JPS63177453A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63177453A
JPS63177453A JP776987A JP776987A JPS63177453A JP S63177453 A JPS63177453 A JP S63177453A JP 776987 A JP776987 A JP 776987A JP 776987 A JP776987 A JP 776987A JP S63177453 A JPS63177453 A JP S63177453A
Authority
JP
Japan
Prior art keywords
electrode
capacitor
polycrystalline
wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP776987A
Other languages
Japanese (ja)
Inventor
Koji Otsu
大津 孝二
Hiroyuki Moriya
博之 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP776987A priority Critical patent/JPS63177453A/en
Publication of JPS63177453A publication Critical patent/JPS63177453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the performance of a semiconductor device by a method wherein the particle diameter at a capacitor electrode out of semiconductor layers is made smaller than the particle diameter at a wiring part so that the time constant for the semiconductor device can be made small and that the capacitance accuracy of a capacitor can be made high. CONSTITUTION:At a semiconductor device where at least one electrode 13 for a capacitor 11 and wiring parts 18, 19 are composed of semiconductor layers, the particle diameter at the electrode 13 out of said semiconductor layers is made smaller than the particle diameter at the wiring parts 18, 19. For example, one electrode 13 and the other electrode 14 for a capacitor 11 at an analog MOS IC chip are composed of polycrystalline Si layers 16 and an Al layer, respectively; in addition, a wiring part 10 which is connected to the electrode 13 and the gate electrode 19 for a MOS transistor 12 are composed of the polycrystalline Si layers 15. The particle diameter is made relatively big and the resistance value is made low at the wiring part 10 and the gate electrode 19 out of the polycrystalline Si layers 15; the particle diameter at the electrode 13 is made relatively small, and the unevenness at the interface to the dielectric 15 is made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、キャパシタと配線とを有し前記キャパシタの
少なくとも一方の電極と前記配線とが半導体層によって
形成されている半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device that includes a capacitor and a wiring, and in which at least one electrode of the capacitor and the wiring are formed of a semiconductor layer. .

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な半導体装置において、半導体層の
うちの電極の部分における粒径を配線の部分における粒
径よりも小さくすることによって、高い性能を有するこ
とができる様にしたものである。
The present invention is a semiconductor device as described above, in which the grain size in the electrode portion of the semiconductor layer is made smaller than the grain size in the wiring portion, thereby making it possible to have high performance. .

〔従来の技術〕[Conventional technology]

キャパシタを内蔵しているアナログMO3−IC等が高
い性能を有するためには、そのキャパシタが高いキャパ
シタンス精度を有している必要がある。
In order for an analog MO3-IC or the like having a built-in capacitor to have high performance, the capacitor must have high capacitance accuracy.

ところでこの様なアナログMO9−ICにおいては、P
等の不純物を含有する多結晶Si層によってキャパシタ
の電極や配線等が形成され、SiO□層によって誘電体
が形成されていることが多い。多結晶Si層にP等の不
純物を含有させることは、多結晶Si層を覆うPSG等
からの熱拡散によって行われている。
By the way, in such an analog MO9-IC, P
In many cases, a polycrystalline Si layer containing such impurities is used to form capacitor electrodes, wiring, etc., and a SiO□ layer forms a dielectric. Impurities such as P are contained in the polycrystalline Si layer by thermal diffusion from PSG or the like covering the polycrystalline Si layer.

一方、アナログMO3−ICの時定数(CxR)をでき
る限り小さくするために、不純物濃度をできる限り高く
し、且つこの状態で熱処理を行っている。不純物濃度が
高い状態で熱処理を行えば、多結晶SiNにおける粒径
が大きくなって、抵抗値が低下するためである。
On the other hand, in order to make the time constant (CxR) of the analog MO3-IC as small as possible, the impurity concentration is made as high as possible, and heat treatment is performed in this state. This is because if heat treatment is performed in a state where the impurity concentration is high, the grain size in polycrystalline SiN increases and the resistance value decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで従来のアナログMO3−ICにおいては、上述
の様に熱拡散によって多結晶Si層に不純物を含有させ
ている。このために、多結晶Si層のうちのキャパシタ
電極の部分においても配線の部分においても、共に不純
物濃度が高い。従って、電極の部分においても配線の部
分においても、共に粒径が大きい。
By the way, in the conventional analog MO3-IC, impurities are contained in the polycrystalline Si layer by thermal diffusion as described above. For this reason, the impurity concentration is high in both the capacitor electrode portion and the wiring portion of the polycrystalline Si layer. Therefore, the grain size is large in both the electrode portion and the wiring portion.

しかし、多結晶Si層における粒径が大きいということ
は、微視的に見れば、多結晶Si層の表面の凹凸が大き
いということである。そして、キャパシタ電極のうちの
誘電体との界面の凹凸が大きいと、キャパシタのキャパ
シタンスのバラツキが大きい。
However, the fact that the grain size in the polycrystalline Si layer is large means that the surface irregularities of the polycrystalline Si layer are large when viewed microscopically. If the interface between the capacitor electrode and the dielectric material has large irregularities, the capacitance of the capacitor will vary greatly.

このことは、キャパシタの誘電体となっているSiO□
層を熱酸化で形成した場合も、CVDで形成した場合も
同様である。
This means that SiO□, which is the dielectric material of the capacitor,
The same applies whether the layer is formed by thermal oxidation or CVD.

従って、上述の様な従来のアナログMO3−ICは、キ
ャパシタのキャパシタンス精度が低く、性能が低い。そ
してこの様なことは、アナログMOS−ICに限らず、
キャパシタ及び配線を有する一般の半導体装置について
も同様である。
Therefore, the conventional analog MO3-IC as described above has low capacitance accuracy and low performance. And this kind of thing is not limited to analog MOS-IC.
The same applies to general semiconductor devices having capacitors and wiring.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による半導体装置は、半導体層15のうちのキャ
パシタ11の電極13の部分における粒径が配線18.
19の部分における粒径よりも小さいことを特徴として
いる。
In the semiconductor device according to the present invention, the grain size in the portion of the electrode 13 of the capacitor 11 in the semiconductor layer 15 is 18.
It is characterized by being smaller than the particle size in the part No. 19.

〔作用〕[Effect]

本発明による半導体装置では、半導体層15のうちのキ
ャパシタ電極13の部分における粒径が、相対的に小さ
い。このために、微視的に見れば、キャパシタ電極13
のうちの誘電体16との界面の凹凸が小さく、キャパシ
タ11のキャパシタンス精度が高い。
In the semiconductor device according to the present invention, the grain size in the capacitor electrode 13 portion of the semiconductor layer 15 is relatively small. For this reason, microscopically, the capacitor electrode 13
The unevenness of the interface with the dielectric 16 is small, and the capacitance accuracy of the capacitor 11 is high.

また、半導体115のうちの配線18.19の部分にお
ける粒径は、相対的に大きい。このために、配線18.
19の抵抗値が低く、半導体装置としての時定数が小さ
い。
Further, the grain size in the wiring 18 and 19 portion of the semiconductor 115 is relatively large. For this purpose, wiring 18.
The resistance value of 19 is low, and the time constant as a semiconductor device is small.

〔実施例〕〔Example〕

以下、アナログMO3−ICに適用した本発明の一実施
例を、第1図及び第2図を参照しながら説明する。
An embodiment of the present invention applied to an analog MO3-IC will be described below with reference to FIGS. 1 and 2.

本実施例は、第1図に示されている様に、キャパシタ1
1とMOSトランジスタ12とを有している。キャパシ
タ11の一方の電極13及び他方の電極14は、夫々多
結晶Si層15及びAIJiによって形成されており、
第1の誘電体16及び第2の誘電体17は、夫々5to
zJii及び5iJ4層によって形成されている。
In this embodiment, as shown in FIG.
1 and a MOS transistor 12. One electrode 13 and the other electrode 14 of the capacitor 11 are formed of a polycrystalline Si layer 15 and AIJi, respectively.
The first dielectric 16 and the second dielectric 17 each have 5 to
It is formed by zJii and 5iJ4 layers.

また、電極13に連なっている配線18及びMOSトラ
ンジスタ12のゲート電極19も、多結晶St層15に
よって形成されている。
Further, the wiring 18 connected to the electrode 13 and the gate electrode 19 of the MOS transistor 12 are also formed of the polycrystalline St layer 15.

そして本実施例では、多結晶5iJii15のうちで配
線18とゲート電極19との部分における粒径が相対的
に大きくて、これらの配線18とゲート電極19との抵
抗値が低い。一方、電極13の部分における粒径が相対
的に小さくて、電極13の誘電体15との界面の凹凸が
小さい。
In this embodiment, the grain size of the polycrystal 5iJii 15 at the portion where the wiring 18 and the gate electrode 19 are located is relatively large, and the resistance value between the wiring 18 and the gate electrode 19 is low. On the other hand, the grain size in the electrode 13 portion is relatively small, and the unevenness of the interface between the electrode 13 and the dielectric 15 is small.

この様な電極13、配線18及びゲート電極19を形成
するには、第2図に示す様に、Si基板21の表面の5
iOz層22上に、不純物を含有していない多結晶Si
層15をまず形成する。
In order to form such an electrode 13, wiring 18 and gate electrode 19, as shown in FIG.
Polycrystalline Si containing no impurities is formed on the iOz layer 22.
Layer 15 is first formed.

次に、多結晶St層15のうちで電極13を形成すべき
部分のみをマスク23で覆い、この状態で多結晶Si層
15中へPイオン24を注入する。
Next, only the portion of the polycrystalline St layer 15 where the electrode 13 is to be formed is covered with a mask 23, and in this state, P ions 24 are implanted into the polycrystalline Si layer 15.

この様にすることによって、多結晶Si層15のうちで
電極13を形成すべき部分に、1019原子/cc以下
と比較的低濃度のPイオン24を注入する。またその他
の部分には、1020原子/cc以上と比較的高濃度の
Pイオン24を注入する。
By doing so, P ions 24 at a relatively low concentration of 10<19> atoms/cc or less are implanted into the portion of the polycrystalline Si layer 15 where the electrode 13 is to be formed. In other parts, P ions 24 are implanted at a relatively high concentration of 1020 atoms/cc or more.

そして、この状態で熱処理を行う。すると、多結晶Si
層15のうちで電極13を形成すべき部分では、比較的
低濃度のPイオン24しか含有されていないために、粒
径が相対的に小さい。
Then, heat treatment is performed in this state. Then, polycrystalline Si
The portion of the layer 15 where the electrode 13 is to be formed contains only a relatively low concentration of P ions 24, so the particle size is relatively small.

これに対して、多結晶Si層15のうちで電極13を形
成すべき部分以外の部分では、比較的高濃度のPイオン
24が含有されているために、粒径が相対的に大きくな
る。
On the other hand, the portions of the polycrystalline Si layer 15 other than the portions where the electrodes 13 are to be formed contain P ions 24 at a relatively high concentration, so that the grain size becomes relatively large.

従って、その後に多結晶Si層15をパターニングすれ
ば、上述の様な電極13、配線18及びゲート電極19
が得られる。
Therefore, if the polycrystalline Si layer 15 is patterned after that, the electrode 13, wiring 18 and gate electrode 19 as described above can be formed.
is obtained.

本実施例では、上述の様に電極13の誘電体15との界
面の凹凸が小さいために、キャパシタ11のキャパシタ
ンスのバラツキが小さいが、電極13中のPイオン24
の濃度が1019原子/cc以下でありキャパシタ11
のキャパシタンスの電圧依存性を無視することができる
ので、このことによってもキャパシタ11のキャパシタ
ンスのバラツキが小さい。
In this embodiment, since the unevenness of the interface between the electrode 13 and the dielectric 15 is small as described above, the variation in the capacitance of the capacitor 11 is small.
The concentration of capacitor 11 is less than or equal to 1019 atoms/cc.
Since the voltage dependence of the capacitance of the capacitor 11 can be ignored, this also reduces the variation in the capacitance of the capacitor 11.

なお、以上の本実施例では電極13、配線18及びゲー
ト電極19が多結晶St層15によって形成されている
が、これらが多結晶SiN以外の半導体層によって形成
されていてもよい。
In this embodiment, the electrode 13, wiring 18, and gate electrode 19 are formed of the polycrystalline St layer 15, but these may be formed of a semiconductor layer other than polycrystalline SiN.

また、上述の本実施例は本発明をアナログMO3−IC
に適用したものであるが、アナログMO3−IC以外の
半導体装置にも勿論本発明を適用することができる。
In addition, the present embodiment described above also applies the present invention to an analog MO3-IC.
However, the present invention can of course be applied to semiconductor devices other than analog MO3-ICs.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体装置では、半導体装置としての時定
数が小さいにも拘らずキャパシタのキャパシタンス精度
が高いので、半導体装置が高い性能を有している。
In the semiconductor device according to the present invention, the capacitance accuracy of the capacitor is high despite the small time constant of the semiconductor device, so the semiconductor device has high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側断面図、第2図は一実施
例の一つの製造工程を示す側断面図である。 なお図面に用いた符号において、 11・−−−−−一−−−・−一−−−−−−−−キャ
パシタ13−−−−−−−−−−・−−−−−−−一・
電極15−−−−−−−−−−・−・・−・・多結晶S
i層16−−−−−−−−−−・−−−−−−m−誘電
体18・−−一−−−−−−−−−・・−配線19・−
・・・・−・・−−−−−−ゲート電極である。
FIG. 1 is a side sectional view of an embodiment of the present invention, and FIG. 2 is a side sectional view showing one manufacturing process of the embodiment. In addition, in the symbols used in the drawings, 11. one·
Electrode 15--------------Polycrystalline S
i-layer 16----------------------Dielectric 18------------ Wiring 19--
...---------Gate electrode.

Claims (1)

【特許請求の範囲】 キャパシタと配線とを有し前記キャパシタの少なくとも
一方の電極と前記配線とが半導体層によって形成されて
いる半導体装置において、 前記半導体層のうちの前記電極の部分における粒径が前
記配線の部分における粒径よりも小さいことを特徴とす
る半導体装置。
[Scope of Claims] A semiconductor device including a capacitor and a wiring, wherein at least one electrode of the capacitor and the wiring are formed of a semiconductor layer, wherein a grain size in the electrode portion of the semiconductor layer is A semiconductor device characterized in that the grain size is smaller than that in the wiring portion.
JP776987A 1987-01-16 1987-01-16 Semiconductor device Pending JPS63177453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP776987A JPS63177453A (en) 1987-01-16 1987-01-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP776987A JPS63177453A (en) 1987-01-16 1987-01-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63177453A true JPS63177453A (en) 1988-07-21

Family

ID=11674886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP776987A Pending JPS63177453A (en) 1987-01-16 1987-01-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63177453A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176611A (en) * 1993-09-15 1995-07-14 Hyundai Electron Ind Co Ltd Preparation of wiring in semiconductor device
KR100233557B1 (en) * 1996-06-29 1999-12-01 김영환 Polyresistor of semiconductor device and its fabrication method for analog
JP2007096082A (en) * 2005-09-29 2007-04-12 Asahi Kasei Microsystems Kk Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176611A (en) * 1993-09-15 1995-07-14 Hyundai Electron Ind Co Ltd Preparation of wiring in semiconductor device
KR100233557B1 (en) * 1996-06-29 1999-12-01 김영환 Polyresistor of semiconductor device and its fabrication method for analog
JP2007096082A (en) * 2005-09-29 2007-04-12 Asahi Kasei Microsystems Kk Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0736437B2 (en) Method of manufacturing semiconductor memory
JPS62154778A (en) Monolithic integrated circuit and manufacture of the same
JPH0577340B2 (en)
KR950004608A (en) Programmable Anti-Fuse Element and Manufacturing Method Thereof
JP2795259B2 (en) Semiconductor device and manufacturing method thereof
JPS63177453A (en) Semiconductor device
JPS5989450A (en) Semiconductor integrated circuit device
JPH05243519A (en) Semiconductor memory device
JPS63108763A (en) Semiconductor integrated circuit
JPS6074665A (en) Semiconductor device
JPS61170057A (en) Vertical type capacitor
JPH0142147B2 (en)
JP2526536Y2 (en) Semiconductor device
JPH05235275A (en) Integrated circuit device
JP2001223334A (en) Method for manufacturing semiconductor device and semiconductor device
JPS63177454A (en) Manufacture of semiconductor device
JPS6085555A (en) Manufacture of semiconductor device
JPS62130552A (en) Semiconductor integrated circuit device
JP2532471B2 (en) Semiconductor device
KR100778878B1 (en) Method for Forming Passive Elements in Semiconductor Device
JPS61225852A (en) Semiconductor device
JPH07249742A (en) Semiconductor device
JPS6062151A (en) Mos type semiconductor integrated circuit device and manufacture thereof
JPS61255050A (en) Semiconductor integrated circuit device
JP2002158331A (en) Semiconductor capacitive element and semiconductor integrated circuit comprising it