JPS60104248A - Method for measuring concentration of chelate agent in chemical copper plating liquid - Google Patents

Method for measuring concentration of chelate agent in chemical copper plating liquid

Info

Publication number
JPS60104248A
JPS60104248A JP59137118A JP13711884A JPS60104248A JP S60104248 A JPS60104248 A JP S60104248A JP 59137118 A JP59137118 A JP 59137118A JP 13711884 A JP13711884 A JP 13711884A JP S60104248 A JPS60104248 A JP S60104248A
Authority
JP
Japan
Prior art keywords
liquid
chelate agent
concn
ion
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59137118A
Other languages
Japanese (ja)
Other versions
JPS6143660B2 (en
Inventor
Hitoshi Oka
岡 齊
Kenji Nakamura
健二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59137118A priority Critical patent/JPS60104248A/en
Publication of JPS60104248A publication Critical patent/JPS60104248A/en
Publication of JPS6143660B2 publication Critical patent/JPS6143660B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • G01N31/164Determining the equivalent point by means of a discontinuity by electrical or electrochemical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To measure the concn. of a chelate agent in a chemical copper plating liquid and to enable continuous and automatic control of concn. by adding Fe<3+> exceeding slightly the molar concn. of the entire chelate agent contained in the chemical copper plating liquid to said liquid and measuring the oxidation reduction potential thereof. CONSTITUTION:A specified amt. of a copper plating liquid consisting of Cu ion, chelate agent, reducing agent and alkali metal hydroxide is collected from a plating cell 1 by means of a multiplextube pump 2 and a titrating liquid 3 consisting of an aq. soln. of FeCl3 and HCl is drawn from the 1st titrating liquid tank in measuring the chelate agent such as ethylenediamine tetraacetic acid as the chelate agent in said copper plating liquid. Both liquid are mixed and the electrode potential thereof is measured with a Cu ion detecting cell 7 and is inputted to a device 8 for controlling the concn. of the Cu ion. The liquid emitted from the cell 7 is mixed with a specified amt. of the 2nd titrating liquid 11 by a pump 2 in a Tee pipe 4-2 and the concn. is measured with a chelate agent detecting cell 12 and the measured valve is inputted to a control device 13. If the concn. is lower than the respective set values of the devices 8, 13, solenoid valves 9-1, 9-2 are opened and the Cu ion and chelate agent are respectively replenished to the cell 1 from a Cu ion replenishing tank 10 and a chelate agent replenishing tank 14.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、化学銅めりき液中のキレート剤濃度の測定方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for measuring the concentration of a chelating agent in a chemical copper plating solution.

〔発明の背景〕[Background of the invention]

最近、プリント配線板は、化学鋼めっきにより絶縁基板
上に回路導体を設けて製造している。
Recently, printed wiring boards have been manufactured by providing circuit conductors on an insulating substrate by chemical steel plating.

この場合、回路導体であるめっき皮膜は、電気特性と機
械特性が良好であることが要求される。
In this case, the plating film that is the circuit conductor is required to have good electrical and mechanical properties.

一般に化学鋼めっき液は、銅イオン、銅イオンのキレー
ト剤もしくは錯化剤、還元剤および鵠 アルカリ金属の水酸化物からなっている。そして、化学
鋼めっき液中の銅イオンはめつき反応によって消費され
、キレート剤は被めっき体に付着して、無視できない程
度に槽外に持ち出され濃度が低下する。
Generally, a chemical steel plating solution consists of copper ions, a chelating agent or complexing agent for copper ions, a reducing agent, and an alkali metal hydroxide. Then, the copper ions in the chemical steel plating solution are consumed by the plating reaction, and the chelating agent adheres to the object to be plated and is carried out of the tank to a non-negligible extent, reducing its concentration.

なお、化学鋼めっき皮膜の機械特性は、めっき液中の銅
イオン濃度、キレート剤もしくは錯化剤の濃度に著しく
影響を受ける。このため、これら成分の濃度管理が必要
となる。
Note that the mechanical properties of chemical steel plating films are significantly affected by the concentration of copper ions and the concentration of chelating agents or complexing agents in the plating solution. Therefore, it is necessary to control the concentrations of these components.

従来、銅イオンのキレート剤はめりき反応で消費される
ものではないとして、濃度測定が行なわれていなかった
Conventionally, the concentration of copper ion chelating agents has not been measured because they are not consumed in the plating reaction.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、化
学銅めりき液中のキレート剤濃度を精度良く測定する方
法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional techniques described above and to provide a method for accurately measuring the concentration of a chelating agent in a chemical copper plating solution.

〔発明の概要〕[Summary of the invention]

上記目的は、銅イオンと、銅イオンのキレート剤と、銅
イオンの還元剤と、アルカリ金属の水酸化物よりなる化
学銅めっき液に、このめっき液中に存在する全キレート
剤のモル濃度を少し越えるモル濃度の三価鉄イオンを加
え、この溶液の酸化還元電位を不溶性の電極と、参照電
極とで測定して全キレート剤濃度をめることを特徴とす
る化学銅めっき液中のキレート剤濃度測定方法を提供す
るにある。
The above purpose is to increase the molar concentration of all the chelating agents present in a chemical copper plating solution consisting of copper ions, a copper ion chelating agent, a copper ion reducing agent, and an alkali metal hydroxide. A chelate in a chemical copper plating solution characterized by adding trivalent iron ions at a molar concentration slightly higher than that and measuring the redox potential of this solution using an insoluble electrode and a reference electrode to determine the total chelating agent concentration. The present invention provides a method for measuring drug concentration.

以下に、本発明の測定原理を説明する。キレート剤であ
るエチレンジアミン四酢酸(以後EDTAJ略記)、エ
チレンジアミン五酢酸(以後11i!DPAj略記)と
、二価の銅イオンは1:1のモル濃度比で反応する。こ
の反応がキレート生成反応であり、反応生成物が銅のキ
レート化合物である。
The measurement principle of the present invention will be explained below. Chelating agents ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTAJ) and ethylenediaminepentaacetic acid (hereinafter abbreviated as 11i!DPAj) and divalent copper ions react at a molar concentration ratio of 1:1. This reaction is a chelate-forming reaction, and the reaction product is a copper chelate compound.

今、化学銅めりぎ液中の銅イオン濃度をCモル、キレー
ト剤のモル濃度をル倍のTLCモルとすれば(一般に、
キレート剤は銅イオン濃度の1.5〜5倍加える)、二
価銅イオンは完全にキレート化される。そして、白金、
金などの不溶性の主電極と、参照電極を用いて、めっき
液に微量存在する一価銅イオン(以後CJと略記)と二
価銅イオンのキレート化合物(CMと略記)との間の電
位を測定すると(1j式のようになる。
Now, if the copper ion concentration in the chemical copper merging solution is C moles, and the molar concentration of the chelating agent is TLC moles, then
When the chelating agent is added at a concentration of 1.5 to 5 times the copper ion concentration), divalent copper ions are completely chelated. And platinum,
Using an insoluble main electrode such as gold and a reference electrode, the potential between monovalent copper ions (hereinafter abbreviated as CJ) and divalent copper ion chelate compounds (abbreviated as CM) present in trace amounts in the plating solution is determined. When measured, it will be as shown in formula 1j.

E(す=o、1ss−o、osq2tottiK(n−
1ンr、c=n −−−・−・(1)(但し、(1)式
中には(2T4とEDTA間の安定度定数CC&)はめ
っき液中のCλのモル濃度である)上記(1)式の濃度
関係にある化学銅めっき液に三価鉄イオン(以後FWと
略記)を加えた場合を考える。
E(s=o, 1ss-o, osq2tottiK(n-
1nr, c=n ---... (1) (However, in formula (1), (stability constant CC &) between 2T4 and EDTA is the molar concentration of Cλ in the plating solution) Above Consider the case where trivalent iron ions (hereinafter abbreviated as FW) are added to a chemical copper plating solution having the concentration relationship expressed by equation (1).

三価鉄イオンは、キレート剤と極めて安定なキレート化
合物を形成する。これは多(の二価金属イオンより安定
である。従って FWの添加量カC瀝とキレート剤との
濃度差である(3−1)Cモルを少し越えると、キレー
ト化していたGよキレート剤から解離して、遊離のcW
を生成するOそして、上記と同じ電極でCMとCI間の
電位を測定すると(2)式のようになる。
Trivalent iron ions form extremely stable chelate compounds with chelating agents. This is more stable than poly(divalent metal ions). Therefore, if the amount of FW added exceeds (3-1) C mole, which is the difference in concentration between the chelating agent and the chelating agent, the chelated G becomes more stable. Dissociates from the agent and releases free cW
Then, when the potential between CM and CI is measured with the same electrode as above, it becomes as shown in equation (2).

Ef2沖0.153+0.0592ノ0パ(Cり/ (
C五〕) ・・・・・・ (2)FJの添力ロ量がキレ
ート剤濃度(30モル)を少し越えると、遊離のFシー
存在することになり、めっき液中に微量存在する二価鉄
イオン(以後F、IIと略記)との間の電位を、前d己
と同じ電極で測定すると(3)式のようKなる。
Ef2 offing 0.153 + 0.0592 no 0 pa (Cri/ (
(2) When the amount of FJ added slightly exceeds the chelating agent concentration (30 mol), free FJ will exist, and a trace amount of FJ will be present in the plating solution. When the potential between valent iron ions (hereinafter abbreviated as F and II) is measured using the same electrode as the previous one, K is obtained as shown in equation (3).

Ef31= []、771+0.0592ノOパ(FI
F)/(Pg ) =−・f31 n 。
Ef31 = [ ], 771 + 0.0592 no Opa (FI
F)/(Pg) =-·f31n.

すなわち、電位がE(1)からE(3)に変イヒしたと
きの全F、N量は、全キレート剤の量rLCモルに等し
いO 〔発明の実施例〕 以下、本発明を実施例を用〜1て詳細に説明する。
That is, when the potential changes from E(1) to E(3), the total amount of F and N is equal to the total amount of chelating agent rLC moles. This will be explained in detail.

実施例1 t めつき液の組成とめつき条件 c、sat・5八〇・・・・・−・・14.9BDTA
−2Na・−−−−−・・・−4t3j’NaOH・・
−・−・−・−・−・−・・12157% ホルマリン
・・−・−・・・・−・・10ml添加量・・・・・・
・・・ 少量 水・・−・−・・全体を1ノとする量 めっき温度 70℃ めっき面積 idm”/1 めっき速度 2.5μ/J サンプリング速度 20m1/JL 滴定液組成と滴定条件 滴定液組成 F4Cj、18. IJiHCj 10m
j 水・・・・・・・・・全体を1jとする量第1回目の滴
定条件 設定電位 刊、28V 主電極 0.3ψ白金線 参照電極 飽和甘木電極 滴定速度 20rnl/を 第2回目の滴定条件 設定電位 +054v 主電極 03ψ白金線 参照電極 飽和甘木電極 滴定速度 20 milL 前記めっき液と前記滴定液を−、それぞれ多連チューブ
ポンプ2で20m1μの割合でめっき槽1と第1滴定槽
6から採取した。この両液は、T字管4−1で混合した
。ついでこの混合液を白金電極6−1と飽和せf<電極
5−1をそなえた銅イオン検出セルフに入れ、電極電位
を測定した。
Example 1 t Composition of plating liquid and plating conditions c, sat 580...14.9BDTA
-2Na・-------...-4t3j'NaOH・・
−・−・−・−・−・−・・12157% Formalin・・−・−・・・・10ml Addition amount・・・・・・
・ ・ ・ Small amount of water ・ ・ ・ ・ ・ ・ ・ 1 ノ ノ ノ 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全 全F4Cj, 18. IJiHCj 10m
j Water・・・・・・・・・Amount with total as 1j First titration condition setting Potential, 28V Main electrode 0.3φ platinum wire reference electrode Saturation Amagi electrode Titration rate 20rnl/2nd titration Condition setting potential: +054v Main electrode: 03ψ platinum wire reference electrode Saturated Amagi electrode Titration rate: 20 milL The plating solution and the titrant solution were sampled from the plating tank 1 and the first titration tank 6 at a rate of 20ml and 1μ using the multiple tube pump 2, respectively. did. Both liquids were mixed in a T-tube 4-1. Next, this mixed solution was placed in a copper ion detection cell equipped with a platinum electrode 6-1 and a saturated f< electrode 5-1, and the electrode potential was measured.

この測定電位は、銅イオン濃度制御装置8へ入力した。This measured potential was input to the copper ion concentration control device 8.

この入力が設定電位028Vより低いと、電磁弁9−1
〔電磁弁のかわりに、補給用ポンプを用いても良い〕が
開き、銅イオン補給槽10から銅イオン溶液がめつき楢
に補給された。入力が0.28Vより高くなると、電磁
弁6が閉じて補給が中止された。
If this input is lower than the set potential 028V, the solenoid valve 9-1
[A replenishment pump may be used instead of the solenoid valve] was opened, and the copper ion solution was replenished from the copper ion replenishment tank 10 to the plating oak. When the input was higher than 0.28V, the solenoid valve 6 was closed and replenishment was stopped.

銅イオン検出セルフを出た混合液は、多連チューブポン
プ2で20m1/JLの割合で第2滴定槽11から採取
した前記滴定液とT字管4−2で混合した。この混合液
は、白金電極6−2と飽和甘木電極5−2をそなえたキ
レート剤検出セル12に入れ、電極電位を測定した。測
定電位は、キレート剤制御装置16へ人力した。この入
力がキレート剤制御装置の設定電位の054Vより高い
場合、電磁弁9−2が開いて、キレート剤補給槽14か
ら、キレート剤溶液がめつき槽1に補給され、054V
より低(なったとき、電磁弁9−2が閉じて補給が中止
された。キレート剤検出セル12を出た混合液は、廃液
槽15に排出した。
The mixed liquid coming out of the copper ion detection self was mixed with the titrant liquid collected from the second titration tank 11 at a rate of 20 ml/JL using the multiple tube pump 2 in the T-tube 4-2. This mixed solution was placed in a chelating agent detection cell 12 equipped with a platinum electrode 6-2 and a saturated Amagi electrode 5-2, and the electrode potential was measured. The measurement potential was manually input to the chelating agent control device 16. When this input is higher than the set potential of the chelating agent control device, 054V, the solenoid valve 9-2 opens, and the chelating agent solution is replenished from the chelating agent supply tank 14 to the plating tank 1, and the voltage is 054V.
When the temperature became lower than that, the electromagnetic valve 9-2 was closed and replenishment was stopped.

濃度管理は、100時間にわたって連続的に行なった。Concentration control was carried out continuously for 100 hours.

その間、銅イオン濃度、キレート剤濃度を別途化学分析
で間げつ的に行ない、不法の分析精度をチェックしたと
ころ、±5%の分析精度であった。
During this time, the copper ion concentration and the chelating agent concentration were separately subjected to chemical analysis intermittently to check the accuracy of the illegal analysis, and the analysis accuracy was ±5%.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、化学銅めっき液中
のキレート剤濃度を、精度良く調整できる。また、連続
的に自動制御できる。
As described above, according to the present invention, the concentration of the chelating agent in the chemical copper plating solution can be adjusted with high precision. It can also be continuously and automatically controlled.

【図面の簡単な説明】[Brief explanation of drawings]

図は化学銅めっき液のキレート剤の自動濃度管理装置の
構成図である。 1・・・・・−・・めっき槽 3・・−・・・・・第1滴足液 5−1 、5−2・・−・−・・飽和甘木成極6−1.
6−2・・・・・−・−・・白金電極7・・−・・・・
・鋼イオン検出セル 8・・−・・・・・銅イオン濃度制御装置10・・−・
−・・銅イオン補給槽 11・・−・−・・第2滴定液 12・・−・・・・・キレート剤検出セル16・・・・
・・・・キレート剤制御装置14・・・・・−・・キレ
ート剤補給槽代理人弁理士 高 橋 明 夫
The figure is a configuration diagram of an automatic concentration control device for a chelating agent in a chemical copper plating solution. 1...Plating tank 3...First drop of foot liquid 5-1, 5-2...Saturated Amagi Seipoku 6-1.
6-2・・・・・・-・-・・Platinum electrode 7・・・・・・・・・・
- Steel ion detection cell 8... Copper ion concentration control device 10...
--- Copper ion supply tank 11 --- Second titrant 12 --- Chelating agent detection cell 16 ---
...Chelating agent control device 14...Chelating agent supply tank Representative patent attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 銅イオンと、銅イオンのキレート剤と、銅イオンの還元
剤と、アルカリ金属の水酸化物よりなる化学鋼めっき液
に、このめっき液中に存在する全キレート剤のモル濃度
を少し越えるモル濃度の三価鉄イオンを加え、この溶液
の酸化還元電位を不溶性の電極と、参照電極とで測定し
て全キレート剤濃度をめることを特徴とする化学銅めっ
き液中のキレート剤濃度測定方法。
A chemical steel plating solution consisting of copper ions, a copper ion chelating agent, a copper ion reducing agent, and an alkali metal hydroxide has a molar concentration that slightly exceeds the molar concentration of all the chelating agents present in this plating solution. A method for measuring the concentration of a chelating agent in a chemical copper plating solution, which comprises adding trivalent iron ions of .
JP59137118A 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid Granted JPS60104248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59137118A JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137118A JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6333777A Division JPS53149389A (en) 1977-06-01 1977-06-01 Measurement method of copper ions and chelating agent concentration in chemical copper plating solution

Publications (2)

Publication Number Publication Date
JPS60104248A true JPS60104248A (en) 1985-06-08
JPS6143660B2 JPS6143660B2 (en) 1986-09-29

Family

ID=15191243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137118A Granted JPS60104248A (en) 1984-07-04 1984-07-04 Method for measuring concentration of chelate agent in chemical copper plating liquid

Country Status (1)

Country Link
JP (1) JPS60104248A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634069A2 (en) * 2003-06-13 2006-03-15 Eugene Shalyt Measurement of complexing agent concentration in an electroless plating bath
US8118988B2 (en) * 2008-01-31 2012-02-21 Eci Technology, Inc. Analysis of copper ion and complexing agent in copper plating baths
JP2017122650A (en) * 2016-01-07 2017-07-13 株式会社ニイタカ Quantitative method of chelate agent
CN107202831A (en) * 2017-06-05 2017-09-26 深圳市华星光电技术有限公司 The assay method of copper ion concentration in a kind of copper acid etch liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924107B1 (en) * 2017-04-07 2018-11-30 금호타이어 주식회사 Semi pneumatic tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634069A2 (en) * 2003-06-13 2006-03-15 Eugene Shalyt Measurement of complexing agent concentration in an electroless plating bath
JP2007517186A (en) * 2003-06-13 2007-06-28 シャーリット,ユージン Measurement of complexing agent concentration in electroless plating bath
EP1634069B1 (en) * 2003-06-13 2008-11-19 Eugene Shalyt Measurement of complexing agent concentration in an electroless plating bath
US8118988B2 (en) * 2008-01-31 2012-02-21 Eci Technology, Inc. Analysis of copper ion and complexing agent in copper plating baths
JP2017122650A (en) * 2016-01-07 2017-07-13 株式会社ニイタカ Quantitative method of chelate agent
CN107202831A (en) * 2017-06-05 2017-09-26 深圳市华星光电技术有限公司 The assay method of copper ion concentration in a kind of copper acid etch liquid

Also Published As

Publication number Publication date
JPS6143660B2 (en) 1986-09-29

Similar Documents

Publication Publication Date Title
Jagner Potentiometric stripping analysis. A review
Spedding et al. The stability of the rare earth complexes with N-hydroxyethylethylenediaminetriacetic acid
JPS60104248A (en) Method for measuring concentration of chelate agent in chemical copper plating liquid
KR0162905B1 (en) Analysis of tin, lead or tin-lead alloy plating solution
Gnanam et al. Periodic precipitation of calcium carbonate in agar gel: estimation of flocculation value and factors influencing it
JPH0331789B2 (en)
JPS60104247A (en) Device for measuring concentration of copper ion and chelate agent in chemical copper plating liquid
DE3034749C2 (en) Method for automatically controlling the composition of a chemical copper plating solution
US4597806A (en) Process for maintaining the zinc content in zinc phosphate baths
KR830002335B1 (en) PH measurement electrode in aqueous solution
JP2573919B2 (en) Method for measuring chloride ion concentration in ready-mixed concrete
Gordon et al. Amperometric Titration Method for Thorium in Presence of Rare Earths of Monazite Sand
JPH0436471A (en) Measurement of reducing agent concentration in chemical copper plating liquid
Watkins et al. Ionic strength effect on the rate of reduction of hexacyanoferrate (III) by ascorbic acid: A physical chemistry laboratory experiment
Rutkevich et al. Electrochemical Study of Autocatalytic Bismuth (III) Reduction with Ti (III)‐Complexes
Walters et al. The potential of the Yb+++-Yb++ electrode
JPH0830274B2 (en) Method for analyzing copper ion concentration in electroless tin, lead or their alloy plating bath
JPH0434359A (en) Method for measuring concentrations of chelate agent and hydroxide ion in chemical copper plating bath
JPH04314869A (en) Method for measuring concentrations of chelating agent, hydroxide ion, and reducing agent in chemical copper plating liquid
DE2064822A1 (en) Process and bath additive for the electrometric measurement of cyanide ions in solutions
CN116359309A (en) Method and device for detecting chloride ion content
Claassen et al. The gravimetric determination of nickel with dimethylglyoxime in the presence of copper
JP2621524B2 (en) Method for measuring hydroxide concentration in chemical copper plating solution
SU1067080A1 (en) Stabilizer of chemical copper-plating solutions
JPH05133903A (en) Method for analyzing metal ion concentration in electroless plating bath