JPH0331789B2 - - Google Patents

Info

Publication number
JPH0331789B2
JPH0331789B2 JP52063337A JP6333777A JPH0331789B2 JP H0331789 B2 JPH0331789 B2 JP H0331789B2 JP 52063337 A JP52063337 A JP 52063337A JP 6333777 A JP6333777 A JP 6333777A JP H0331789 B2 JPH0331789 B2 JP H0331789B2
Authority
JP
Japan
Prior art keywords
copper
concentration
plating
solution
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP52063337A
Other languages
Japanese (ja)
Other versions
JPS53149389A (en
Inventor
Hitoshi Oka
Kenji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6333777A priority Critical patent/JPS53149389A/en
Publication of JPS53149389A publication Critical patent/JPS53149389A/en
Publication of JPH0331789B2 publication Critical patent/JPH0331789B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、化学銅めつき液中の銅イオンの濃度
を精度良く安定化する装置に関するものである。 〔従来の技術〕 従来、化学銅めつき液の主成分濃度管理は試行
錯誤的なものであつた。すなわち、めつきを施す
べき被めつき体の全表面積を概算しておき、めつ
き速度とめつき時間から主成分消費量をメーカー
が作成したフアクターに基づき算出し、所定量を
補給するものであり、より正確な濃度管理方法と
しては間欠的に化学分析することによつて濃度調
整を行なつていた。無機、有機材料などの絶縁材
料を金属被覆して複合材料化するさい、化学銅め
つきは金属銅の電気良導性を利用して絶縁材料に
導電性を付与するための前処理的なものであつ
た。この場合には、銅めつき皮膜の機械的性質を
重要視する必要もなく、上記管理方法のごとく精
度としては低いが顧客の管理容易な方法で十分で
あつた。 〔発明が解決しようとする課題〕 しかし、最近エポキシ樹脂、フエノール樹脂、
セラミツク等の絶縁材料上に化学銅めつきによつ
て導体を形成する利用法が多くなつてきた。この
ような場合には、導体としての電気的特性はもと
より、金属としての機械的性質がある程度以上必
要である。しかし、めつき皮膜の特性はめつき液
の主成分濃度によつて著しく影響を受けるため
に、上記のごとく試行錯誤的管理方法では再現
性、信頼性良好にめつきを施すことができないの
が当然である。したがつて、上記方法の欠点をな
くすために連続的に自動分析して濃度管理をする
ことが考えられた。 濃度管理が自動化される場合、濃度変化が電
位、電流の変化として入力されなければならな
い。このために機器分析装置が利用されるが、一
般に高価で複雑であり、目的とする成分以外の化
合物およびイオン等が共存すると妨害を受けて精
度が低下するものである。例えば、化学銅めつき
液の銅イオン濃度管理に用いられる比色法、装置
が高価であるばかりか、めつき液のPH、銅イオン
以外の化合物、イオンの濃度、めつき液中に存在
する水素ガスの気泡等に強い影響を受け、誤差の
大きいものであつた。 本発明の目的は、上記した従来の化学銅めつき
液の銅イオン濃度を安定化する上の欠点を解決す
るためになされたもので、極めて安価かつ簡単
で、精度のよい化学銅めつき液の銅イオン濃度の
安定化装置を提供するにある。 〔課題を解決するための手段〕 上記目的を達成するために、本発明は、少なく
とも銅イオンとキレート剤とを有する化学銅めつ
き液をめつき槽から流速Vで採取する手段、銅イ
オンのキレート剤とキレート化合物を形成する濃
度Ct1のFe〓もしくはCu〓イオンを含有する第1摘
定液と、該化学銅めつき液中の所望の全キレート
剤濃度nCとCu濃度CとCt1との関係から求められ
るCt1Vt1が(n−1)CVを少し越えるように設
定した速度Vt1で該第1滴定液から液を採取する
手段と、該採取しためつき液と採取した第1滴定
液とを混合する第1の混合手段と、不溶性電極と
参照電極とを備え該第1の混合手段に結合された
銅イオン検出セルと、該銅イオン検出セルから求
められた酸化還元電位に基づいて該めつき槽に銅
イオンを補給する手段とを有することを特徴とす
る化学銅めつき液中の銅イオン濃度の安定化装置
にある。 〔作用〕 次に本発明に係る化学銅めつき液の銅イオン、
濃度の安定化装置について述べる。化学銅めつき
液は銅イオン、銅イオンのキレート剤、錯化剤お
よび還元剤、PH調整剤としてアルカリ金属の水酸
化物から成つている。銅イオンは銅イオンのキレ
ート剤、錯化剤によつてキレートおよび錯形成さ
れ、還元剤により攻撃が防止されている。銅イオ
ンはめつき反応によつて消費されるもので、常に
最適濃度に管理維持される必要がある。銅イオン
が十分安定にキレート、錯形成されるには、銅イ
オンと用いられる銅イオンのキレート、銅イオン
の錯化剤との間の安定度定数に従つて、銅イオン
濃度に対して、ある程度以上のキレート、錯化剤
が加えられ、これは高価な薬品であるために、一
般に銅イオン濃度の1.5〜5倍の濃度が用いられ
ている。化学銅めつきにおける銅イオンの還元性
は、銅イオン濃度と、銅イオンとキレート、錯化
剤の濃度比、すなわち銅イオンのキレート、錯形
成の安定性に依存している比重が大きい。従つ
て、銅イオン、銅イオンのキレート、錯化剤の濃
度管理は、良質のめつき皮膜を得る上において、
極めて重要なものである。 本発明は以下の方法によつて、銅イオン濃度を
必要に十分な精度で安定に管理する装置である。
例えば、キレート剤としてエチレンジアミン四酢
酸(以後EDTAと略記)、エチレンジアミン五酢
酸(以後DTPAと略記)等が用いられる場合、
銅イオンをはじめ、多くの金属イオンが、モル濃
度比で1:1で反応する。すなわち、この反応が
キレート生成反応であり、反応生成物が金属キレ
ート化合物である。今、化学銅めつき液中の銅イ
オン濃度をCモル、キレート剤のモル濃度をn倍
のnCモルとすれば、銅イオンは完全にキレート
化される。例えば、白金、金等の不溶性電極を用
いれば、不純物として微量めつき液に含有される
一価銅イオン(以後、Cu〓と略記)と二価銅イオ
ン(以後Cu〓と略記)との間の電位として、 E(1)=0.153−0.05921og{K(n
−1)〔Cu〓〕}……(1) が得られる。ただし、KはCu〓とEDTA間の安定
度定数、〔Cu〓〕はめつき液中のCu〓のモル濃度を
示す。今、前記濃度関係にある一定容量のめつき
液に、外部より、一定濃度の三価鉄イオン(以後
Fe〓と略記)溶液を漸次、混合した場合を考え
る。三価鉄イオンは、キレート剤と極めて安定な
キレートを形成し、これは多くの二価金属イオン
よりも安定である。したがつて、外部よりのFe〓
の混合が進行し、ちようどはCu〓とキレート剤と
の濃度差(n−1)Cモルを少し越えたFe〓混合
量となつたとき、キレート化していたCu〓は、キ
レート剤から解離して、遊離Cu〓を生成する。し
たがつて、このとき得られた不溶性電極による電
位は E(2)=0.153+0.05921og{〔Cu−
〓〕/〔Cu〓〕}……(2) である。さらに、Fe〓の混合が進行し、Fe〓がす
べてのキレート剤とキレートを形成するに要する
量(nCモル)を少し越えたとき、遊離のFe〓が存
在することになり、不純物として微量に含まれる
二価鉄イオン(以後、Fe〓と略記)との間の電位
は E(3)=0.771+0.05921og{〔Fe〓
〕/〔Fe〓〕}……(3) として得られる。すなわち、電位E(2)からE(3)への
変化したときの全Fe〓量は、全キレート剤量:nC
モルに等しい。電位E(1)からE(2)へ変化したときの
全Fe〓量は全遊離キレート剤量:(n−1)Cモ
ルに等しい。これらのFe〓量の差、nC−(n−1)
C=Cから、全Cu〓濃度(Cモル)を知ることが
できる。この電位差滴定法の原理を自動管理法と
して用いる場合は、次のような方法によつてなさ
れる。全Cu〓濃度:Cモル、全キレート剤濃度:
nCモルから成る化学銅めつき液を、マイクロポ
ンプによつて、一定流路でサンプリングする。次
いで、(n−1)Cモルより少し濃いFe〓溶液を
同じ流速でサンプリングし、混合する。この混合
溶液は、適当な参照電極と不溶性電極から成る微
小容量の検出セルへ導入される。ここで検出され
る電極電位は、前記したE(2)である。ここで測定
される電極電位は、単なる平衡電位でもよいし、
分極された電位でもよい。もし、化学銅めつき反
応でCu〓が消費され、Cモルより低濃度であれ
ば、E(1)を得る。したがつて、E(2)の電位を検出す
るまで、適当な制御装置を用いて、Cu〓を補給す
ればよい。前記検出セルを出た混合溶液に、Cモ
ルより少し低いFe〓溶液を同じ流速で混合する。
この混合液は、前記した検出セルと同じ構成の検
出セルへ導入される。ここで検出される電極電位
はE(2)である。もし、被めつき体にめつき液が付
着してめつき槽の外部へ持ち出される等によつて
キレート剤濃度がnCモルより低くなれば、E(3)
得る。したがつて、E(2)の電位を検出するまで、
適当な制御装置を用いてキレート剤を補給すれば
よい。 〔実施例〕 次に実施例を用いて本発明を具体的に説明す
る。 実施例 1 めつき液組成、条件 CuSO4・5H2O:14g EDTA−2Na:41.5g NaOH:12g 37%ホルマリン:10ml 添加剤:少量 水…全体を1とする量 めつき温度 70℃ めつき面積 1dm2/ めつき速度 2.5μ/h サンプリング速度 20ml/h 第1滴定、第2滴定液組成、条件 滴定液組成 Fecl3:18.1g Hcl:10ml 水…全体を1とする量 第一滴定条件 設定電位 +0.28V 参照電極 飽和甘汞電極 作用電極 0.3φ白金線 滴定速度 20ml/h 第二滴定条件 設定電位 +0.54V 参照電極 飽和甘汞電極 作用電極 0.3φ白金線 滴定速度 20ml/h 上記構成から成るめつき液、滴定液は、図に示
される銅イオン濃度の安定化装置によつてサンプ
リング、検出、自動制御された。すなわち、上
記、めつき液をサンプリング速度20ml/hで多連
チユーブポンプ2でめつき槽1からサンプリング
され、まず第1滴定液槽3からサンプリング速度
20ml/hでサンプリングされた第1滴定液がT字
管4−1で混合された。混合液は飽和甘汞電極5
−1と白金電極6−1から成る銅検出セル7で電
極電位が測定された。測定された電極電位は銅制
御装置8へ入力され、銅制御装置の設定電位
0.28Vより低い場合、電磁弁9−1(電磁弁のか
わりに、補給用ポンプを用いてもよい)が開い
て、銅補給槽10から、濃高銅イオン溶液がめつ
き槽1へ補給され、銅検出セル7で測定される電
極電位が0.28Vより高くなつたとき、電磁弁6が
閉じて補給が中止された。 上記銅イオン濃度安定化装置において、めつき
液中のCuSO4・5H2Oに換算した銅イオン濃度
と、測定電位の関係を求めた結果、第1表のよう
であつた。設定濃度(14g/)において、設定
電位(0.28V)を示し、これを当量点とするS字
状の関係が得られた。測定電位が0.3Vを示した
とき銅イオン濃度は14.15g/であり、0.25Vを
示したとき13.75g/であつた。すなわち、設
定電位0.28Vより測定電位が大きいか、小さいか
を検出すれば、銅イオン濃度の測定ができること
がわかつた。
[Industrial Field of Application] The present invention relates to an apparatus for accurately stabilizing the concentration of copper ions in a chemical copper plating solution. [Prior Art] Conventionally, the concentration of the main components of chemical copper plating solutions has been controlled by trial and error. In other words, the total surface area of the object to be plated is roughly estimated, the consumption of the main component is calculated from the plating speed and the plating time based on factors created by the manufacturer, and a predetermined amount is replenished. However, a more accurate concentration control method has been to perform intermittent chemical analysis to adjust the concentration. When insulating materials such as inorganic and organic materials are coated with metal to form composite materials, chemical copper plating is a pre-treatment that uses the good electrical conductivity of metallic copper to impart conductivity to the insulating material. It was hot. In this case, there was no need to place importance on the mechanical properties of the copper plating film, and a method that was easy for the customer to manage, although less accurate than the above-mentioned control method, was sufficient. [Problem to be solved by the invention] However, recently, epoxy resins, phenolic resins,
The use of chemical copper plating to form conductors on insulating materials such as ceramics has become more common. In such cases, it is necessary to have not only electrical properties as a conductor but also mechanical properties as a metal to a certain extent. However, since the properties of the plating film are significantly affected by the concentration of the main components of the plating solution, it is natural that plating cannot be performed with good reproducibility and reliability using the trial-and-error management method described above. It is. Therefore, in order to eliminate the drawbacks of the above methods, it was considered to perform continuous automatic analysis to control the concentration. When concentration management is automated, changes in concentration must be input as changes in potential and current. Instrumental analyzers are used for this purpose, but they are generally expensive and complicated, and the coexistence of compounds, ions, etc. other than the target component causes interference and reduces accuracy. For example, the colorimetric method and equipment used to control copper ion concentration in chemical copper plating solutions are not only expensive, but also the pH of the plating solution, the concentration of compounds and ions other than copper ions, and the concentration of compounds and ions present in the plating solution. It was strongly influenced by hydrogen gas bubbles, etc., and the error was large. The purpose of the present invention was to solve the above-mentioned drawbacks in stabilizing the copper ion concentration of the conventional chemical copper plating solution. To provide a device for stabilizing copper ion concentration. [Means for Solving the Problems] In order to achieve the above object, the present invention provides means for collecting a chemical copper plating solution containing at least copper ions and a chelating agent from a plating tank at a flow rate of V, A first extraction solution containing Fe or Cu ions at a concentration Ct 1 to form a chelate compound with a chelating agent, and a desired total chelating agent concentration nC, Cu concentration C, and Ct 1 in the chemical copper plating solution. means for collecting the liquid from the first titrant at a speed Vt 1 set so that Ct 1 Vt 1 , which is determined from the relationship between a first mixing means for mixing a first titrant; a copper ion detection cell that includes an insoluble electrode and a reference electrode and is coupled to the first mixing means; and a redox detected from the copper ion detection cell. An apparatus for stabilizing the concentration of copper ions in a chemical copper plating solution, characterized by comprising means for replenishing copper ions to the plating tank based on the electric potential. [Function] Next, copper ions of the chemical copper plating solution according to the present invention,
The concentration stabilizing device will be described. Chemical copper plating solution consists of copper ions, copper ion chelating agents, complexing agents and reducing agents, and alkali metal hydroxides as PH adjusting agents. Copper ions are chelated and complexed by copper ion chelating agents and complexing agents, and attacks are prevented by reducing agents. Copper ions are consumed during the plating reaction and must be maintained at an optimal concentration at all times. In order for copper ions to be chelated and complexed in a sufficiently stable manner, the copper ion concentration must be adjusted to a certain extent according to the stability constant between the copper ion and the copper ion chelate and copper ion complexing agent used. The above-mentioned chelates and complexing agents are added, and since these are expensive chemicals, they are generally used at a concentration of 1.5 to 5 times the copper ion concentration. The reducibility of copper ions in chemical copper plating largely depends on the copper ion concentration and the concentration ratio of copper ions, chelates, and complexing agents, that is, the stability of copper ion chelate and complex formation. Therefore, concentration control of copper ions, copper ion chelates, and complexing agents is important in obtaining a high-quality plating film.
It is extremely important. The present invention is an apparatus for stably controlling copper ion concentration with sufficient precision using the following method.
For example, when ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA), ethylenediaminepentaacetic acid (hereinafter abbreviated as DTPA), etc. are used as a chelating agent,
Many metal ions, including copper ions, react at a molar concentration ratio of 1:1. That is, this reaction is a chelate-forming reaction, and the reaction product is a metal chelate compound. Now, if the copper ion concentration in the chemical copper plating solution is C moles and the molar concentration of the chelating agent is n times nC moles, the copper ions will be completely chelated. For example, if an insoluble electrode such as platinum or gold is used, the gap between monovalent copper ions (hereinafter abbreviated as Cu〓) and divalent copper ions (hereinafter abbreviated as Cu〓) contained in trace amounts of plating solution as impurities As the potential of E (1) = 0.153−0.05921og {K(n
−1) [Cu〓]}...(1) is obtained. However, K is the stability constant between Cu〓 and EDTA, and [Cu〓] indicates the molar concentration of Cu〓 in the plating solution. Now, a constant concentration of trivalent iron ions (hereinafter referred to as
Consider the case where the solutions (abbreviated as Fe〓) are gradually mixed. Trivalent iron ions form very stable chelates with chelating agents, which are more stable than many divalent metal ions. Therefore, Fe〓 from outside
As the mixing progresses, the concentration difference between Cu and the chelating agent (n-1) When the mixed amount of Fe slightly exceeds the C mole, the chelated Cu is removed from the chelating agent. Dissociates to produce free Cu〓. Therefore, the potential obtained by the insoluble electrode at this time is E (2) = 0.153 + 0.05921og {[Cu−
〓〕/〔Cu〓〕}……(2). Furthermore, when the mixing of Fe〓 progresses and the amount of Fe〓 slightly exceeds the amount (nC mol) required to form a chelate with all the chelating agents, free Fe〓 will be present, and a trace amount of Fe〓 will be present as an impurity. The potential between the included divalent iron ions (hereinafter abbreviated as Fe〓) is E (3) = 0.771 + 0.05921og {[Fe〓
]/[Fe〓]}...(3). In other words, the total amount of Fe when the potential changes from E (2) to E (3) is the total amount of chelating agent: nC
Equal to moles. The total amount of Fe when the potential changes from E (1) to E (2) is equal to the total amount of free chelating agent: (n-1) C moles. The difference in these amounts of Fe〓, nC−(n−1)
From C=C, the total Cu concentration (C moles) can be determined. When the principle of this potentiometric titration method is used as an automatic control method, the following method is used. Total Cu concentration: C mole, total chelating agent concentration:
A chemical copper plating solution consisting of nC moles is sampled in a constant flow path by a micropump. Next, an Fe solution slightly thicker than (n-1) C mol is sampled at the same flow rate and mixed. This mixed solution is introduced into a microcapacitance detection cell consisting of a suitable reference electrode and an insoluble electrode. The electrode potential detected here is E (2) described above. The electrode potential measured here may be a simple equilibrium potential, or
It may be a polarized potential. If Cu〓 is consumed in the chemical copper plating reaction and the concentration is lower than C mole, we get E (1) . Therefore, it is sufficient to replenish Cu〓 using an appropriate control device until the potential of E (2) is detected. An Fe solution having a mole of slightly less than C is mixed into the mixed solution exiting the detection cell at the same flow rate.
This liquid mixture is introduced into a detection cell having the same configuration as the detection cell described above. The electrode potential detected here is E (2) . If the chelating agent concentration becomes lower than nC mol because the plating solution adheres to the body to be plated and is carried out of the plating tank, E (3) is obtained. Therefore, until the potential of E (2) is detected,
The chelating agent may be replenished using a suitable control device. [Example] Next, the present invention will be specifically explained using Examples. Example 1 Plating liquid composition and conditions CuSO 4・5H 2 O: 14 g EDTA-2Na: 41.5 g NaOH: 12 g 37% formalin: 10 ml Additives: a small amount of water...the total amount is 1 Plating temperature 70℃ Plating Area 1 dm 2 / Plating speed 2.5 μ/h Sampling speed 20 ml/h 1st titration, 2nd titrant composition, conditions Titrant composition Fecl 3 : 18.1g Hcl: 10ml Water...amount with the total as 1 First titration conditions Set potential +0.28V Reference electrode Saturated Amane electrode working electrode 0.3φ platinum wire titration rate 20ml/h Second titration condition setting potential +0.54V Reference electrode Saturated Amane electrode working electrode 0.3φ platinum wire titration rate 20ml/h Above configuration The plating solution and titration solution were sampled, detected, and automatically controlled by the copper ion concentration stabilization device shown in the figure. That is, as mentioned above, the plating liquid is sampled from the plating tank 1 using the multiple tube pump 2 at a sampling rate of 20 ml/h, and first from the first titrant liquid tank 3 at a sampling rate of 20 ml/h.
The first titrant sampled at 20 ml/h was mixed in T-tube 4-1. The mixed liquid is saturated with a saturated electrode 5
The electrode potential was measured in a copper detection cell 7 consisting of a copper electrode 6-1 and a platinum electrode 6-1. The measured electrode potential is input to the copper control device 8, and the set potential of the copper control device is
When the voltage is lower than 0.28V, the solenoid valve 9-1 (a replenishment pump may be used instead of the solenoid valve) opens, and the concentrated copper ion solution is replenished from the copper replenishment tank 10 to the plating tank 1. When the electrode potential measured by the copper detection cell 7 became higher than 0.28V, the solenoid valve 6 was closed and replenishment was stopped. In the above copper ion concentration stabilizing device, the relationship between the copper ion concentration converted to CuSO 4 .5H 2 O in the plating solution and the measured potential was determined as shown in Table 1. At the set concentration (14 g/), the set potential (0.28 V) was obtained, and an S-shaped relationship was obtained with this as the equivalence point. When the measured potential showed 0.3V, the copper ion concentration was 14.15 g/, and when it showed 0.25 V, it was 13.75 g/. In other words, it was found that the copper ion concentration could be measured by detecting whether the measured potential was larger or smaller than the set potential of 0.28V.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように本発明に係る化学銅めつき
液の銅イオン濃度の安定化装置は、従来技術より
も、安価、簡単かつ精度よく安定化の管理ができ
る効果がある。
As described above, the device for stabilizing the copper ion concentration of a chemical copper plating solution according to the present invention has the effect of being able to manage stabilization more easily and accurately at a lower cost than the conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る化学銅めつき液の銅イオン濃
度の安定化装置の構成を示す図である。 1……めつき槽、3……第1滴定液槽、5−
1,5−2……飽和甘汞電極、6−1,6−2…
…白金電極、7……銅検出セル、8……銅制御装
置、10……銅補給槽、11……第二滴定液槽、
12……検出セル、13……キレート剤制御装
置、14……キレート剤補給槽。
The figure is a diagram showing the configuration of a device for stabilizing the copper ion concentration of a chemical copper plating solution according to the present invention. 1... Plating tank, 3... First titrant tank, 5-
1, 5-2...Saturated sweet electrode, 6-1, 6-2...
...Platinum electrode, 7...Copper detection cell, 8...Copper control device, 10...Copper supply tank, 11...Second titrant tank,
12...Detection cell, 13...Chelating agent control device, 14...Chelating agent supply tank.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも銅イオンとキレート剤とを有する
化学銅めつき液をめつき槽から流速Vで採取する
手段、銅イオンのキレート剤とキレート化合物を
形成する濃度Ct1のFe〓もしくはCu〓イオンを含有
する第1摘定液と、該化学銅めつき液中の所望の
全キレート剤濃度nCとCu濃度CとCt1との関係か
ら求められるCt1Vt1が(n−1)CVを少し越え
るように設定した速度Vt1で該第1摘定液から液
を採取する手段と、該採取しためつき液と採取し
た第1滴定液とを混合する第1の混合手段と、不
溶性電極と参照電極とを備え該第1の混合手段に
結合された銅イオン検出セルと、該銅イオン検出
セルから求められた酸化還元電位に基づいて該め
つき槽に銅イオンを補給する手段とを有すること
を特徴とする化学銅めつき液中の銅イオン濃度の
安定化装置。
1 Means for collecting a chemical copper plating solution containing at least copper ions and a chelating agent from a plating tank at a flow rate V, containing Fe〓 or Cu〓 ions at a concentration Ct 1 to form a chelate compound with the copper ion chelating agent. Ct 1 Vt 1, which is determined from the relationship between the first extraction solution to be used, the desired total chelating agent concentration nC, Cu concentration C, and Ct 1 in the chemical copper plating solution, slightly exceeds (n-1) CV. means for collecting a liquid from the first titrant solution at a speed Vt 1 set as such, a first mixing means for mixing the collected pickling solution and the sampled first titrant solution, an insoluble electrode and a reference. a copper ion detection cell having an electrode and coupled to the first mixing means; and means for replenishing the plating tank with copper ions based on the redox potential determined from the copper ion detection cell. A device for stabilizing copper ion concentration in a chemical copper plating solution, characterized by:
JP6333777A 1977-06-01 1977-06-01 Measurement method of copper ions and chelating agent concentration in chemical copper plating solution Granted JPS53149389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6333777A JPS53149389A (en) 1977-06-01 1977-06-01 Measurement method of copper ions and chelating agent concentration in chemical copper plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6333777A JPS53149389A (en) 1977-06-01 1977-06-01 Measurement method of copper ions and chelating agent concentration in chemical copper plating solution

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP59137117A Division JPS60104247A (en) 1984-07-04 1984-07-04 Device for measuring concentration of copper ion and chelate agent in chemical copper plating liquid
JP59137118A Division JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Publications (2)

Publication Number Publication Date
JPS53149389A JPS53149389A (en) 1978-12-26
JPH0331789B2 true JPH0331789B2 (en) 1991-05-08

Family

ID=13226314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6333777A Granted JPS53149389A (en) 1977-06-01 1977-06-01 Measurement method of copper ions and chelating agent concentration in chemical copper plating solution

Country Status (1)

Country Link
JP (1) JPS53149389A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890758B2 (en) * 2003-06-13 2005-05-10 Eci Technology, Inc. Measurement of complexing agent concentration in an electroless plating bath
JP5145511B2 (en) * 2007-12-29 2013-02-20 株式会社シノテスト Method for measuring metals in samples
JP6644552B2 (en) * 2016-01-07 2020-02-12 株式会社ニイタカ Determination method of chelating agent
CN112180029A (en) * 2020-09-17 2021-01-05 大连博融新材料有限公司 Method for detecting ammonium content in metal ammonium salt

Also Published As

Publication number Publication date
JPS53149389A (en) 1978-12-26

Similar Documents

Publication Publication Date Title
JP4041667B2 (en) Plating bath analysis method
US5616422A (en) Metallized substrate
JP2787142B2 (en) Electroless tin, lead or their alloy plating method
CA1112523A (en) Method and apparatus for control of electroless plating solutions
JPH0331789B2 (en)
JPS6143660B2 (en)
US4310563A (en) Method for automatically controlling composition of chemical copper plating solution
US20040203165A1 (en) Analytical reagent for acid copper sulfate solutions
Ramasubramanian et al. Solution equilibrium characteristics of electroless copper deposition on thermally-activated palladium-catalysed polyimide substrates
KR830002335B1 (en) PH measurement electrode in aqueous solution
Feldstein et al. Technique for controlling thio compound concentration in electroless plating baths
US4597806A (en) Process for maintaining the zinc content in zinc phosphate baths
JP4747301B2 (en) Electroless nickel plating method
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
Rutkevich et al. Electrochemical Study of Autocatalytic Bismuth (III) Reduction with Ti (III)‐Complexes
JPS60104247A (en) Device for measuring concentration of copper ion and chelate agent in chemical copper plating liquid
Jung et al. Effects of sodium citrate concentration on electroless Ni-Fe bath stability and deposition
AU8322087A (en) Method of consistently producing copper deposit on a substrate by electroless deposition which deposit is essentially free of fissures
JPH06272048A (en) Method for electroless-plating of tin, lead or their alloy and device therefor
JP2003096575A (en) Electroless gold plating liquid and electroless gold plating method
JPH089786B2 (en) Method of measuring reducing agent concentration in chemical copper plating solution
JPS5921386B2 (en) Automatic plating speed control method for electroless plating
KR100454634B1 (en) Fabricating method of Copper film
Takeuchi et al. Electroless gold plating using L-cysteine as reducing agent & its deposition mechanism
KR100434670B1 (en) Method for reducing resistivity of electroless-plated copper film