JPS6317906B2 - - Google Patents

Info

Publication number
JPS6317906B2
JPS6317906B2 JP16239079A JP16239079A JPS6317906B2 JP S6317906 B2 JPS6317906 B2 JP S6317906B2 JP 16239079 A JP16239079 A JP 16239079A JP 16239079 A JP16239079 A JP 16239079A JP S6317906 B2 JPS6317906 B2 JP S6317906B2
Authority
JP
Japan
Prior art keywords
reducing agent
plating bath
metal ion
plating
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16239079A
Other languages
Japanese (ja)
Other versions
JPS5684458A (en
Inventor
Masao Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP16239079A priority Critical patent/JPS5684458A/en
Publication of JPS5684458A publication Critical patent/JPS5684458A/en
Publication of JPS6317906B2 publication Critical patent/JPS6317906B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無電解メツキ浴組成及び該メツキ浴に
よる連続メツキ方法に関し、とくに安価な装置と
簡便な操作で常に安定した浴管理を行い、高品質
な析出膜を得ることを目的とするものである。 本来、無電解メツキ技術は絶縁体上に導体を形
成する方法として、印刷配線板等において広く利
用されているが、その析出反応をコントロールし
て、常に高品質の析出膜を得ることは多くの困難
を有していた。例えば、析出反応のコントロール
の一方法として、浴成分のコントロールによる方
法が一般的であり、容量分析法、機器分析法が応
用されているが、容量分析法による浴成分管理は
回分式操作のみ有効で、連続的な浴成分管理を行
えない。また、機械分析法を応用した連続自動浴
管理の場合は、装置が高価となり維持費も増大し
てくる。 すなわち、従来の方法によると無電解メツキ浴
成分管理は、初期においては回分式の成分管理が
行われていたが、後に自動分析装置を用いた連続
自動コントロール法が採用される様になつた。し
かし、回分式管理法においては、熟練した分析作
業者による繁雑な分析作業が必要であり、メツキ
終了時から浴成分調整終了時までの持ち時間を要
し、厚付無電解メツキの場合は4〜10時間の所要
時間中、途中で被メツキ物を追加投入するとメツ
キ厚にバラツキを生じ、また追加投入される還元
剤、PH調整剤は理論計算量であるため実反応との
間に供給過不足を生じ浴分解、反応抑止の原因と
なる等の欠点を有していた。これに対し、自動コ
ントロール法はこれを改善するものであるが装置
が高価となり、また設置場所は装置維持上不利な
環境が多く、減価償却も高価なものとなる等の欠
点を有していた。 本発明は上記従来方法の欠点を除去するもの
で、特別な測定器を用いずに金属イオンコントロ
ールを可能とし、安価な設備で自動コントロール
を行うことのできる無電解メツキ浴組成及び該メ
ツキ浴による連続メツキ方法を提供するものであ
る。 以下、本発明の一実施例を図面に基づいて説明
する。先ず、本発明の実施例に係る浴成分は、水
酸化第2銅、ETA.2Na.2H2O.ホルマリン、苛性
ソーダ、その他等からなるが、その主旨はこの組
合せに限定されるものではない。また、第1図は
メツキ装置の構成例を示し、メツキ槽12内のメ
ツキ液は循環ポンプP1により金属イオン源槽1
1に送液され、フイルター8を通過した後メツキ
槽12に還流している。この金属イオン源槽11
の給液側には、水酸化第2銅粒が投入されており
撹拌機M1によつて撹拌されている。ここでメツ
キ液と接触した水酸化第2銅粒は一部ETAと錯
体を形成してメツキ液に溶解し、上記フイルター
8を通過した後メツキ槽12に達する。この銅錯
イオンはメツキ槽12内にて析出反応によつて液
相から除かれる。この反応は水酸化第2銅粒が存
在する間中継続される。また水酸化第2銅はその
一部が酸化銅に変化するがETAイオンと錯体を
形成し最終的には溶解する。またこのメツキ装置
によつて一定される銅イオン濃度は、析出反応量
と錯体形成反応量によつて定まる。金属イオン源
槽11の容量が小さい場合、銅イオン濃度は低い
値に維持されるが、十分に大きな容量があれば被
メツキ面積の多少によらず初期のETA濃度より
少し低い値に維持される。ここで上記メツキ装置
を用い水酸化第2銅粒を投入後メツキ槽12内の
銅イオン濃度変化については、第2図の如く測定
された。この測定例における条件下でETA初期
濃度と銅イオン濃度の差が0.005モル/l以上が
あれば速い錯形成反応速度0.001モル/l分が得
られる。このことから銅イオン濃度は初期の
ETA濃度より0.005M低い濃度に維持一定される
ことになる一方PHの調整はガラス電極ユニツト3
と記録式PH指示調節機4、コントロールユニツト
5、定量ポンプP3およびタンク10からのPH調
整剤によつて行われる、またこれに連続して定量
ポンプP2が駆動され還元剤タンク9からホルマ
リンが追加供給される、これらの供給比率はポン
プP2,P3を調整して行うことができる、これら
の供給液の濃度は総供給液量とメツキ液蒸発量と
が互いに相殺しあうように定められる。なお一般
にガラス電極3は温度、共存イオンに影響される
が本発明においてはPHの絶対値を必要としない
為、温度による影響はヒーター1、測温抵抗体
2、温度調節機6により温度を一定に保つことに
よつて解消できる。しかし共存イオンの増減によ
る影響は、析出反応の進行に伴う蟻酸ナトリウム
の蓄積による影響として現われ、実際のPHより低
い値を示すようになる。このため一般的にはPH調
整のコントロールポイントを苛性ソーダ追加供給
量に対応させて低下させる必要があるが、実施例
の場合は本発明の浴組成例の如く、水酸化第2銅
を用いることで苛性ソーダ供給量を約半減でき、
コントロールポイントの調整度数を減らすことが
できる。 つぎに、下記メツキ浴組成を使用し、上記第1
図のメツキ装置をもつて銅イオン濃度の経時変化
を測定したところ、第1表の如き値が得られた。
なお、このときの銅析出速度は4μ/時で、最終
的には12μの膜厚を得ることができた。
The present invention relates to the composition of an electroless plating bath and a continuous plating method using the plating bath, and in particular, its purpose is to consistently maintain stable bath management using inexpensive equipment and simple operation, and to obtain a high-quality deposited film. . Originally, electroless plating technology is widely used as a method for forming conductors on insulators in printed wiring boards, etc., but it is difficult to control the deposition reaction and consistently obtain a high-quality deposited film. had difficulties. For example, one method of controlling precipitation reactions is generally to control bath components, and volumetric analysis and instrumental analysis are applied, but bath component control using volumetric analysis is effective only in batch operations. Therefore, continuous bath component management cannot be performed. Furthermore, in the case of continuous automatic bath management using mechanical analysis, the equipment becomes expensive and maintenance costs increase. That is, according to conventional methods, component management of electroless plating baths was initially carried out in a batch manner, but later a continuous automatic control method using an automatic analyzer was adopted. However, the batch control method requires complicated analysis work by skilled analytical workers, and it takes a long time from the end of plating to the end of bath composition adjustment, and in the case of thick electroless plating, During the required time of ~10 hours, if the material to be plated is added in the middle, the plating thickness will vary, and the amount of reducing agent and PH adjuster added is theoretically calculated, so oversupply may occur during the actual reaction. This has disadvantages such as a shortage resulting in bath decomposition and reaction inhibition. On the other hand, the automatic control method improves this, but it has disadvantages such as the equipment is expensive, the installation location is often in an unfavorable environment for equipment maintenance, and depreciation is expensive. . The present invention eliminates the drawbacks of the above-mentioned conventional methods, and provides an electroless plating bath composition and electroless plating bath that enables metal ion control without the use of special measuring instruments and automatic control using inexpensive equipment. This provides a continuous plating method. Hereinafter, one embodiment of the present invention will be described based on the drawings. First, the bath components according to the embodiments of the present invention include cupric hydroxide, ETA.2Na.2H 2 O. formalin, caustic soda, and others, but the gist is not limited to this combination. Further, FIG. 1 shows an example of the configuration of a plating device, and the plating liquid in the plating tank 12 is supplied to the metal ion source tank 1 by a circulation pump P1.
After passing through a filter 8, the liquid is refluxed to a plating tank 12. This metal ion source tank 11
Cupric hydroxide particles are placed on the liquid supply side and are stirred by a stirrer M1 . Here, the cupric hydroxide grains that have come into contact with the plating solution partially form a complex with ETA and are dissolved in the plating solution, and after passing through the filter 8, reach the plating tank 12. The copper complex ions are removed from the liquid phase by a precipitation reaction in the plating tank 12. This reaction continues as long as the cupric hydroxide grains are present. In addition, a portion of cupric hydroxide changes to copper oxide, but forms a complex with ETA ions and eventually dissolves. Further, the copper ion concentration fixed by this plating device is determined by the amount of precipitation reaction and the amount of complex formation reaction. If the capacity of the metal ion source tank 11 is small, the copper ion concentration is maintained at a low value, but if the capacity is sufficiently large, it is maintained at a value slightly lower than the initial ETA concentration regardless of the area to be plated. . Here, the change in copper ion concentration in the plating tank 12 was measured as shown in FIG. 2 after the cupric hydroxide grains were introduced using the above plating apparatus. Under the conditions of this measurement example, if the difference between the initial ETA concentration and the copper ion concentration is 0.005 mol/l or more, a fast complex formation reaction rate of 0.001 mol/l can be obtained. This indicates that the initial copper ion concentration is
The concentration will be maintained constant at 0.005M lower than the ETA concentration, while the PH will be adjusted using the glass electrode unit 3.
This is performed by the recording type PH indicator controller 4, control unit 5, metering pump P3 , and PH adjusting agent from the tank 10. Continuously, the metering pump P2 is driven to discharge formalin from the reducing agent tank 9. are additionally supplied, these supply ratios can be adjusted by adjusting pumps P 2 and P 3 , and the concentrations of these supply liquids are set so that the total supply liquid volume and the plating liquid evaporation amount cancel each other out. determined. Generally, the glass electrode 3 is affected by temperature and coexisting ions, but in the present invention, the absolute value of PH is not required. This can be resolved by keeping the However, the effect of increase or decrease in coexisting ions appears as an effect of accumulation of sodium formate as the precipitation reaction progresses, and the pH value becomes lower than the actual pH. For this reason, it is generally necessary to lower the control point for pH adjustment in accordance with the additional supply amount of caustic soda, but in the case of the example, as in the bath composition example of the present invention, by using cupric hydroxide. The amount of caustic soda supplied can be reduced by about half,
The frequency of adjustment of control points can be reduced. Next, using the following plating bath composition, apply the first plating bath described above.
When the change in copper ion concentration over time was measured using the plating device shown in the figure, the values shown in Table 1 were obtained.
The copper deposition rate at this time was 4μ/hour, and a final film thickness of 12μ could be obtained.

【表】 を添加する。
Add [Table].

【表】 **…被メツキ物投入時
この結果、金属イオン源として水酸化第2銅を
大過剰量供給したことにより、メツキ工程中の銅
イオン濃度は経時変化の影響を受けることなく、
略一定に維持されていることがわかる。 本発明は以上にて述べた如く、金属イオン源、
還元剤、錯化剤、苛性ソーダ等のPH調整剤及び浴
安定剤・析出改善剤等の添加剤からなる無電解メ
ツキ浴において、金属イオン源として例えば水酸
化第2銅を大過剰量供給することにより、メツキ
工程中の金属錯イオン濃度すなわち銅錯イオン濃
度を一定に維持可能なメツキ浴を作ることができ
るものである。すなわち、本発明の金属イオン濃
度コントロールはメツキ浴中において、錯化剤の
存在によつて始めて溶解する様な金属塩、金属酸
化物、金属水酸化物のうち、一つ以上を金属イオ
ン源として用いることによつて成立する。大過剰
量供給された上記金属イオン源は、錯化剤の存在
大で急速にメツキ浴中に溶解するが、金属錯イオ
ン濃度が高まるにつれて溶解速度は低下し、錯化
剤の配位座が全て金属イオンで占められた時点で
溶解反応は停止し、濃度は一定となる。この溶解
反応と析出反応による金属イオン濃度の減少とを
競合させれば、金属イオンを錯化剤濃度より少し
低目の値に維持し一定とすることができる。 また、本発明の他の改善点は、還元剤濃度のコ
ントロールをPH調整剤のコントロールに連動させ
て行うことである。すなわち、還元剤としてホル
マリンを例にとると、メツキ析出反応におけるホ
ルマリンと水酸イオンの反応率は1:2であり、
副反応としてのカニツアロ反応においては2:1
となる。さらに、両反応の反応量比は、単位メツ
キ液量あたりの被メツキ面積によつて決まる値で
ある。この数値に着目し単位メツキ液量あたりの
被メツキ面積毎に経験的に決定されるホルマリン
とPH調整剤の供給比率に基づき、PHコントロール
に連動させてホルマリンを供給し、還元剤濃度を
維持一定させることができる。 以上にて説明した様に、本発明は簡便な方法で
浴成分のコントロールが可能となるが、特に正確
な分析値を必要とするときは、回分式管理法に用
いられる分析法を適用してもよく、その場合には
メツキ開始後に分析を行えば、作業性を低下させ
ることなく行うことができる。
[Table] **...At the time of inputting the material to be plated As a result, by supplying a large excess amount of cupric hydroxide as a metal ion source, the copper ion concentration during the plating process was not affected by changes over time.
It can be seen that it is maintained approximately constant. As described above, the present invention provides a metal ion source,
In an electroless plating bath consisting of a reducing agent, a complexing agent, a pH adjuster such as caustic soda, and additives such as a bath stabilizer and a precipitation improver, supplying a large excess amount of cupric hydroxide, for example, as a metal ion source. This makes it possible to create a plating bath that can maintain a constant metal complex ion concentration, that is, copper complex ion concentration during the plating process. That is, the metal ion concentration control of the present invention uses one or more of metal salts, metal oxides, and metal hydroxides, which are dissolved only in the presence of a complexing agent, as a metal ion source in the plating bath. It is established by using it. The metal ion source supplied in a large excess amount rapidly dissolves in the plating bath due to the large presence of the complexing agent, but as the metal complex ion concentration increases, the dissolution rate decreases, and the coordination site of the complexing agent decreases. The dissolution reaction stops when all metal ions are occupied, and the concentration becomes constant. If this dissolution reaction and the decrease in metal ion concentration due to precipitation reaction compete with each other, the metal ion concentration can be maintained at a constant value slightly lower than the complexing agent concentration. Another improvement of the present invention is that the reducing agent concentration is controlled in conjunction with the PH adjuster control. That is, taking formalin as an example of a reducing agent, the reaction ratio of formalin and hydroxide ions in the plating precipitation reaction is 1:2,
2:1 in Cannitzaro reaction as a side reaction
becomes. Furthermore, the reaction amount ratio of both reactions is a value determined by the area to be plated per unit amount of plating liquid. Focusing on this value, formalin is supplied in conjunction with PH control based on the supply ratio of formalin and PH adjuster, which is empirically determined for each area to be plated per unit amount of plating liquid, and the reducing agent concentration is maintained at a constant level. can be done. As explained above, the present invention makes it possible to control bath components using a simple method, but when particularly accurate analytical values are required, the analytical method used in the batch control method can be applied. In that case, if the analysis is performed after the start of plating, it can be done without reducing work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すメツキ装置の
要部構成図、第2図は水酸化第2銅のメツキ液へ
の溶解状態を示す曲線図である。 同図中、P1は循還ポンプ、P2,P3は可変型定
量注入ポンプ、M1,M2は撹拌機、1はヒータ
ー、2は測温抵抗体、3はガラス電極ユニツト、
4は記録式PH指示調節機、5はコントロールユニ
ツト、6は温度調整機、7はバルブ、8はフイル
ター、9は還元剤タンク、10はPH調整剤タン
ク、11は金属イオン源槽、12はメツキ槽。
FIG. 1 is a block diagram of a main part of a plating apparatus showing an embodiment of the present invention, and FIG. 2 is a curve diagram showing the state of dissolution of cupric hydroxide in a plating solution. In the figure, P 1 is a circulation pump, P 2 and P 3 are variable metering pumps, M 1 and M 2 are stirrers, 1 is a heater, 2 is a resistance temperature detector, 3 is a glass electrode unit,
4 is a recording type PH indicating regulator, 5 is a control unit, 6 is a temperature regulator, 7 is a valve, 8 is a filter, 9 is a reducing agent tank, 10 is a PH adjusting agent tank, 11 is a metal ion source tank, 12 is a Metsuki tank.

Claims (1)

【特許請求の範囲】 1 無電解メツキ浴において、メツキ槽と分離し
て設けられ、かつフイルターを介してメツキ液が
循環している容器にたいし金属イオン源として水
及びアルカリ性水溶液に不溶性である金属酸化
物、金属水酸化物のうち一つ以上を投入し、不溶
性物質がメツキ槽内へ持ち込まれないようにして
なることを特徴とする無電解メツキ浴による連続
メツキ方法。 2 還元剤濃度を調整するためPH値制御と連動さ
せて還元剤の追加供給を行う際、還元剤とPH調整
剤の供給比率をメツキ析出反応と副反応による還
元剤とPH調整剤の消費比率に対応させて決定し、
この比率に基づき追加供給することを特徴とする
特許請求の範囲第1項記載の無電解メツキ浴によ
る連続メツキ方法。 3 金属イオン源、還元剤、錯化剤、苛性ソーダ
等のPH調整剤及び析出改善剤、浴安定剤等の添加
剤からなる無電解メツキ浴組成において、金属イ
オン源として水及びアルカリ性水溶液に不溶性で
あり、かつ錯化剤により容易に錯体を形成し得る
水酸化第2銅を使用してなることを特徴とする無
電解メツキ浴組成。
[Claims] 1. In an electroless plating bath, a container that is provided separately from the plating tank and in which the plating solution is circulated through a filter is used as a metal ion source that is insoluble in water and an alkaline aqueous solution. A continuous plating method using an electroless plating bath characterized by adding one or more of metal oxides and metal hydroxides to prevent insoluble substances from being brought into the plating bath. 2. When additionally supplying reducing agent in conjunction with PH value control to adjust the reducing agent concentration, the supply ratio of reducing agent and PH adjuster is determined by the consumption ratio of reducing agent and PH adjusting agent due to precipitation reaction and side reaction. Decided according to
A continuous plating method using an electroless plating bath according to claim 1, characterized in that additional supply is performed based on this ratio. 3. In an electroless plating bath composition consisting of a metal ion source, a reducing agent, a complexing agent, a PH adjuster such as caustic soda, a precipitation improver, a bath stabilizer, and other additives, a metal ion source that is insoluble in water and an alkaline aqueous solution is used as a metal ion source. 1. An electroless plating bath composition characterized in that it uses cupric hydroxide which can easily form a complex with a complexing agent.
JP16239079A 1979-12-14 1979-12-14 Nonelectrolytic plating bath composition and continuous plating therewith Granted JPS5684458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16239079A JPS5684458A (en) 1979-12-14 1979-12-14 Nonelectrolytic plating bath composition and continuous plating therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16239079A JPS5684458A (en) 1979-12-14 1979-12-14 Nonelectrolytic plating bath composition and continuous plating therewith

Publications (2)

Publication Number Publication Date
JPS5684458A JPS5684458A (en) 1981-07-09
JPS6317906B2 true JPS6317906B2 (en) 1988-04-15

Family

ID=15753665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16239079A Granted JPS5684458A (en) 1979-12-14 1979-12-14 Nonelectrolytic plating bath composition and continuous plating therewith

Country Status (1)

Country Link
JP (1) JPS5684458A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408916B (en) * 2019-08-26 2021-08-17 惠州市安泰普表面处理科技有限公司 Chemical nickel plating method

Also Published As

Publication number Publication date
JPS5684458A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
EP0564780B1 (en) Methods and apparatus for maintaining electroless plating solutions
JP2004534909A (en) Method and apparatus for controlling the amount of a chemical component in an electrochemical cell
US4096301A (en) Apparatus and method for automatically maintaining an electroless copper plating bath
US5182131A (en) Plating solution automatic control
JPS6016517B2 (en) Electroless plating control method
EP1420891B1 (en) Electroless nickel plating solution and process for its use
GB1588758A (en) Method and apparatus for control of electroless plating solutions
JPS6317906B2 (en)
US5200047A (en) Plating solution automatic control
CN211848201U (en) Copper electroplating equipment for controlling copper ion concentration
USRE31694E (en) Apparatus and method for automatically maintaining an electroless copper plating bath
JPH0158270B2 (en)
KR100278768B1 (en) Etching solution management device
JP4262178B2 (en) Electric tin plating method
JP2836670B2 (en) Method and apparatus for replenishing metal ions in plating solution
JPH0331789B2 (en)
JP3262635B2 (en) Supply method of zinc ion to plating solution
JPS58161758A (en) Method for controlling chemical treating solution
EP0497042A2 (en) Process and programmable computer controlled system for electroless copper plating
JPS583999A (en) Electric alloy plating method
JP3487731B2 (en) Electroplating solution concentration stabilization method
DeBrita et al. Electroless Bath Automatic Analyzers from a User's Viewpoint
JPH0633251A (en) System for automatically controlling copper electroless-plating bath
JPH02159029A (en) Chemical treatment and device therefor
JP2785626B2 (en) Metal ion supply method