JPH05133903A - Method for analyzing metal ion concentration in electroless plating bath - Google Patents

Method for analyzing metal ion concentration in electroless plating bath

Info

Publication number
JPH05133903A
JPH05133903A JP3322537A JP32253791A JPH05133903A JP H05133903 A JPH05133903 A JP H05133903A JP 3322537 A JP3322537 A JP 3322537A JP 32253791 A JP32253791 A JP 32253791A JP H05133903 A JPH05133903 A JP H05133903A
Authority
JP
Japan
Prior art keywords
lead
tin
ions
absorbance
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3322537A
Other languages
Japanese (ja)
Other versions
JP2616321B2 (en
Inventor
Hiroki Uchida
廣記 内田
Motonobu Kubo
元伸 久保
Masayuki Kiso
雅之 木曽
Teruyuki Hotta
輝幸 堀田
Tooru Kamitamari
徹 上玉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd, C Uyemura and Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP3322537A priority Critical patent/JP2616321B2/en
Priority to DE69219924T priority patent/DE69219924T2/en
Priority to EP92103372A priority patent/EP0501480B1/en
Priority to US07/843,199 priority patent/US5294554A/en
Priority to KR1019920003430A priority patent/KR0162905B1/en
Publication of JPH05133903A publication Critical patent/JPH05133903A/en
Application granted granted Critical
Publication of JP2616321B2 publication Critical patent/JP2616321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To easily and correctly quantify metal ions in an electroless tin, lead or tin-lead alloy plating bath by fractionating plating solution from the electroless tin, lead or tin-lead alloy plating bath and adding oxidant to it to convert univalent copper ions into bivalent copper ions. CONSTITUTION:Oxidant is added to plating solution to convert univalent copper ions in the plating solution into bivalent copper ions, and after they are colored, copper ion concentration is quantified by means of a colorimetric method. In this case a plating bath to be analyzed is an electroless tin, lead or tin-lead alloy plating bath, wherein water-soluble tin salt or water-soluble lead salt, acid for dissolving these salts and including thiourea are to be analyzed. Oxidant used may preferably include, but is not specifically limited to, peroxide such as hydrogen peroxide and persulfuric salt, chlorous acid or its salt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種電子部品の電子回
路等、銅又は銅合金からなる素材上に錫、鉛又はこれら
の合金めっきを施す場合に使用される無電解錫、鉛又は
これらの合金めっき浴中の金属イオン濃度を測定する方
法に関し、より具体的には、無電解錫、鉛又はこれらの
合金めっき浴中の銅イオン、鉛イオン及び2価の錫イオ
ンの濃度を正確に定量分析することができ、しかも自動
分析に適した無電解めっき浴中の金属イオン濃度の分析
方法に関する。
FIELD OF THE INVENTION The present invention relates to electroless tin, lead or the like used when plating tin, lead or alloys thereof on a material made of copper or copper alloy, such as electronic circuits of various electronic parts. The method for measuring the metal ion concentration in the alloy plating bath, more specifically, the concentration of copper ion, lead ion and divalent tin ion in electroless tin, lead or these alloy plating baths is accurately measured. The present invention relates to a method for analyzing a metal ion concentration in an electroless plating bath, which can be quantitatively analyzed and is suitable for automatic analysis.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、電子部品の回路に半田付け性を付与する方法とし
て、銅又は銅合金からなる回路上に電気めっきにより
錫、鉛又は錫・鉛合金(半田)めっき皮膜を形成するこ
とが行われている。
2. Description of the Related Art Conventionally, as a method for imparting solderability to a circuit of an electronic component, tin, lead, or tin-lead alloy is formed on a circuit made of copper or copper alloy by electroplating. A (solder) plating film is formed.

【0003】しかしながら、近年の電子装置の小型化に
より電子部品及び回路が非常に微細化及び複雑化してお
り、このため電気めっきでは対応し得ない場合もある。
このような場合に無電解めっきによる錫、鉛又は錫・鉛
合金(半田)めっき皮膜の形成が検討されている。
However, due to the recent miniaturization of electronic devices, electronic components and circuits have become extremely fine and complicated, and therefore electroplating may not be sufficient.
In such a case, formation of tin, lead or tin / lead alloy (solder) plating film by electroless plating is being studied.

【0004】無電解めっきによる半田付け性の付与とし
ては、無電解錫めっきが実用化されているが、この錫め
っきの場合は一般に薄付けであり、このため液の補給を
行わない使い捨てのバッチ浴によって行われている。こ
れに対して、厚付けを目的とする無電解錫・鉛合金めっ
きの場合や無電解錫又は鉛めっきの場合でも厚付けを目
的とする場合は、連続して一定の析出を維持する必要が
あるため、逐次消費された分の薬剤をめっき浴に補給す
る必要がある。この場合、液補給の方法としては、めっ
き液を分析して消費された金属イオン濃度を測定し、こ
の結果から不足の金属イオン量を算出してその不足分に
見合うだけの薬剤をめっき浴に補給する方法が一般的で
ある。
Electroless tin plating has been put to practical use for imparting solderability by electroless plating. However, in the case of tin plating, it is generally thin and therefore a disposable batch without replenishment of liquid. It is done by bath. On the other hand, in the case of electroless tin / lead alloy plating for the purpose of thickening or even in the case of electroless tin or lead plating, it is necessary to maintain constant precipitation continuously for the purpose of thickening. Therefore, it is necessary to replenish the plating bath with chemicals that have been successively consumed. In this case, the solution replenishment method is to analyze the plating solution to measure the consumed metal ion concentration, calculate the insufficient amount of metal ion from this result, and add a chemical to the plating bath that is commensurate with the insufficient amount. The method of replenishing is common.

【0005】ここで、常に一定の析出を得るためには、
連続的な液補給が必要であり、このためめっき浴中の金
属イオン濃度を自動的にモニターすることが求められ
る。しかしながら、無電解錫、鉛又は錫・鉛合金めっき
浴を構成する鉛及び錫は定量分析の困難な元素であり、
これらの測定方法としては以下の方法が知られている
が、これらの方法には種々問題点があり、正確でしかも
自動化に適した分析法が見当らないのが現状である。
Here, in order to always obtain a constant precipitation,
Continuous liquid replenishment is required, which requires automatic monitoring of metal ion concentration in the plating bath. However, electroless tin, lead, or lead and tin that compose the tin-lead alloy plating bath are elements that are difficult to quantitatively analyze.
The following methods are known as these measuring methods, but there are various problems with these methods, and at the present time, there is no accurate analytical method suitable for automation.

【0006】即ち、鉛イオンの分析方法としては、ED
TAによるキレート滴定法、PbSO4を沈殿させて沈
殿物の重量を測定する方法などがあるが、上記キレート
滴定法には、滴定終点の判断が非常に困難で、どうして
も正確性に劣るという欠点があり、また上記重量分析法
には、濾過と乾燥に手間がかかる上、自動化することが
できないという問題点がある。
That is, as a lead ion analysis method, ED is used.
The chelate titration method using TA and the method of measuring the weight of the precipitate by precipitating PbSO 4 are available. However, the chelate titration method described above has a drawback in that it is very difficult to determine the end point of titration and the accuracy is inferior. In addition, the gravimetric method has problems that filtration and drying are troublesome and cannot be automated.

【0007】また、錫イオンの分析法としては、めっき
液中の4価の錫イオンを還元して2価の錫イオンとして
からこの2価の錫イオンをヨウ素滴定する方法、pH5
付近でのEDTAによるキレート滴定法などがあるが、
上記ヨウ素滴定法には、めっき液中に他の還元性化合物
が含まれている場合には適用できないという問題点があ
り、またキレート滴定法には、上記と同様の欠点があ
る。
As a method for analyzing tin ions, a method of reducing tetravalent tin ions in a plating solution to form divalent tin ions and then titrating the divalent tin ions with iodine, pH 5
There is a chelate titration method using EDTA in the vicinity,
The iodometric titration method has a problem that it cannot be applied when the plating solution contains another reducing compound, and the chelate titration method has the same drawbacks as described above.

【0008】従って、これらの分析法を無電解錫、鉛又
は錫・鉛合金めっき浴の浴管理に適用することは困難で
ある。このため、無電解錫、鉛又は錫・鉛合金めっき浴
を容易にかつ確実に管理することができる無電解めっき
浴中の金属イオン濃度の分析方法を確立することが望ま
れる。
Therefore, it is difficult to apply these analytical methods to bath management of electroless tin, lead or tin-lead alloy plating baths. Therefore, it is desirable to establish a method for analyzing the concentration of metal ions in the electroless plating bath that allows easy and reliable control of the electroless tin, lead or tin / lead alloy plating bath.

【0009】本発明は、上記事情に鑑みなされたもの
で、無電解錫、鉛又は錫・鉛合金めっき浴の浴中の金属
イオンを容易かつ正確に定量することができ、これら無
電解めっき浴の管理に好適に利用することかできる無電
解めっき浴中の金属イオン濃度の分析方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and can easily and accurately quantify metal ions in a bath of electroless tin, lead or tin-lead alloy plating bath. It is an object of the present invention to provide a method for analyzing the concentration of metal ions in an electroless plating bath that can be suitably used for controlling the above.

【0010】[0010]

【課題を解決するための手段及び作用】本発明は、上記
目的を達成するため、第1の分析方法として、無電解
錫、鉛又は錫・鉛合金めっき浴からめっき液を分取し、
これに酸化剤を添加して、めっき液中の一価の銅イオン
を二価の銅イオンとし、これを発色させて比色法により
銅イオン濃度を測定することを特徴とする無電解めっき
浴中の金属イオン濃度の分析方法を提供する。
Means and Actions for Solving the Problems In order to achieve the above object, the present invention, as a first analysis method, separates a plating solution from an electroless tin, lead or tin-lead alloy plating bath,
An electroless plating bath characterized by adding an oxidizing agent to this to convert monovalent copper ions in the plating solution into divalent copper ions, and developing the color to measure the copper ion concentration by a colorimetric method. A method for analyzing the concentration of metal ions in a medium is provided.

【0011】即ち、本発明者は、銅又は銅合金用無電解
錫、鉛又は錫・鉛合金めっき浴中の金属イオン濃度を分
析する方法について鋭意検討を行った結果、銅又は銅合
金用無電解錫、鉛又は錫・鉛合金めっき浴においては、
被めっき物の銅又は銅合金の銅分がめっき浴中に溶解す
ると同時に錫、鉛又は錫・鉛合金めっき皮膜が析出形成
されるものであり、従ってめっきの進行につれてめっき
浴中に銅分が蓄積、増加してくるものであるが、この場
合上記溶出銅イオン量と消費される錫及び/又は鉛量と
の間に比例関係が存在し、従って溶出銅イオン濃度の分
析結果に基づいて水溶性錫塩及び/又は水溶性鉛塩を補
給することにより、上記無電解めっき浴の管理を容易か
つ確実に行うことが可能であることを見出した。
That is, the present inventor has conducted extensive studies as to a method for analyzing the metal ion concentration in electroless tin for copper or copper alloy, lead, or tin-lead alloy plating bath. In electrolytic tin, lead or tin-lead alloy plating bath,
The copper content of the object to be plated or the copper content of the copper alloy is dissolved in the plating bath, and at the same time, tin, lead, or a tin-lead alloy plating film is deposited and formed. Although it accumulates and increases, in this case, there is a proportional relationship between the amount of eluted copper ions and the amount of consumed tin and / or lead. It has been found that the above electroless plating bath can be easily and surely managed by supplementing the conductive tin salt and / or the water-soluble lead salt.

【0012】そこで、かかる無電解めっき浴中の銅イオ
ン濃度を簡易にしかも正確に分析する方法を完成するべ
く、自動化が容易で簡便に濃度測定を行うことができる
比色法に着目して検討を進めた結果、無電解錫、鉛又は
錫・鉛合金めっき浴から分取しためっき液に酸化剤を添
加してめっき液中の1価の銅イオンを2価の銅イオンと
し、これを発色剤を用いて発色させ、吸光度測定などに
よる比色法により濃度判定を行うことにより、正確に銅
イオン濃度を分析し得ることを知見し、上記第1の分析
方法を完成したものである。
Therefore, in order to complete a method for easily and accurately analyzing the concentration of copper ions in the electroless plating bath, attention is focused on a colorimetric method which can be easily automated and allows the concentration to be measured easily. As a result, the oxidizing agent was added to the plating solution separated from the electroless tin, lead, or tin-lead alloy plating bath to convert the monovalent copper ions in the plating solution to divalent copper ions, and develop this color. The inventors have found that the copper ion concentration can be accurately analyzed by developing a color using an agent and determining the concentration by a colorimetric method such as measuring absorbance, and have completed the first analysis method.

【0013】また、本発明は、第2の分析方法として、
(1)無電解錫・鉛合金めっき浴からめっき液を分取
し、これに酸化剤を添加して、めっき液中の1価の銅イ
オンを2価の銅イオンとし、これを発色させて比色法に
より銅イオン濃度を測定し、(2)別に分取しためっき
液中にヨウ化物を添加して吸光度を測定し、銅と鉛イオ
ンとの合計吸光度を得ると共に、この測定値から上記
(1)で得た銅イオン濃度より求められる銅イオンによ
る吸光度分を減算して、鉛イオンのみによる吸光度を算
出し、この鉛イオンの吸光度から鉛イオン濃度を得、
(3)更に別に分取しためっき液中にチオ尿素又はその
誘導体を添加して吸光度を測定し、2価の錫イオンと鉛
イオンとの合計吸光度を得ると共に、この測定値から上
記(2)で得た鉛イオン濃度より求められる鉛イオンに
よる吸光度分を減算して、2価の錫イオンのみによる吸
光度を算出し、この2価の錫イオンの吸光度から2価の
錫イオン濃度を得ることにより、めっき浴中の銅イオ
ン、鉛イオン及び2価の錫イオンの濃度を求めることを
特徴とする無電解めっき浴中の金属イオン濃度分析方法
を提供する。
The present invention also provides, as a second analysis method,
(1) Separate the plating solution from the electroless tin / lead alloy plating bath, add an oxidizer to this, and convert the monovalent copper ions in the plating solution to divalent copper ions, and color this The copper ion concentration is measured by a colorimetric method, (2) iodide is added to the separated plating solution to measure the absorbance, and the total absorbance of copper and lead ions is obtained. The absorbance due to the copper ion obtained from the copper ion concentration obtained in (1) is subtracted to calculate the absorbance due to the lead ion only, and the lead ion concentration is obtained from the absorbance of the lead ion.
(3) Thiourea or its derivative is added to the separately separated plating solution and the absorbance is measured to obtain the total absorbance of divalent tin ion and lead ion, and from the measured value, the above (2) By subtracting the absorbance due to the lead ions obtained from the lead ion concentration obtained in step 1, the absorbance due to the divalent tin ions alone is calculated, and the divalent tin ion concentration is obtained from the absorbance of the divalent tin ions. The present invention provides a method for analyzing the concentration of metal ions in an electroless plating bath, which comprises determining the concentrations of copper ions, lead ions and divalent tin ions in the plating bath.

【0014】即ち、本発明者は、上記第1の分析法と並
行して、自動分析に適した吸光度測定による比色分析法
により無電解錫・鉛合金めっき液中の鉛イオン及び錫イ
オン濃度を測定する方法について種々検討を重ねたとこ
ろ、ヨウ化物を添加して吸光度測定を行うことにより、
鉛イオンの濃度を測定し得ること、またチオ尿素又はそ
の誘導体を添加して吸光度測定を行うことにより、鉛イ
オンと2価の錫イオンとの合計吸光度が得られ、この測
定値から上記鉛イオン濃度より求めた鉛イオンによる吸
光分を差し引くことにより、2価の錫イオンのみによる
吸光度を算出することができ、この錫イオンによる吸光
度から2価の錫イオン濃度を正確に測定し得ることを見
出した。
That is, in parallel with the first analysis method, the present inventor has conducted a lead ion and tin ion concentration in the electroless tin-lead alloy plating solution by a colorimetric analysis method by absorbance measurement suitable for automatic analysis. After various studies on the method of measuring, by adding iodide and measuring the absorbance,
The total absorbance of lead ions and divalent tin ions can be obtained by measuring the concentration of lead ions and by measuring the absorbance by adding thiourea or its derivative. It was found that the absorbance due to only divalent tin ion can be calculated by subtracting the absorbance due to lead ion obtained from the concentration, and the divalent tin ion concentration can be accurately measured from the absorbance due to this tin ion. It was

【0015】ところが、稼働中の無電解錫・鉛合金めっ
き浴中の鉛イオン及び2価の錫イオンを上記方法により
測定したところ、正確な測定値を得ることができず、そ
の原因について検討を行った結果、上述したように、銅
又は銅合金素材に無電解錫・鉛合金めっきを行うと、錫
・鉛合金めっき浴中に素材から銅イオンが溶け出してこ
れが蓄積され、この場合めっき液中には銅イオンが主と
して1価の銅イオンとして含有されるが、この銅イオン
が上記ヨウ化物を添加して吸光度測定を行うことによる
鉛イオン濃度の測定時に同時に検出され、従ってこの場
合測定される吸光度は鉛イオン及び銅イオンの合計吸光
度であり、この際の銅イオンによる吸光度分が鉛イオ
ン、錫イオンの定量分析を妨害していることがわかっ
た。
However, when the lead ion and the divalent tin ion in the electroless tin-lead alloy plating bath in operation were measured by the above method, an accurate measured value could not be obtained, and the cause thereof was examined. As a result of performing, as described above, when electroless tin / lead alloy plating is performed on copper or copper alloy material, copper ions are dissolved from the material in the tin / lead alloy plating bath and accumulated, and in this case the plating solution Copper ions are mainly contained as monovalent copper ions therein, and the copper ions are detected at the same time when the lead ion concentration is measured by adding the above iodide and performing the absorbance measurement. The absorbance is the total absorbance of lead and copper ions, and it was found that the absorbance due to copper ions at this time interferes with the quantitative analysis of lead and tin ions.

【0016】そこで、この銅イオンによる測定誤差を補
正する方策について更に検討を行ったところ、上記第1
の分析方法によりめっき液中の銅イオン濃度を測定し、
上記吸光度測定による鉛イオン濃度の測定の際に、この
銅イオン濃度から銅イオンによる吸光度分を求め、これ
を得られた吸光度から差し引くことにより鉛イオンのみ
による吸光度を算出し、この吸光度から正確な鉛イオン
濃度を得、更に上記吸光度測定による錫イオン濃度の測
定の際に、この鉛イオン濃度から鉛イオンによる吸光度
分を求め、これを得られた鉛及び錫イオンの合計吸光度
から差し引くことにより錫イオンのみによる吸光度を算
出し、この吸光度から正確な錫イオン濃度を得る第2の
分析方法を発明したものである。
Therefore, when the measure for correcting the measurement error due to the copper ion is further examined, the first
By measuring the copper ion concentration in the plating solution by the analysis method of
When measuring the lead ion concentration by the above absorbance measurement, the absorbance due to the copper ion is obtained from this copper ion concentration, and the absorbance due to the lead ion alone is calculated by subtracting this from the obtained absorbance, and the accurate absorbance from this absorbance is obtained. When the lead ion concentration is obtained and the tin ion concentration is further measured by the above-mentioned absorbance measurement, the absorbance due to the lead ion is obtained from this lead ion concentration, and this is subtracted from the total absorbance of the lead and tin ions to obtain tin. It is an invention of a second analytical method that calculates the absorbance by only ions and obtains an accurate tin ion concentration from this absorbance.

【0017】以下、本発明について更に詳しく説明す
る。本発明の第1の分析方法は、上述したように、めっ
き液に酸化剤を添加してめっき液中の1価の銅イオンを
2価の銅イオンとし、これを発色させた後、比色法によ
り銅イオン濃度を判定するものである。
The present invention will be described in more detail below. As described above, the first analysis method of the present invention comprises adding an oxidant to a plating solution to convert monovalent copper ions in the plating solution into divalent copper ions, which are then subjected to colorimetry. The copper ion concentration is determined by the method.

【0018】この場合、分析対象となるめっき浴は、無
電解錫、鉛又は錫・鉛合金めっき浴であり、水溶性錫塩
及び/又は水溶性鉛塩、これらの塩を溶解する酸、及び
チオ尿素を含むものが対象となる。より具体的には、硫
酸第1錫,アルカンスルホン酸第1錫,スルホコハク酸
第1錫等の第1錫塩を錫として1〜50g/L、及び/
又は塩化鉛,アルカンスルホン酸鉛,酢酸鉛,アルカノ
ールスルホン酸鉛等の鉛塩を鉛として0.1〜50g/
L、アルカンスルホン酸,塩酸,アルカノールスルホン
酸,過塩素酸,ホウフッ酸,スルホコハク酸等の酸を1
0〜200g/L、チオ尿素を錯化剤として10〜20
0g/L、更に必要により次亜リン酸又はその水溶性塩
を還元剤として10〜200g/L含有する無電解錫、
鉛又は錫・鉛合金めっき浴が好適に用いられる。
In this case, the plating bath to be analyzed is electroless tin, lead or tin-lead alloy plating bath, and the water-soluble tin salt and / or the water-soluble lead salt, an acid capable of dissolving these salts, and Those containing thiourea are targeted. More specifically, stannous salts such as stannous sulfate, stannous alkane sulfonate, and stannous sulfosuccinate as tin are 1 to 50 g / L, and /
Alternatively, lead salts such as lead chloride, lead alkane sulfonate, lead acetate, lead alkanol sulfonate, etc. are used as lead in an amount of 0.1 to 50 g /
L, acid such as alkane sulfonic acid, hydrochloric acid, alkanol sulfonic acid, perchloric acid, borofluoric acid, sulfosuccinic acid
0 to 200 g / L, 10 to 20 using thiourea as a complexing agent
0 g / L, and optionally electroless tin containing 10 to 200 g / L of hypophosphorous acid or a water-soluble salt thereof as a reducing agent,
A lead or tin-lead alloy plating bath is preferably used.

【0019】この本発明の第1の分析方法に使用される
上記酸化剤としては、特に制限されるものではないが、
過酸化水素水,過硫酸塩等の過酸化物や亜塩素酸又はそ
の塩などが好適に使用され、中でも過酸化水素水が特に
好ましい。なお、他の酸化剤、特にそれ自体が着色して
いるものや反応により着色が生じるものは、定量精度を
劣化させるおそれがあり、好ましくない。また、これら
酸化剤の添加量は、めっき液中の1価の銅イオンすべて
を酸化し得る量であり、酸化剤の種類等に応じて適宜選
定される。
The oxidizing agent used in the first analysis method of the present invention is not particularly limited,
Hydrogen peroxide water, peroxides such as persulfates, chlorous acid or salts thereof are preferably used, and hydrogen peroxide water is particularly preferable. In addition, other oxidizing agents, especially those which are themselves colored or those which are colored by the reaction, may deteriorate the quantification accuracy and are not preferred. Further, the addition amount of these oxidizing agents is an amount capable of oxidizing all monovalent copper ions in the plating solution, and is appropriately selected according to the type of the oxidizing agent and the like.

【0020】また、無電解錫又は錫・鉛合金めっき浴の
場合は、酸化剤の添加によりめっき液中に沈殿が生じる
場合があり、この沈殿は4価の錫の水酸化物と思われる
が、この場合沈殿の発生を防止するためにシュウ酸、酒
石酸、クエン酸、EDTA及びこれらの塩、トリエタノ
ールアミン等を錯化剤としてめっき液1mL当たり1〜
100g程度添加することができる。
In the case of electroless tin or tin-lead alloy plating bath, the addition of an oxidizing agent may cause precipitation in the plating solution, which is considered to be tetravalent tin hydroxide. In this case, in order to prevent the occurrence of precipitation, oxalic acid, tartaric acid, citric acid, EDTA and salts thereof, triethanolamine and the like are used as complexing agents in an amount of 1 to 1 mL per plating solution.
About 100 g can be added.

【0021】更に、比色法による2価の銅イオンの濃度
測定は試料を発色させて行う。この場合、発色剤として
は2,2’−ビピリジル、1,10−フェナントロリン
及びバトフェナントロリン,クプロイン,ネオクプロイ
ン,バトクプロイン等のフェナントロリン誘導体が好適
に使用される。また、色調及び濃淡の比較測定は、視覚
法で行うこともできるが、正確性及び自動化の観点から
吸光度測定法が好ましく採用される。この場合、吸光度
測定を行う波長は使用する発色剤に応じて適宜選定さ
れ、例えば発色剤として2,2’−ビピリジルを用いた
場合は740nm付近、1,10−フェナントロリンを
用いた場合は710nm付近とされる。
Further, the measurement of the concentration of divalent copper ions by the colorimetric method is carried out by coloring the sample. In this case, phenanthroline derivatives such as 2,2'-bipyridyl, 1,10-phenanthroline, and batophenanthroline, cuproin, neocuproine, and batocuproine are preferably used as the color former. Further, the comparative measurement of the color tone and the light and shade can be performed by a visual method, but the absorbance measuring method is preferably adopted from the viewpoint of accuracy and automation. In this case, the wavelength at which the absorbance is measured is appropriately selected according to the color former used, and for example, when 2,2′-bipyridyl is used as the color former, it is around 740 nm, when 1,10-phenanthroline is used, around 710 nm. It is said that.

【0022】なお、上記測定試料のpHが4未満、特に
pH1未満では、銅イオンの発色が弱くなる傾向にあ
り、またpH11を超えると過酸化水素等の酸化剤が分
解して気泡を生じる場合があり、この気泡が吸光度に影
響することがある。このため、試料のpHは、特に制限
されるものではないが、1〜11、特に4〜11とする
ことが好ましい。この場合、pHの範囲が1〜11と広
いので特にpH調整剤や緩衝剤を必要とすることは少な
いが、pH調整を行う場合、一般に酢酸及びその塩、ヘ
キサエチレンテトラミンやその他のpH4〜11の間の
緩衝剤が好適に使用される。また、吸光度測定は、上記
のように調製した測定試料を適宜希釈して行うことがで
きる。
When the pH of the measurement sample is less than 4, particularly less than pH 1, the coloration of copper ions tends to be weak, and when the pH exceeds 11, the oxidizing agent such as hydrogen peroxide decomposes to generate bubbles. The bubbles may affect the absorbance. Therefore, the pH of the sample is not particularly limited, but it is preferably 1 to 11, particularly 4 to 11. In this case, since the pH range is as wide as 1 to 11, it is unlikely that a pH adjusting agent or a buffering agent is needed, but when pH is adjusted, acetic acid and its salt, hexaethylenetetramine, and other pH 4 to 11 are generally used. Buffers between are preferably used. The absorbance measurement can be performed by appropriately diluting the measurement sample prepared as described above.

【0023】次に、本発明の第2の分析方法は、上述し
たように、無電解めっき浴から採取しためっき液から
(1)銅イオン濃度の測定、(2)鉛イオン濃度の測
定、及び(3)錫イオン濃度の測定をそれぞれ比色法に
より行うものである。
Next, the second analysis method of the present invention is, as described above, (1) measurement of copper ion concentration, (2) measurement of lead ion concentration from the plating solution taken from the electroless plating bath, and (3) The tin ion concentration is measured by a colorimetric method.

【0024】この場合、分析対象となるめっき浴は、無
電解錫・鉛合金めっき液であり、水溶性錫塩及び鉛塩、
これらの塩を溶解する酸、チオ尿素、更に必要に応じて
還元剤を含む無電解錫・鉛合金めっき浴である。なお、
それぞれの成分としては、上記第1分析方法の対象浴と
同様の成分を挙げることができる。
In this case, the plating bath to be analyzed is an electroless tin-lead alloy plating solution, which contains water-soluble tin salt and lead salt,
An electroless tin-lead alloy plating bath containing an acid capable of dissolving these salts, thiourea and, if necessary, a reducing agent. In addition,
Examples of the respective components include the same components as in the subject bath of the first analysis method.

【0025】次いで、上記各金属イオンの測定について
説明するが、(1)の銅イオン濃度の測定については、
上記第1分析法と同様であるので、その説明を省略す
る。 (2)鉛イオン濃度の測定 鉛イオン濃度の測定は、まず無電解錫・鉛合金めっき浴
から分取しためっき液中にヨウ化物を添加して吸光度を
測定することにより、鉛イオンと銅イオンとの合計吸光
度を測定する。
Next, the measurement of each metal ion will be described. Regarding the measurement of the copper ion concentration in (1),
Since it is the same as the first analysis method, the description thereof is omitted. (2) Measurement of lead ion concentration Lead ion concentration is measured by first adding iodide to the plating solution taken from the electroless tin / lead alloy plating bath and measuring the absorbance. Measure the total absorbance of and.

【0026】この場合、ヨウ化物としては、特に制限さ
れるものではないが、KI、NaI等を挙げることがで
きる。なお、これらヨウ化物の添加量は、めっき液1m
Lに対して0.1〜50g、特に0.5〜10g程度と
される。
In this case, the iodide is not particularly limited, but KI, NaI and the like can be mentioned. The amount of these iodides added was 1 m of the plating solution.
It is set to 0.1 to 50 g, especially 0.5 to 10 g relative to L.

【0027】また、めっき液に上記ヨウ化物を添加する
と沈殿が生じる場合があるので、これを防止するため錯
化剤を加えることが好ましい。この場合、錯化剤として
はシュウ酸、酒石酸、クエン酸、EDTA、ヒドロキシ
ホスホン酸類及びこれらの塩などが好適に使用され、そ
の添加量はめっき液1mLに対して1〜100g、特に
1〜10g程度とされる。なお、試料のpHは0〜5程
度の酸性にすることが好ましい。
Further, when the above iodide is added to the plating solution, precipitation may occur, so it is preferable to add a complexing agent to prevent this. In this case, oxalic acid, tartaric acid, citric acid, EDTA, hydroxyphosphonic acids and salts thereof are preferably used as the complexing agent, and the addition amount is 1 to 100 g, particularly 1 to 10 g per 1 mL of the plating solution. It is considered as a degree. The pH of the sample is preferably acidified to about 0-5.

【0028】このように調製した試料を適宜希釈し、吸
光度を測定してめっき液中の鉛イオンと銅イオンとの合
計吸光度を測定するが、この場合の測定波長は、特に限
定されるものではないが、分析精度の観点から340n
m付近で行うことが好ましい。測定波長が340nmか
ら大きく外れると錫イオンやその他の成分の吸光度まで
が検出されるおそれがあり、分析精度が低下する場合が
ある。
The sample thus prepared is appropriately diluted, and the absorbance is measured to measure the total absorbance of lead ions and copper ions in the plating solution. The measurement wavelength in this case is not particularly limited. Not available, but 340n from the viewpoint of analysis accuracy
It is preferable to carry out in the vicinity of m. If the measurement wavelength deviates significantly from 340 nm, the absorbance of tin ions and other components may be detected, and the analysis accuracy may decrease.

【0029】そして、上記(1)の銅イオン濃度の測定
で得た銅イオン濃度から銅イオンによる吸光度分を求
め、これを上記鉛イオンと銅イオンとの合計吸光度から
減算することにより、鉛イオンのみによる吸光度を算出
し、この吸光度から測定試料中、即ち無電解錫・鉛合金
めっき浴中の鉛イオン濃度を求める。このとき、妨害物
質となる銅イオンは1価のものか、2価のものか、ある
いはその両方なのかは不明であるが、銅イオンによる吸
光度分を上記(1)により求めた銅イオン濃度と同濃度
の銅イオンを含み、かつ鉛イオンを含まないめっき液を
調製し、このめっき液に同様のヨウ化物を添加して吸光
度を測定し、銅イオンによる吸光度分を求めることによ
り、問題なく鉛イオンのみによる吸光度を求めることが
できる。 (3)錫イオン濃度の測定 錫イオン濃度の測定は、まず無電解錫・鉛合金めっき浴
から分取しためっき液中にチオ尿素又はその誘導体を添
加して吸光度を測定することにより、2価の錫イオンと
鉛イオンとの合計吸光度を測定する。
Then, the absorbance due to copper ions is obtained from the copper ion concentration obtained by the measurement of the copper ion concentration in the above (1), and subtracted from the total absorbance of the lead ion and copper ion to obtain the lead ion. Absorbance is calculated by using only the above, and the lead ion concentration in the measurement sample, that is, in the electroless tin-lead alloy plating bath is determined from this absorbance. At this time, it is unclear whether the copper ion as the interfering substance is monovalent, divalent, or both, but the absorbance due to the copper ion is the copper ion concentration determined by the above (1). A plating solution containing the same concentration of copper ions and containing no lead ions was prepared, and the same iodide was added to this plating solution to measure the absorbance. It is possible to obtain the absorbance due to only the ions. (3) Measurement of tin ion concentration The tin ion concentration is measured by adding thiourea or its derivative to the plating solution taken from the electroless tin / lead alloy plating bath and measuring the absorbance by divalent The total absorbance of tin ion and lead ion is measured.

【0030】この場合、チオ尿素誘導体としは、ジメチ
ルチオ尿素、ジエチルチオ尿素、ジメチロールチオ尿
素、ジフェニルチオ尿素等を例示することができ、また
チオ尿素又はその誘導体の添加量は、めっき液1mLに
対して1〜100g、特に2〜20g程度とされる。な
お、測定試料はHCl等を添加することにより、pH0
〜5に調製することが好ましい。
In this case, examples of the thiourea derivative include dimethylthiourea, diethylthiourea, dimethylolthiourea, diphenylthiourea, and the like, and the addition amount of thiourea or its derivative is 1 mL of the plating solution. 1 to 100 g, especially 2 to 20 g. It should be noted that the measurement sample is adjusted to pH 0 by adding HCl or the like.
It is preferable to adjust to ~ 5.

【0031】このように調製した試料を適宜希釈し、吸
光度を測定して2価の錫イオンと鉛イオンとの合計吸光
度を測定するが、この場合の測定波長は、特に限定され
るものではないが、分析精度の観点から370nm付近
で行うことが好ましい。測定波長が370nmから大き
く外れると銅イオンやその他の成分の吸光度までが検出
されるおそれがあり、分析精度が低下する場合がある。
The sample thus prepared is appropriately diluted and the absorbance is measured to measure the total absorbance of divalent tin ions and lead ions, but the measurement wavelength in this case is not particularly limited. However, it is preferable to perform the measurement at around 370 nm from the viewpoint of analysis accuracy. If the measurement wavelength deviates significantly from 370 nm, the absorbance of copper ions and other components may be detected, and the analysis accuracy may decrease.

【0032】そして、上記(2)の鉛イオン濃度の測定
で得た鉛イオン濃度から鉛イオンによる吸光度分を求
め、これを上記2価の錫イオンと鉛イオンとの合計吸光
度から減算することにより、2価の錫イオンのみによる
吸光度を算出し、この吸光度から測定試料中、即ち無電
解錫・鉛合金めっき浴中の2価の錫イオン濃度を求め
る。この場合、鉛イオンによる吸光度分は、上記(2)
により求めた鉛イオン濃度と同濃度の鉛イオンを含み、
かつ錫イオンを含まないめっき液を調整し、このめっき
液に同様のチオ尿素又はその誘導体を添加して吸光度を
測定することにより求めることができる。
Then, from the lead ion concentration obtained in the measurement of the lead ion concentration in the above (2), the absorbance due to the lead ion is obtained, and this is subtracted from the total absorbance of the divalent tin ion and the lead ion. The absorbance of only divalent tin ions is calculated, and the concentration of divalent tin ions in the measurement sample, that is, in the electroless tin-lead alloy plating bath is calculated from this absorbance. In this case, the absorbance due to lead ions is
Containing lead ions of the same concentration as the lead ion concentration obtained by
In addition, it can be determined by preparing a plating solution containing no tin ion, adding the same thiourea or its derivative to this plating solution, and measuring the absorbance.

【0033】なお、チオ尿素又はその誘導体の添加によ
る発色によって検出される錫イオンは、2価の錫イオン
のみであるが、めっき浴中に含まれる錫イオンはそのほ
とんどが2価のイオンであり、実用上ほとんど問題はな
い。しかし、4価の錫イオンがかなり含まれているとき
やより正確な分析値を必要とする場合には、最初に試料
に還元剤を添加して試料中の4価の錫イオンを2価の錫
イオンにしておくことが好ましい。この場合、好適な還
元剤としては、Znの金属粉末、テトラヒドロホウ素
塩、ヒドラジン及びその塩等が例示される。
The tin ions detected by the color formation by the addition of thiourea or its derivative are only divalent tin ions, but most of the tin ions contained in the plating bath are divalent ions. , Practically no problem. However, when the content of tetravalent tin ions is high or when a more accurate analysis value is required, first, a reducing agent is added to the sample to convert the tetravalent tin ions in the sample into divalent tin. It is preferable to use tin ions. In this case, examples of suitable reducing agents include Zn metal powder, tetrahydroboron salt, hydrazine and salts thereof, and the like.

【0034】なお、上記第1の分析方法、及び第2の分
析方法の上記(1)〜(3)の各金属イオン濃度測定に
おいて、得られた吸光度から各金属イオン濃度を判定す
る方法は、予め標準サンプルから作成した検量値と比較
する方法が好適に採用される。また、吸光度の測定法
は、特に制限されるものではないが、対象めっき浴から
めっき液を間歇的に採取して測定試料に調製した後、吸
光セルを通過させる方法、対象めっき浴から連続的に取
り出しためっき液流中に上記分析用試薬を注入し、この
液流を吸光セルを通過させて連続的に測定する方法など
が自動化の観点から好ましく採用される。
In the measurement of each metal ion concentration of the above (1) to (3) of the first analysis method and the second analysis method, the method of determining each metal ion concentration from the obtained absorbance is as follows: A method of comparing with a calibration value prepared in advance from a standard sample is preferably adopted. The method of measuring the absorbance is not particularly limited, but the plating solution is intermittently sampled from the target plating bath to prepare a measurement sample, which is then passed through an absorption cell, continuously from the target plating bath. From the viewpoint of automation, a method of injecting the above-mentioned analytical reagent into the flow of the plating solution taken out and continuously measuring the flow of the solution through an absorption cell is preferably adopted from the viewpoint of automation.

【0035】本発明の金属イオン濃度の分析方法は、い
ずれも自動化の容易な比色法により無電解めっき浴中の
銅イオン、鉛イオン及び2価の錫イオンの濃度を正確に
測定することができ、無電解めっき浴の浴管理に好適に
採用される。この場合、浴管理の具体的方法としては、
本発明の金属イオン濃度の分析方法により浴中の銅イオ
ン、鉛イオン及び2価の錫イオンの濃度をめっきを行う
度に逐次又は連続的に測定し、これらの測定値をインデ
ィケータとし、補給液を逐次補給法やオートドレイン方
式により補給する方法を挙げることができる。
In any of the metal ion concentration analysis methods of the present invention, the concentrations of copper ions, lead ions and divalent tin ions in the electroless plating bath can be accurately measured by a colorimetric method that is easy to automate. It is possible and suitable for bath management of electroless plating bath. In this case, as a concrete method of bath management,
By the method for analyzing the metal ion concentration of the present invention, the concentrations of copper ions, lead ions and divalent tin ions in the bath are sequentially or continuously measured each time plating is performed, and these measured values are used as an indicator to make up a replenisher solution. There may be mentioned a method of replenishing with a sequential supply method or an auto drain method.

【0036】[0036]

【実施例】以下、実施例を示して本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0037】[実施例1](逐次補給方式) 下記組成のめっき浴を使用し、下記条件で銅製品に対し
て無電解めっきを行いながら、処理量10μm・dm2
/L毎にめっき液をサンプリングし、下記組成の測定試
料1及び2を調製した。この測定試料の吸光度を測定
し、全銅量を定量した。結果を表1に示す。なお、比較
のため原子吸光分析の結果を表1に併記する。浴組成(100L建浴) メタンスルホン酸 50g/L メタンスルホン酸錫 20g/L メタンスルホン酸鉛 13g/L チオ尿素 75g/L 次亜リン酸ナトリウム 80g/L クエン酸 15g/L 塩化ラウリルピリジニウム 5g/L EDTA 3g/L pH 2.0 浴温 80℃測定試料1 めっき液 1mL 酒石酸(400g/L) 10mL 2,2’−ビピリジル 0.2g 35%過酸化水素水 2mL イオン交換水で50mLに希釈し、波長740nmで吸
光度測定測定試料2 めっき液 1mL 酒石酸(400g/L) 10mL 1,10−フェナントロリン 0.2g 35%過酸化水素水 2mL イオン交換水で50mLに希釈し、波長710nmで吸
光度測定
[Example 1] (Sequential replenishment system) A plating bath having the following composition was used, and a treatment amount was 10 μm · dm 2 while performing electroless plating on a copper product under the following conditions.
The plating solution was sampled for each / L, and measurement samples 1 and 2 having the following compositions were prepared. The absorbance of this measurement sample was measured to quantify the total amount of copper. The results are shown in Table 1. The results of the atomic absorption analysis are also shown in Table 1 for comparison. Bath composition (100 L building bath) Methanesulfonic acid 50 g / L Tin methanesulfonate 20 g / L Lead methanesulfonate 13 g / L Thiourea 75 g / L Sodium hypophosphite 80 g / L Citric acid 15 g / L Laurylpyridinium chloride 5 g / L L EDTA 3 g / L pH 2.0 Bath temperature 80 ° C. Measurement sample 1 Plating solution 1 mL Tartaric acid (400 g / L) 10 mL 2,2′-bipyridyl 0.2 g 35% hydrogen peroxide 2 mL Dilute to 50 mL with ion exchange water. , Absorbance measurement at a wavelength of 740 nm Measurement sample 2 Plating solution 1 mL Tartaric acid (400 g / L) 10 mL 1,10-phenanthroline 0.2 g 35% hydrogen peroxide solution 2 mL Dilute to 50 mL with deionized water and measure the absorbance at a wavelength of 710 nm

【0038】[0038]

【表1】 [Table 1]

【0039】表1の結果より、本発明による銅の分析値
は原子吸光分析による分析値とほぼ一致し、従って本発
明により簡易に銅分を分析し得ることが確認された。
From the results shown in Table 1, it was confirmed that the analytical value of copper according to the present invention was almost the same as the analytical value by atomic absorption spectrometry, and therefore the copper content could be easily analyzed by the present invention.

【0040】また、めっき浴に、めっきの進行につれて
上記分析によって得られた銅量が0.5g/L増加する
毎に下記補給液(A)〜(C)を補給し、下記方法によ
り鉛イオン及び2価の錫イオンの濃度を分析してそれぞ
れの濃度変化をチェックした。結果を表2に示す。な
お、このとき比較のため、元素吸光分析により、各金属
イオン濃度を測定した。結果を表2に併記する。補給液(A) 5ml/L補給 メタンスルホン酸錫 400g/L メタンスルホン酸 180g/L補給液(B) 5ml/L補給 メタンスルホン酸鉛 380g/L メタンスルホン酸 240g/L補給液(C) 15ml/L補給 チオ尿素 120g/L 次亜リン酸ナトリウム 3g/L クエン酸 25g/L鉛イオン濃度の分析 めっき浴から採取しためっき液1mLに酒石酸(400
g/L)10mL及びKI(100g/L)10mLを
加え、これをイオン交換水で100mLにして吸光セル
に収容し、波長340nmで吸光度測定を行い、鉛イオ
ンと銅イオンとの合計吸光度を測定した。この測定値か
ら上記表1に示した銅イオン濃度より求めた銅による吸
光度分を減算して鉛イオンのみによる吸光度を算出し、
この算出値から鉛イオン濃度を求めた。錫イオン濃度の分析 めっき浴から別途採取しためっき液1mLにチオ尿素
(100g/L)80mL及び(1+1)HCl5mL
を加え、これをイオン交換水で100mLにして吸光セ
ルに収容し、波長340nmで吸光度測定を行い、2価
の錫イオンと鉛イオンとの合計吸光度を測定した。この
測定値から上記(2)で得た鉛イオン濃度より求めた鉛
イオンによる吸光度分を減算して2価の錫イオンのみに
よる吸光度を算出し、この算出値から2価の錫イオン濃
度を求めた。
Further, the following replenishers (A) to (C) were replenished to the plating bath each time the amount of copper obtained by the above analysis increased by 0.5 g / L as the plating progressed, and lead ions were added by the following method. And the concentration of divalent tin ion was analyzed to check each concentration change. The results are shown in Table 2. At this time, for comparison, each metal ion concentration was measured by elemental absorption spectrometry. The results are also shown in Table 2. Replenishment liquid (A) 5 ml / L replenishment tin methanesulfonate 400 g / L methanesulfonic acid 180 g / L replenishment liquid (B) 5 ml / L replenishment lead methanesulfonate 380 g / L methanesulfonic acid 240 g / L replenishment liquid (C) 15 ml / L Replenishment Thiourea 120 g / L Sodium hypophosphite 3 g / L Citric acid 25 g / L Lead ion concentration analysis 1 mL of plating solution taken from the plating bath was added with tartaric acid (400
g / L) 10 mL and KI (100 g / L) 10 mL were added, and this was made 100 mL with ion-exchanged water and stored in an absorption cell, and the absorbance was measured at a wavelength of 340 nm to measure the total absorbance of lead ions and copper ions. did. From this measured value, the absorbance due to copper obtained from the copper ion concentration shown in Table 1 above was subtracted to calculate the absorbance due to only lead ions,
The lead ion concentration was determined from this calculated value. Analysis of tin ion concentration 80 mL of thiourea (100 g / L) and 5 mL of (1 + 1) HCl in 1 mL of plating solution separately collected from the plating bath
Was added to 100 mL of ion-exchanged water, the mixture was placed in a light absorption cell, the absorbance was measured at a wavelength of 340 nm, and the total absorbance of divalent tin ions and lead ions was measured. The absorbance due to the lead ions obtained from the lead ion concentration obtained in (2) above was subtracted from this measured value to calculate the absorbance due to the divalent tin ions only, and the divalent tin ion concentration was obtained from this calculated value. It was

【0041】[0041]

【表2】 [Table 2]

【0042】表2の結果より、本発明による鉛及び錫の
分析値は原子吸光分析による分析値とほぼ一致し、従っ
て本発明により簡易に鉛及び錫分を分析し得ることが確
認された。
From the results shown in Table 2, it was confirmed that the lead and tin analytical values according to the present invention were substantially the same as the atomic absorption spectrometric analysis values, and therefore the present invention allows simple analysis of lead and tin contents.

【0043】また、上記方法で浴管理を行いながらめっ
きを続けたところ、めっきを何回繰り返しても、いつも
一定の膜厚で錫・鉛合金めっき皮膜が得られ、めっき浴
の成膜性は常に安定していた。
When plating was continued while controlling the bath by the above method, a tin-lead alloy plating film with a constant film thickness was always obtained, no matter how many times the plating was repeated. It was always stable.

【0044】[実施例2](オートドレイン方式) 建浴時に金属銅4.5g/L分のメタンスルホン酸第一
銅を加えた以外は、実施例1と同様の無電解錫・鉛合金
めっき浴を用いて、同様に銅製品表面に無電解めっきを
行い、実施例1と同様にして銅濃度を分析を行った。こ
のとき、銅イオン濃度が5.0g/Lになったら、めっ
き浴中からめっき液を1/10排出し、排出した分下記
補給液(D)を加え、イオン交換水で水位を合わせ、上
記実施例1と同様の方法により銅イオン、鉛イオン及び
2価の錫イオンを分析してそれぞれの濃度変化をチェッ
クした。補給液(D) メタンスルホン酸 50g/L メタンスルホン酸錫 22g/L メタンスルホン酸鉛 15g/L チオ尿素 83g/L 次亜リン酸ナトリウム 80g/L クエン酸 15g/L 塩化ラウリルピリジニウム 5g/L EDTA 3g/L pH 2.0 温度 80℃ この方法で浴管理を行いながらめっきを続けたところ、
めっきを何回繰り返しても、いつも一定の膜厚で錫・鉛
合金めっき皮膜が得られ、めっき浴の成膜性は常に安定
していた。
[Example 2] (Auto-drain system) Electroless tin-lead alloy plating similar to that of Example 1 except that 4.5 g / L of copper metal cuprous methanesulfonate was added during the construction bath. Electroless plating was similarly performed on the copper product surface using a bath, and the copper concentration was analyzed in the same manner as in Example 1. At this time, when the copper ion concentration reached 5.0 g / L, the plating solution was discharged from the plating bath by 1/10, the following supplementary solution (D) was added by the discharged amount, and the water level was adjusted with ion-exchanged water. Copper ions, lead ions and divalent tin ions were analyzed by the same method as in Example 1 to check the changes in the respective concentrations. Replenisher (D) Methanesulfonic acid 50 g / L Tin methanesulfonate 22 g / L Lead methanesulfonate 15 g / L Thiourea 83 g / L Sodium hypophosphite 80 g / L Citric acid 15 g / L Laurylpyridinium chloride 5 g / L EDTA 3 g / L pH 2.0 Temperature 80 ° C. When plating was continued while controlling the bath by this method,
No matter how many times plating was repeated, a tin-lead alloy plating film was always obtained with a constant film thickness, and the film forming property of the plating bath was always stable.

【0045】このように、本発明の無電解錫・鉛合金め
っき浴中の金属イオン濃度測定方法によれば、良好な浴
管理を行い得ることが認められる。
As described above, according to the method for measuring the metal ion concentration in the electroless tin-lead alloy plating bath of the present invention, it is recognized that good bath management can be performed.

【0046】[0046]

【発明の効果】以上説明したように、本発明の無電解め
っき浴中の金属イオン濃度の分析方法によれば、無電解
めっき浴中の銅イオン、2価の錫イオン、鉛イオンを簡
便かつ正確に定量することができ、しかもこれら金属イ
オンの測定を容易に自動化することができる。
As described above, according to the method for analyzing the metal ion concentration in the electroless plating bath of the present invention, copper ions, divalent tin ions and lead ions in the electroless plating bath can be simply and easily It can be quantified accurately and the measurement of these metal ions can be easily automated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 輝幸 大阪府枚方市出口1丁目5番1号 上村工 業株式会社中央研究所内 (72)発明者 上玉利 徹 大阪府枚方市出口1丁目5番1号 上村工 業株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruyuki Hotta 1-5-1, Exit Hirakata, Osaka Prefecture Central Research Institute, Uemura Industrial Co., Ltd. (72) Tohru Uetama 1-5 Exit, Hirakata, Osaka No. 1 Uemura Industrial Co., Ltd. Central Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無電解錫、鉛又は錫・鉛合金めっき浴か
らめっき液を分取し、これに酸化剤を添加して、めっき
液中の1価の銅イオンを2価の銅イオンとし、これを発
色させて比色法により銅イオン濃度を測定することを特
徴とする無電解めっき浴中の金属イオン濃度の分析方
法。
1. A plating solution is collected from an electroless tin, lead or tin-lead alloy plating bath, and an oxidizing agent is added to this to convert monovalent copper ions in the plating solution into divalent copper ions. A method for analyzing a metal ion concentration in an electroless plating bath, which comprises coloring the copper ion to measure a copper ion concentration by a colorimetric method.
【請求項2】 (1)無電解錫・鉛合金めっき浴からめ
っき液を分取し、これに酸化剤を添加して、めっき液中
の1価の銅イオンを2価の銅イオンとし、これを発色さ
せて比色法により銅イオン濃度を測定し、(2)別に分
取しためっき液中にヨウ化物を添加して吸光度を測定
し、銅と鉛イオンとの合計吸光度を得ると共に、この測
定値から上記(1)で得た銅イオン濃度より求められる
銅イオンによる吸光度分を減算して、鉛イオンのみによ
る吸光度を算出し、この鉛イオンの吸光度から鉛イオン
濃度を得、(3)更に別に分取しためっき液中にチオ尿
素又はその誘導体を添加して吸光度を測定し、2価の錫
イオンと鉛イオンとの合計吸光度を得ると共に、この測
定値から上記(2)で得た鉛イオン濃度より求められる
鉛イオンによる吸光度分を減算して、2価の錫イオンの
みによる吸光度を算出し、この2価の錫イオンの吸光度
から2価の錫イオン濃度を得ることにより、めっき浴中
の銅イオン、鉛イオン及び2価の錫イオンの濃度を求め
ることを特徴とする無電解めっき浴中の金属イオン濃度
分析方法。
2. A plating solution is collected from an electroless tin-lead alloy plating bath, and an oxidizing agent is added to the plating solution to convert monovalent copper ions in the plating solution into divalent copper ions. This is colored and the copper ion concentration is measured by a colorimetric method. (2) Iodide is added to the separated plating solution to measure the absorbance, and the total absorbance of copper and lead ions is obtained. The absorbance due to the copper ion obtained from the copper ion concentration obtained in (1) above is subtracted from the measured value to calculate the absorbance due to the lead ion only, and the lead ion concentration is obtained from the absorbance of the lead ion, (3 ) Further, thiourea or its derivative is added to the separately collected plating solution and the absorbance is measured to obtain the total absorbance of divalent tin ion and lead ion, and the measurement value is obtained in the above (2). Absorbance by Lead Ion Obtained from Lead Ion Concentration By subtracting the amount of divalent tin ions to calculate the absorbance, and by obtaining the divalent tin ion concentration from the absorbance of the divalent tin ions, the copper ion, the lead ion and the divalent tin ion in the plating bath are obtained. A method for analyzing the concentration of metal ions in an electroless plating bath, characterized in that the concentration of tin ions is determined.
JP3322537A 1991-03-01 1991-11-11 Analysis method of metal ion concentration in electroless plating bath Expired - Fee Related JP2616321B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3322537A JP2616321B2 (en) 1991-11-11 1991-11-11 Analysis method of metal ion concentration in electroless plating bath
DE69219924T DE69219924T2 (en) 1991-03-01 1992-02-27 Analysis of plating solutions containing tin, lead or tin-lead alloy
EP92103372A EP0501480B1 (en) 1991-03-01 1992-02-27 Analysis of tin, lead or tin-lead alloy plating solution
US07/843,199 US5294554A (en) 1991-03-01 1992-02-28 Analysis of tin, lead or tin-lead alloy plating solution
KR1019920003430A KR0162905B1 (en) 1991-03-01 1992-03-02 Analysis of tin, lead or tin-lead alloy plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3322537A JP2616321B2 (en) 1991-11-11 1991-11-11 Analysis method of metal ion concentration in electroless plating bath

Publications (2)

Publication Number Publication Date
JPH05133903A true JPH05133903A (en) 1993-05-28
JP2616321B2 JP2616321B2 (en) 1997-06-04

Family

ID=18144778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3322537A Expired - Fee Related JP2616321B2 (en) 1991-03-01 1991-11-11 Analysis method of metal ion concentration in electroless plating bath

Country Status (1)

Country Link
JP (1) JP2616321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272389A (en) * 2000-03-24 2001-10-05 Yoshikazu Kobayashi Method and device for determination method of copper in acid electroless tin plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272389A (en) * 2000-03-24 2001-10-05 Yoshikazu Kobayashi Method and device for determination method of copper in acid electroless tin plating

Also Published As

Publication number Publication date
JP2616321B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP2787142B2 (en) Electroless tin, lead or their alloy plating method
US8118988B2 (en) Analysis of copper ion and complexing agent in copper plating baths
KR0162905B1 (en) Analysis of tin, lead or tin-lead alloy plating solution
US10920336B2 (en) Analysis of silver ion and complexing agent in tin-silver electrodeposition solution
TWI622762B (en) Gold concentration quantitative method in gold-containing solution, and gold concentration quantitative device
JP2616321B2 (en) Analysis method of metal ion concentration in electroless plating bath
JP2616320B2 (en) Analysis method of metal ion concentration in plating bath
JP2822840B2 (en) Plating method and plating apparatus for electroless tin, lead or their alloys
US7205153B2 (en) Analytical reagent for acid copper sulfate solutions
J-Liew et al. Characterisation of a thiosulphate–sulphite gold electrodeposition process
JP2697544B2 (en) Analysis method for electroless tin, lead or their alloy plating bath
US20180355505A1 (en) Concentration indicator of metal component contained in plating solution, and plating method using the same
JPH04276082A (en) Analysis of copper ion concentration in bath for electroless plating of tin, lead, or those alloy
JP2616319B2 (en) Analysis method of metal ion concentration in plating bath
JP2019095424A (en) Quantitative determination method for amidosulfuric acid
JPH0355559B2 (en)
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
Shalyt et al. Comprehensive Characterization of All Inorganic and Organic Components in Neutral Tin Plating Bath for Electronics Applications
JPS60104248A (en) Method for measuring concentration of chelate agent in chemical copper plating liquid
US20230280305A1 (en) Electrochemical analysis of metallic depolarizers in gold electrodeposition
JPS583999A (en) Electric alloy plating method
JPS63195274A (en) Method for controlling electroless plating
JPH0331789B2 (en)
KR830002335B1 (en) PH measurement electrode in aqueous solution
JP2024031708A (en) Gold concentration measuring device and measuring method in gold-containing plating solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees