JPS6143660B2 - - Google Patents

Info

Publication number
JPS6143660B2
JPS6143660B2 JP59137118A JP13711884A JPS6143660B2 JP S6143660 B2 JPS6143660 B2 JP S6143660B2 JP 59137118 A JP59137118 A JP 59137118A JP 13711884 A JP13711884 A JP 13711884A JP S6143660 B2 JPS6143660 B2 JP S6143660B2
Authority
JP
Japan
Prior art keywords
concentration
chelating agent
copper
potential
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59137118A
Other languages
Japanese (ja)
Other versions
JPS60104248A (en
Inventor
Hitoshi Oka
Kenji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59137118A priority Critical patent/JPS60104248A/en
Publication of JPS60104248A publication Critical patent/JPS60104248A/en
Publication of JPS6143660B2 publication Critical patent/JPS6143660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • G01N31/164Determining the equivalent point by means of a discontinuity by electrical or electrochemical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、化学銅めつき液中のキレート剤濃度
の測定方法に関する。 〔発明の背景〕 最近、プリント配線板は、化学銅めつきにより
絶縁基板上に回路導体を設けて製造している。 この場合、回路導体であるめつき皮膜は、電気
特性と機械特性が良好であることが要求される。 一般に化学銅めつき液は、銅イオン、銅イオン
のキレート剤もしくは錯化剤、還元剤およびアル
カリ金属の水酸化物からなつている。そして、化
学銅めつき液中の銅イオンはめつき反応によつて
消費され、キレート剤は被めつき体に付着して、
無視できない程度に槽外に持ち出され濃度が低下
する。 なお、化学銅めつき皮膜の機械特性は、めつき
剤中の銅イオン濃度、キレート剤もしくは錯化剤
の濃度に著しく影響を受ける。このため、これら
成分の濃度管理が必要となる。 従来、銅イオンのキレート剤はめつき反応で消
費されるものではないとして、濃度測定が行なわ
れていなかつた。 〔発明の目的〕 本発明の目的は、上記した従来技術の欠点をな
くし、化学銅めつき液中のキレート剤濃度を精度
良く測定する方法を提供するにある。 〔発明の概要〕 上記目的は、銅イオンと、銅イオンのキレート
剤と、銅イオンの還元剤と、アルカリ金属の水酸
化物よりなる化学銅めつき液に、このめつき液中
に存在する全キレート剤のモル濃度を少し越える
モル濃度の三価鉄イオンを加え、この溶液の酸化
還元電位を不溶性の電極と、参照電極とで測定し
て全キレート剤濃度を求めることを特徴とする化
学銅めつき液中のキレート剤濃度測定方法を提供
するにある。 以下に、本発明の測定原理を説明する。キレー
ト剤であるエチレンジアミン四酢酸(以後EDTA
と略記)、エチレンジアミン五酢酸(以後EDPA
と略記)と、二価の銅イオンは1:1のモル濃度
比で反応する。この反応がキレート生成反応であ
り、反応生成物が銅のキレート化合物である。 今、化学銅めつき液中の銅イオン濃度をCモ
ル、キレート剤のモル濃度をn倍のnCモルとす
れば(一般に、キレート剤は銅イオン濃度の1.5
〜5倍加える)、二価銅イオンは完全にキレート
化される。そして、白金、金などの不溶性の主電
極と、参照電極を用いて、めつき液に微量存在す
る一価銅イオン(以後C と略記)と二価銅イオ
ンのキレート化合物(C〓と略記)との間の電位
を測定すると(1)式のようになる。 E(1)=0.153−0.0592log
{K(n−1)〔C〓〕}…(1) (但し、(1)式中KはC〓とEDTA間の安定度定
数〔C〓〕はめつき液中のC〓のモル濃度であ
る)上記(1)式の濃度関係にある化学銅めつき液に
三価鉄イオン(以後F〓と略記)を加えた場合を
考える。三価鉄イオンは、キレート剤と極めて安
定なキレート化合物を形成する。これは多くの二
価金属イオンより安定である。従つて、F〓の添
加量がC〓とキレート剤との濃度差である(n−
1)Cモルを少し越えると、キレート化していた
C〓はキレート剤から解離して、遊離のC〓を生
成する。そして、上記と同じ電極でC〓とC〓
の電位を測定すると(2)式のようになる。 E(2)=0.153+0.0592log
{〔C〓〕/〔C〓〕}…(2) F〓の添加量がキレート剤濃度(nCモル)を
少し越えると、遊離のF〓が存在することにな
り、めつき液中に微量存在する二価鉄イオン(以
後F〓と略記)との間の電位を、前記と同じ電極
で測定すると(3)式のようになる。 E(3)=0.771+0.0592log
{〔F〓〕/〔F〓〕…(3) すなわち、電位がE(1)からE(3)に変化したとき
の全F〓量は、全キレート剤の量nCモルに等し
い。 〔発明の実施例〕 以下、本発明を実施例を用いて詳細に説明す
る。 実施例 1 めつき液の組成とめつき条件 CuSO4・5H2O …14g EDTA−2Na …41.5g NaOH …12g 37%ホルマリン …10ml 添加量 …少量 水 …全体を1とする量 めつき温度 70℃ めつき面積 1dm2/ めつき速度 2.5μ/h サンプリング速度 20ml/h 滴定液組成と滴定条件 滴定液組成 FeCl3 9.1g HCl 10ml 水 …全体を1とする量 第1回目の滴定条件 設定電位 +0.28V 主電極 0.3φ白金線 参照電極 飽和甘汞電極 滴定速度 20ml/h 第2回目の滴定条件 設定電位 +0.54V 主電極 0.3φ白金線 参照電極 飽和甘汞電極 滴定速度 20ml/h 前記めつき液と前記滴定数を、それぞれ多連チ
ユーブポンプ2で20ml/hの割合でめつき槽1と
第1滴定槽3から採取した。この両液は、T字管
4−1で混合した。ついでこの混合液を白金電極
6−1と飽和甘汞電極5−1をそなえた銅イオン
検出セル7に入れ、電極電位を測定した。この測
定電位は、銅イオン濃度制御装置8へ入力した。
この入力が設定電位0.28Vより低いと、電磁弁9
−1(電磁弁のかわりに、補給用ポンプを用いて
も良い)が開き、銅イオン補給槽10から銅イオ
ン溶液がめつき槽に補給された。入力が0.28Vよ
り高くなると、電磁弁6が閉じて補給が中止され
た。 上記銅イオン濃度測定方法において、めつき液
中のCuSO4・5H2Oに換算した銅イオン濃度と測
定電位の関係を求めた結果、第1表のようであつ
た。設定濃度(14g/)において設定電位
(0.28V)を示し、これを当量点とするS字状の
関係が得られた。測定電位が0.3Vを示したとき
銅イオン濃度は14.15g/であり、0.25Vを示し
たとき13.75g/であつた。すなわち、設定電
位0.28Vより測定電位が大きいか、小さいかを検
出すれば、銅イオン濃度の測定ができることがわ
かつた。
[Field of Application of the Invention] The present invention relates to a method for measuring the concentration of a chelating agent in a chemical copper plating solution. [Background of the Invention] Recently, printed wiring boards have been manufactured by providing circuit conductors on an insulating substrate by chemical copper plating. In this case, the plating film, which is a circuit conductor, is required to have good electrical and mechanical properties. Generally, chemical copper plating solutions consist of copper ions, a chelating or complexing agent for copper ions, a reducing agent, and an alkali metal hydroxide. Then, the copper ions in the chemical copper plating solution are consumed by the plating reaction, and the chelating agent adheres to the plated body.
It is carried out of the tank to a non-negligible extent and the concentration decreases. The mechanical properties of chemical copper plating films are significantly affected by the concentration of copper ions, chelating agents, or complexing agents in the plating agent. Therefore, it is necessary to control the concentrations of these components. Conventionally, the concentration of copper ion chelating agents has not been measured because they are not consumed in the plating reaction. [Object of the Invention] An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a method for accurately measuring the concentration of a chelating agent in a chemical copper plating solution. [Summary of the Invention] The above object is to provide a chemical copper plating solution consisting of copper ions, a copper ion chelating agent, a copper ion reducing agent, and an alkali metal hydroxide; Chemistry characterized by adding trivalent iron ions at a molar concentration slightly exceeding the molar concentration of the total chelating agent, and measuring the redox potential of this solution using an insoluble electrode and a reference electrode to determine the total chelating agent concentration. The present invention provides a method for measuring the concentration of a chelating agent in a copper plating solution. The measurement principle of the present invention will be explained below. The chelating agent ethylenediaminetetraacetic acid (hereinafter EDTA)
), ethylenediaminepentaacetic acid (hereinafter EDPA)
) and divalent copper ions react at a molar concentration ratio of 1:1. This reaction is a chelate-forming reaction, and the reaction product is a copper chelate compound. Now, if the copper ion concentration in the chemical copper plating solution is C moles, and the molar concentration of the chelating agent is nC moles (in general, the chelating agent is 1.5 times the copper ion concentration).
~5x addition), divalent copper ions are completely chelated. Then, using an insoluble main electrode such as platinum or gold and a reference electrode, a chelate compound of monovalent copper ions (hereinafter abbreviated as C I u ) and divalent copper ions (C u When measuring the potential between E(1)=0.153−0.0592log
{K(n-1)[ C〓u ]}...(1) (However, in formula (1), K is the stability constant between C〓u and EDTA [ C〓u ], C〓u in the plating solution Consider the case where trivalent iron ions (hereinafter abbreviated as Fe ) are added to a chemical copper plating solution having the concentration relationship expressed by equation (1) above. Trivalent iron ions form extremely stable chelate compounds with chelating agents. It is more stable than many divalent metal ions. Therefore, the amount of F e added is the concentration difference between C u and the chelating agent (n-
1) When the amount of C mol exceeds a little, the chelated C u dissociates from the chelating agent and generates free C u . Then, when the potential between C〓 u and C〓 u is measured using the same electrode as above, it becomes as shown in equation (2). E(2)=0.153+0.0592log
{[ C〓u ]/[ C〓u ]}...(2) When the amount of F〓e added slightly exceeds the chelating agent concentration (nC mol), free Fe〓e will be present, and the plating will be When the potential with divalent iron ions (hereinafter abbreviated as F e ) present in a small amount in the liquid is measured using the same electrode as above, the result is expressed by equation (3). E(3)=0.771+0.0592log
{[F〓 e ]/[F〓 e ]...(3) That is, the total amount of F〓 e when the potential changes from E(1) to E(3) is equal to the total amount of chelating agent nC mole . [Examples of the Invention] The present invention will be described in detail below using Examples. Example 1 Composition of plating solution and plating conditions CuSO 4・5H 2 O...14g EDTA-2Na...41.5g NaOH...12g 37% formalin...10ml Amount added...a small amount of water...Weighing the total as 1 Plating temperature 70℃ Plating area 1 dm 2 / Plating speed 2.5 μ/h Sampling speed 20 ml/h Titrant composition and titration conditions Titrant composition FeCl 3 9.1 g HCl 10 ml Water...amount where the whole is 1 First titration conditions Setting potential +0 .28V Main electrode 0.3φ platinum wire Reference electrode Saturated metal electrode Titration rate 20ml/h Second titration conditions Set potential +0.54V Main electrode 0.3φ platinum wire Reference electrode Saturated metal electrode Titration rate 20ml/h Said plating The liquid and the titration number were sampled from the plating tank 1 and the first titration tank 3 at a rate of 20 ml/h using the multiple tube pump 2, respectively. Both liquids were mixed in a T-tube 4-1. Next, this mixed solution was placed in a copper ion detection cell 7 equipped with a platinum electrode 6-1 and a saturated acetate electrode 5-1, and the electrode potential was measured. This measured potential was input to the copper ion concentration control device 8.
If this input is lower than the set potential of 0.28V, the solenoid valve 9
-1 (a replenishment pump may be used instead of the solenoid valve) was opened, and the copper ion solution was replenished from the copper ion replenishment tank 10 to the plating tank. When the input was higher than 0.28V, solenoid valve 6 was closed and replenishment was stopped. In the above copper ion concentration measurement method, the relationship between the copper ion concentration converted to CuSO 4 .5H 2 O in the plating solution and the measured potential was determined as shown in Table 1. A set potential (0.28 V) was obtained at the set concentration (14 g/), and an S-shaped relationship was obtained with this as the equivalence point. When the measured potential showed 0.3V, the copper ion concentration was 14.15 g/, and when the measured potential showed 0.25 V, it was 13.75 g/. In other words, it was found that the copper ion concentration could be measured by detecting whether the measured potential was larger or smaller than the set potential of 0.28V.

【表】 銅イオン検出セル7を出た混合液は、多連チユ
ーブポンプ2で20ml/hの割合で第2滴定槽11
から採取した前記滴定液とT字管4−2で混合し
た。この混合液は、白金電極6−2と飽和甘汞電
極5−2をそなえたキレート剤検出セル12に入
れ、電極電位を測定した。測定電位は、キレート
剤制御装置13へ入力した。この入力がキレート
剤制御装置の設定電位の0.54Vより高い場合、電
磁弁9−2が開いて、キレート剤補給槽14か
ら、キレート剤溶液がめつき槽1に補給され、
0.54Vより低くなつたとき、電磁弁9−2が閉じ
て補給が中止された。キレート剤検出セル12を
出た混合液は、廃液槽15に排出した。 上記キレート剤濃度測定方法において、めつき
液中のEDTA−2Naに換算したキレート剤濃度と
測定電位の関係を求めた結果、第2表のようであ
つた。設定濃度(41.5g/)において、設定電
位(0.54V)を示した。測定電位が0.56Vのとき
キレート剤濃度は40.3g/であり、0.52Vを示
したとき43g/であつた。よつて、設定電位
0.54Vより測定電位が大きいか、小さいかを検出
すれば、キレート剤濃度の測定ができることがわ
かつた。
[Table] The mixed liquid exiting the copper ion detection cell 7 is transferred to the second titration tank 11 at a rate of 20 ml/h using the multiple tube pump 2.
The titrant was mixed with the titrant solution collected from the T-tube 4-2. This mixed solution was placed in a chelating agent detection cell 12 equipped with a platinum electrode 6-2 and a saturated acetate electrode 5-2, and the electrode potential was measured. The measured potential was input to the chelating agent control device 13. When this input is higher than the set potential of 0.54 V of the chelating agent control device, the solenoid valve 9-2 opens and the chelating agent solution is replenished from the chelating agent replenishing tank 14 to the plating tank 1.
When the voltage dropped below 0.54V, solenoid valve 9-2 closed and replenishment was stopped. The mixed liquid that came out of the chelating agent detection cell 12 was discharged into a waste liquid tank 15. In the method for measuring the chelating agent concentration described above, the relationship between the chelating agent concentration converted to EDTA-2Na in the plating solution and the measured potential was determined as shown in Table 2. At the set concentration (41.5 g/), the set potential (0.54 V) was shown. When the measured potential was 0.56V, the chelating agent concentration was 40.3 g/, and when the measured potential was 0.52 V, it was 43 g/. Therefore, the set potential
It was found that the concentration of the chelating agent can be measured by detecting whether the measured potential is larger or smaller than 0.54V.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、化学銅め
つき液中のキレート剤濃度を、精度良く調整でき
る。また、連続的に自動制御できる。
As described above, according to the present invention, the concentration of the chelating agent in the chemical copper plating solution can be adjusted with high precision. It can also be continuously and automatically controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

図は化学銅めつき液のキレート剤の自動濃度管
理装置の構成図である。 1……めつき槽、3……第1滴定液、5−1,
5−2……飽和甘汞電極、6−1,6−2……白
金電極、7……銅イオン検出セル、8……銅イオ
ン濃度制御装置、10……銅イオン補給槽、11
……第2滴定液、12……キレート剤検出セル、
13……キレート剤制御装置、14……キレート
剤補給槽。
The figure is a configuration diagram of an automatic concentration control device for a chelating agent in a chemical copper plating solution. 1... Plating tank, 3... First titrant, 5-1,
5-2...Saturated molten metal electrode, 6-1, 6-2...Platinum electrode, 7...Copper ion detection cell, 8...Copper ion concentration control device, 10...Copper ion supply tank, 11
...second titrant, 12...chelating agent detection cell,
13...Chelating agent control device, 14...Chelating agent supply tank.

Claims (1)

【特許請求の範囲】[Claims] 1 銅イオンと、銅イオンのキレート剤と、銅イ
オンの還元剤と、アルカリ金属の水酸化物よりな
る化学銅めつき液に、このめつき液中に存在する
全キレート剤の設定モル濃度を少し越えるモル濃
度の三価鉄イオンを加え、この溶液の酸化還元電
位を不溶性の電極と、参照電極とで測定して全キ
レート剤濃度を求めることを特徴とする化学銅め
つき液中のキレート剤濃度測定法。
1. In a chemical copper plating solution consisting of copper ions, a copper ion chelating agent, a copper ion reducing agent, and an alkali metal hydroxide, set the set molar concentration of all the chelating agents present in this plating solution. A chelate in a chemical copper plating solution characterized by adding trivalent iron ions in a slightly exceeding molar concentration and measuring the redox potential of this solution using an insoluble electrode and a reference electrode to determine the total chelating agent concentration. Agent concentration measurement method.
JP59137118A 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid Granted JPS60104248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59137118A JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137118A JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6333777A Division JPS53149389A (en) 1977-06-01 1977-06-01 Measurement method of copper ions and chelating agent concentration in chemical copper plating solution

Publications (2)

Publication Number Publication Date
JPS60104248A JPS60104248A (en) 1985-06-08
JPS6143660B2 true JPS6143660B2 (en) 1986-09-29

Family

ID=15191243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137118A Granted JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Country Status (1)

Country Link
JP (1) JPS60104248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10960708B2 (en) * 2017-04-07 2021-03-30 Kumho Tire Co., Inc. Semi-pneumatic tire and semi-pneumatic tire manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890758B2 (en) * 2003-06-13 2005-05-10 Eci Technology, Inc. Measurement of complexing agent concentration in an electroless plating bath
US8118988B2 (en) * 2008-01-31 2012-02-21 Eci Technology, Inc. Analysis of copper ion and complexing agent in copper plating baths
JP6644552B2 (en) * 2016-01-07 2020-02-12 株式会社ニイタカ Determination method of chelating agent
CN107202831A (en) * 2017-06-05 2017-09-26 深圳市华星光电技术有限公司 The assay method of copper ion concentration in a kind of copper acid etch liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10960708B2 (en) * 2017-04-07 2021-03-30 Kumho Tire Co., Inc. Semi-pneumatic tire and semi-pneumatic tire manufacturing method

Also Published As

Publication number Publication date
JPS60104248A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
EP0219788B1 (en) Electroless gold plating solution
US5562760A (en) Plating bath, and corresponding method, for electrolessly depositing a metal onto a substrate, and resulting metallized substrate
JPS6143660B2 (en)
KR920002710B1 (en) Chemical copper plating method
US3837945A (en) Process of etching copper circuits with alkaline persulfate and compositions therefor
JPH0331789B2 (en)
US4310563A (en) Method for automatically controlling composition of chemical copper plating solution
JP2003183258A (en) Gold complex
Ramasubramanian et al. Solution equilibrium characteristics of electroless copper deposition on thermally-activated palladium-catalysed polyimide substrates
US3582415A (en) Method of etching cu with use of pb and sn layers as a mask
US3919100A (en) Alkaline etchant compositions
JPS612386A (en) Method of producing printed circuit board
JPS60104247A (en) Device for measuring concentration of copper ion and chelate agent in chemical copper plating liquid
JPS59500475A (en) chelated metal
JP2616272B2 (en) Measurement method of chelating agent concentration, hydroxide ion concentration and reducing agent concentration in chemical copper plating solution
US4597806A (en) Process for maintaining the zinc content in zinc phosphate baths
JPH089786B2 (en) Method of measuring reducing agent concentration in chemical copper plating solution
JP2621524B2 (en) Method for measuring hydroxide concentration in chemical copper plating solution
JP2573919B2 (en) Method for measuring chloride ion concentration in ready-mixed concrete
JPS6338094B2 (en)
JPH0434359A (en) Method for measuring concentrations of chelate agent and hydroxide ion in chemical copper plating bath
JPS575857A (en) Electroless indium-plating solution
JPH024978A (en) Electroless indium plating bath
SU1694695A1 (en) Aqueous solution for chemical copper plating
JPS619578A (en) Method for chemically plating copper