperature and oxygen, and reduction of work load of workers. .

Claims (1)

전로정련방법에 있어서,In the converter refining method, 목표종점용강온도, 목표종점용존산소농도 및 목표종점탄소농도를 설정하고;Setting a target endpoint steel temperature, a target endpoint dissolved oxygen concentration and a target endpoint carbon concentration; 정련공정에 공급되는 총 산소량의 70-80%공급시점에서 다이나믹 용강온도 및 탄소농도를 측정하고;Measuring the dynamic molten steel temperature and carbon concentration at 70-80% of the total amount of oxygen supplied to the refining process; 측정된 다이나믹 용강온도 및 탄소농도와 목표 종점용강온도 및 목표 종점탄소농도를 각각 대비하여 측정된 다이나믹 용강온도 및 탄소농도 중 어느 하나가 목표값과 동일 또는 낮은 경우에는 통상의 조건으로 나머지 산소를 취입하면서 취련을 행한 다음, 출강을 행하고;When one of the measured dynamic molten steel temperature and carbon concentration is equal to or lower than the target value, the remaining oxygen is blown under normal conditions when the measured dynamic molten steel temperature and carbon concentration are compared to the target end molten steel temperature and target end carbon concentration. While performing the training, and then going to class; 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높거나 낮은 경우에는 If the measured dynamic molten steel temperature and carbon concentration are both above or below the target value, 하기 식(2)에 의하여 다이나믹에서 종점까지 요구되는 필요산소량(f)를 구하고;The required oxygen amount f required from the dynamic to the end point is obtained by the following equation (2); [관계식 2][Relationship 2] f = (c × o) + (k ×t)f = (c × o) + (k × t) [여기서, f = 필요 산소량[Where f = amount of oxygen required c = (다이나믹에서 측정된 탄소농도-목표 종점탄소농도)(%)         c = (carbon concentration measured in dynamics-target end point carbon concentration) (%) o = 탄소와 반응되는데 필요한 산소량(N㎥)         o = amount of oxygen required to react with carbon (Nm3) k = 슬래그량에 따른 승온계수(℃/Nm3)k = temperature increase coefficient according to slag amount (℃ / Nm 3 ) t = (목표 종점용강온도-다이나믹에서 측정된 용강온도)(℃)]         t = (Target molten steel temperature-measured molten steel temperature at dynamic) (℃)] 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 높은 경우에는 하기 식(3)에 의하여 추정 종점 용강온도를 구하고, 이 추정 종점 용강온도가 목표 종점용강온도보다 낮은 경우에는 상기 식(2)에 의하여 구한 필요산소량만큼을 취입하면서 취련을 행한 다음, 출강을 행하고;When the measured dynamic molten steel temperature and carbon concentration are both higher than the target value, the estimated end point molten steel temperature is obtained by the following equation (3), and when the estimated end point molten temperature is lower than the target end point molten steel temperature, the equation (2) is obtained. Performing blowing while blowing in the required amount of oxygen determined by the method, and then tapping; [관계식 3][Relationship 3] 종점용강온도(℃) = 필요산소량(N㎥) ÷ 슬라그에 따른 승온계수 End Steel Temperature (℃) = Required Oxygen (N㎥) ÷ Temperature Coefficient According to Slag 추정 종점 용강온도가 목표 종점용강온도보다 높은 경우에는 이 추정 종점 용강온도가 목표 종점용강온도보다 낮게 될 때까지 냉각제를 투입하고, 그 때의 필요산소량을 상기 식(2)에 의하여 구하고 이렇게 구한 필요산소량 만큼을 취입하면서 취련을 행한 다음, 종점용강온도 및 종점용존산소농도를 측정한 후, 출강을 행하고;If the estimated end point molten steel temperature is higher than the target end point molten steel temperature, a coolant is added until the estimated end point molten steel temperature is lower than the target end point molten steel temperature, and the required oxygen content at that time is obtained by the above formula (2). After blowing while blowing the amount of oxygen, the end steel temperature and end dissolved oxygen concentration were measured, and then tapping was performed; 측정된 다이나믹 용강온도 및 탄소농도가 목표값보다 모두 낮은 경우에는 하기 식 (4)에 의하여 추정 종점용존산소농도를 구하고;If the measured dynamic molten steel temperature and carbon concentration are both lower than the target value, the estimated end point dissolved oxygen concentration is obtained by the following equation (4); [관계식 4][Relationship 4] x = {(다이나믹에서 측정된 탄소 함량 × 0.1%의 탄소를 연소시키는데 필요한 산소량) × 1Nm3의 산소를 Kg으로 환산한 값 × 산소실수율}/용강량 + 필요산소량 × 0.5x = {(carbon content measured in dynamics × amount of oxygen required to burn 0.1% of carbon) × value of oxygen of 1 Nm 3 in terms of Kg × actual oxygen yield} / melt amount + required oxygen × 0.5 상기 추정 종점용존산소농도가 700ppm 이하인 경우에는 상기 식(2)에 의하여 구한 필요산소량만큼을 취입하면서 취련을 행한 다음, 출강을 행하고;When the estimated end-point dissolved oxygen concentration is 700 ppm or less, the blow is performed while blowing as much as the required oxygen amount determined by Equation (2), and then tapping is performed; 상기 추정 종점용존산소 농도가 700ppm을 초과하는 경우에는 추정 종점용존산소농도가 700ppm이하가 될 때까지 열원제를 투입하고 그 때의 필요산소량을 상기 식(2)에 의하여 구하고 이렇게 구한 필요산소량 만큼을 취입하면서 취련을 행한 다음, 출강을 행하는 것을 특징으로 하는 전로정련방법When the estimated end point dissolved oxygen concentration exceeds 700 ppm, a heat source agent is added until the estimated end point dissolved oxygen concentration is 700 ppm or less, and the required oxygen amount at that time is obtained by the above formula (2). A converter refining method comprising performing a blow while blowing and then tapping
KR1020030062227A 2003-09-05 2003-09-05 Method for Refinig Molten Pig Iron in Converter KR101008072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030062227A KR101008072B1 (en) 2003-09-05 2003-09-05 Method for Refinig Molten Pig Iron in Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030062227A KR101008072B1 (en) 2003-09-05 2003-09-05 Method for Refinig Molten Pig Iron in Converter

Publications (2)

Publication Number Publication Date
KR20050024963A KR20050024963A (en) 2005-03-11
KR101008072B1 true KR101008072B1 (en) 2011-01-13

Family

ID=37232019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030062227A KR101008072B1 (en) 2003-09-05 2003-09-05 Method for Refinig Molten Pig Iron in Converter

Country Status (1)

Country Link
KR (1) KR101008072B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400052B1 (en) * 2012-06-28 2014-05-27 현대제철 주식회사 Refining method for molten steel in converter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847776B1 (en) 2006-12-29 2008-07-23 주식회사 포스코 Refining method of vaccum degassing
KR101412549B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Refining method for molten steel in converter
JP5822053B2 (en) * 2013-09-30 2015-11-24 Jfeスチール株式会社 Control device and control method for converter blowing equipment
KR101660774B1 (en) * 2015-07-09 2016-09-28 주식회사 포스코 The converter operation method
KR102032613B1 (en) * 2017-09-27 2019-10-15 현대제철 주식회사 Methods of operating electric furnace
CN113462851A (en) * 2021-07-19 2021-10-01 新疆八一钢铁股份有限公司 Operation method for determining end point temperature by converter oxygen lance water temperature difference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274231A (en) * 1993-03-24 1994-09-30 Sumitomo Metal Ind Ltd Device and method for controlling converter blowing
JPH08302413A (en) * 1995-05-09 1996-11-19 Sumitomo Metal Ind Ltd Method for controlling terminating point of blowing in converter
JP2001011521A (en) 1999-06-25 2001-01-16 Sumitomo Metal Ind Ltd Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
KR20040048269A (en) * 2002-12-02 2004-06-07 주식회사 포스코 A Method of Decreasing Oxygen Dencity in Converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274231A (en) * 1993-03-24 1994-09-30 Sumitomo Metal Ind Ltd Device and method for controlling converter blowing
JPH08302413A (en) * 1995-05-09 1996-11-19 Sumitomo Metal Ind Ltd Method for controlling terminating point of blowing in converter
JP2001011521A (en) 1999-06-25 2001-01-16 Sumitomo Metal Ind Ltd Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
KR20040048269A (en) * 2002-12-02 2004-06-07 주식회사 포스코 A Method of Decreasing Oxygen Dencity in Converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400052B1 (en) * 2012-06-28 2014-05-27 현대제철 주식회사 Refining method for molten steel in converter

Also Published As

Publication number Publication date
KR20050024963A (en) 2005-03-11

Similar Documents

Publication Publication Date Title
CN103361461B (en) A kind of converter smelting soft steel phosphorus content on-line prediction control method
CN109321704B (en) Smelting method for reducing phosphorus content of smelting final slag by slag splashing furnace protection
CN106048129B (en) Converter high-carbon low-phosphorus terminal point control metallurgical method under a kind of phosphorus high ferro water condition
CN104673960B (en) A kind of method of splashing slag in converter
KR101008072B1 (en) Method for Refinig Molten Pig Iron in Converter
CN113913583B (en) Slag modification and slag splashing furnace protection method
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
CN102936638B (en) Induction furnace dephosphorizing method by top and bottom blowing
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP5630324B2 (en) Method of decarburizing and refining hot metal in converter
JP4790489B2 (en) Converter steelmaking
JP5678718B2 (en) Method of decarburizing and refining hot metal in converter
CN114875211B (en) Method for smelting stainless steel and efficiently desilicating
CN113388712B (en) Low-carbon LF (ladle furnace) process steel converter smelting method
CN106086287B (en) The method that semi-steel making improves aim carbon rear converter terminal residue adjustment
CN110423856B (en) Low-temperature smelting method for dephosphorization and decarburization of low-silicon molten iron
JP3575304B2 (en) Converter steelmaking method
CN113736948A (en) Dephosphorization control method for unequal smelting end points of DC04 steel converter
KR100890807B1 (en) A Method of Decreasing Oxygen Dencity in Converter
CN109234488A (en) A kind of pneumatic steelmaking compensation method for thermal
JP4497942B2 (en) Converter operation method
CN108796162A (en) A kind of method and method for making steel of semisteel smelting converter quick dephosphorization
Bilgiç Effect of bottom stirring on basic oxygen steelmaking
KR101168902B1 (en) Blowing apparatus of converter and blowing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 10