JPS63176309A - Production of perovskite type lead magnesium niobate - Google Patents

Production of perovskite type lead magnesium niobate

Info

Publication number
JPS63176309A
JPS63176309A JP546987A JP546987A JPS63176309A JP S63176309 A JPS63176309 A JP S63176309A JP 546987 A JP546987 A JP 546987A JP 546987 A JP546987 A JP 546987A JP S63176309 A JPS63176309 A JP S63176309A
Authority
JP
Japan
Prior art keywords
aqueous solution
ions
niobium
lead
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP546987A
Other languages
Japanese (ja)
Other versions
JPH0333658B2 (en
Inventor
Akio Watanabe
明男 渡辺
Shinichi Shirasaki
信一 白崎
Shigefumi Kuramoto
成史 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP546987A priority Critical patent/JPS63176309A/en
Publication of JPS63176309A publication Critical patent/JPS63176309A/en
Publication of JPH0333658B2 publication Critical patent/JPH0333658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To rapidly and readily obtain the titled high-purity stable lead magnesium niobate, by bringing an aqueous solution of oxalic acid containing lead ions, Mg ions and niobium ions at a specific ratio into contact with a basic gas or aqueous solution, drying and thermally decomposing the resultant precipitates. CONSTITUTION:An aqueous solution of oxalic acid containing lead ions, magnesium ions and niobium ions at 3:1:2 ratio is prepared by a method for dissolving niobium hydroxide, lead nitrate and magnesium hydroxide in oxalic acid, etc. The resultant solution is then brought into contact with a basic gas, e.g. dimethylamine gas, or basic aqueous solution, e.g. aqueous solution of tetramethylammonium hydroxide, to form precipitates, which are then dried and thermally decomposed to afford perovskite type lead magnesium niobate. The obtained compound is preferably used as ferroelectric, piezoelectric materials, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペロブスカイト型酸化物であるニオブ酸鉛マグ
ネシウムPbMg+/+Nbz/sOz (以下PMN
と略記する)の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to lead magnesium niobate PbMg+/+Nbz/sOz (hereinafter referred to as PMN), which is a perovskite type oxide.
(abbreviated as)).

PMNは誘電率が高いことからそれ自身あるいは他のペ
ロブスカイト型化合物の固溶体の形で、アクチュエータ
ーやコンデンサーなどの強誘電材料や圧電体材料として
広く使用されている。これらの材料の多くはその粉末を
焼き固めた焼結体として使用され、その場合、得られる
材料の品質は焼結の度合や焼結中にできる副生成物の量
により著しく左右される。
Due to its high dielectric constant, PMN itself or in the form of a solid solution of other perovskite compounds is widely used as a ferroelectric or piezoelectric material in actuators, capacitors, etc. Many of these materials are used as sintered bodies by sintering their powders, in which case the quality of the resulting material is significantly influenced by the degree of sintering and the amount of by-products formed during sintering.

従来技術 従来のPMN粉末の製造法としては次の方法が知られて
いる。
Prior Art The following method is known as a conventional method for producing PMN powder.

(1)各構成金属元素の酸化物粉末を混合し、この混合
物を高温で加熱して固相反応を起こさせる方法。
(1) A method in which oxide powders of each constituent metal element are mixed and the mixture is heated at high temperature to cause a solid phase reaction.

(2)酸化マグネシウムと酸化ニオブの粉末を混合し、
この混合物を高温で加熱して固相反応を起こさせた後、
酸化鉛の粉末を混合し、この混合物を高温で加熱して固
相反応を起こさせる方法(Swartz法)。
(2) Mix magnesium oxide and niobium oxide powder,
After heating this mixture at high temperature to cause a solid phase reaction,
A method in which lead oxide powder is mixed and the mixture is heated at high temperature to cause a solid phase reaction (Swartz method).

(3)各構成金属元素の酸化物粉末を混合し、この混合
物を高温で加熱して固相反応を起こさせた後、過剰の酸
化鉛粉末を加え、その混合物を高温で加熱して固相反応
を起こさせる方法。
(3) Mix the oxide powders of each constituent metal element, heat this mixture at high temperature to cause a solid phase reaction, add excess lead oxide powder, and heat the mixture at high temperature to cause a solid phase reaction. How to cause a reaction.

しかしながら、 fl)の方法では焼結中に副生成物としてパイロクロア
相が生成しPMN単−相とはならない。この副生成物の
存在は単に焼結を阻害するだけでなく、PMNの誘電率
を著しく低下させる欠点がある。
However, in method fl), a pyrochlore phase is produced as a by-product during sintering, and a PMN single phase cannot be obtained. The presence of this by-product not only inhibits sintering but also has the drawback of significantly lowering the dielectric constant of PMN.

(2)の方法では副生成物のパイロクロアは生成せずP
MNの単−相が得られるが、酸化マグネシウムと酸化ニ
オブの粉末を混合し固相反応を行った後に、酸化鉛粉末
を加えて再び固相反応を起こさせなければならず、その
反応には高温かつ長時間を必要とする製造工程上の欠点
がある。
In method (2), the by-product pyrochlore is not produced and P
A single phase of MN can be obtained, but after mixing magnesium oxide and niobium oxide powder and performing a solid-phase reaction, lead oxide powder must be added to cause the solid-phase reaction again. There are drawbacks to the manufacturing process, which requires high temperatures and long hours.

(3)の方法では副生成物のパイロクロアは生成せずP
MNの単−相が得られるが、各構成金属元素の酸化物粉
末を混合して固相反応を行った後に、過剰の酸化鉛を加
えて再び固相反応を起こさせる製発明の目的 本発明は前記従来法における欠点をなくしようとするも
のであり、その目的は誘電率が高くかつ不純物の混入の
ない高純度のPMNの焼結体を容易に製造する方法を提
供するにある。
In method (3), the by-product pyrochlore is not produced and P
A single phase of MN is obtained, but after a solid phase reaction is performed by mixing oxide powders of each constituent metal element, excess lead oxide is added to cause a solid phase reaction again.Object of the InventionThe present invention is an attempt to eliminate the drawbacks of the conventional methods, and its purpose is to provide a method for easily producing a highly purified PMN sintered body having a high dielectric constant and no contamination of impurities.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、し
ゅう酸水溶液中で構成金属元素の鉛、マグネシウム、ニ
オブのイオンを混合し、とれに塩基性気体または塩基性
水溶液を接触させpHを8以上にすると、すべての構成
金属イオンのしゅう酸塩を共沈させることができ、得ら
れる共沈物は均一でしかも高純度の微粒子であり、これ
を熱分解処理すると極めて焼結し易い活性粉末が得られ
、これを焼成すると高い誘電率のものが得られることを
究明し得た。この知見に基づいて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventors mixed ions of the constituent metal elements lead, magnesium, and niobium in an oxalic acid aqueous solution, and contacted the mixture with a basic gas or a basic aqueous solution. When the pH is set to 8 or more, the oxalates of all the constituent metal ions can be coprecipitated, and the resulting coprecipitate is uniform and highly pure fine particles, and when it is pyrolyzed, it becomes extremely sintered. It has been found that an active powder that is easy to process is obtained, and that when this is fired, a product with a high dielectric constant can be obtained. The present invention was completed based on this knowledge.

本発明の要旨は 鉛イオン、マグネシウムイオン、ニオブイオンを3:1
:2に含有させたしゅう酸水溶液に、塩基性気体または
塩基性水溶液を接触させて沈殿物を生成させ、該沈殿物
を乾燥、熱分解することを特徴とするペロブスカイト型
のニオブ酸鉛マグネシウムの製造法にある。
The gist of the present invention is to mix lead ions, magnesium ions, and niobium ions in a ratio of 3:1.
: A perovskite-type lead magnesium niobate characterized by contacting the oxalic acid aqueous solution contained in 2 with a basic gas or a basic aqueous solution to form a precipitate, and drying and thermally decomposing the precipitate. It's in the manufacturing method.

鉛イオン、マグネシウムイオン及びニオブイオンを含有
させたしゅう酸水溶液は、例えば鉛イオン、マグネシウ
ムイオンを含む水溶液とニオブイオンのしゅう酸水溶液
とを混合することによって得られる。
An oxalic acid aqueous solution containing lead ions, magnesium ions, and niobium ions can be obtained, for example, by mixing an aqueous solution containing lead ions and magnesium ions with an oxalic acid aqueous solution containing niobium ions.

ニオブイオンのしゅう酸水溶液は例えば五塩化ニオブを
アンモニヤ水で水酸化ニオブとし、これを熱しゅう酸に
溶解することにより得られる。
An aqueous solution of niobium ions in oxalic acid can be obtained, for example, by converting niobium pentachloride into niobium hydroxide with aqueous ammonia and dissolving this in hot oxalic acid.

また、鉛イオン、マグネシウムイオンを含む水溶液とし
ては、例えば、それらの硝酸塩、炭酸塩などの水あるい
は酸に可溶な塩を、水あるいは酸に溶解させたものが使
用される。
Further, as the aqueous solution containing lead ions and magnesium ions, for example, those obtained by dissolving their water- or acid-soluble salts such as nitrates and carbonates in water or acid are used.

しかし、この方法に限定されるものではなく、鉛イオン
、マグネシウムイオン及びニオブイオンのしゅう酸水溶
液であればよい。この混合しゆう酸水溶液に塩基性気体
あるいは塩基性水溶液を接触させてpHを8以上にする
。この方法は塩基性水溶液を添加したりあるいは塩基性
気体を吹込むことによって行うことができる。これによ
り白色沈殿が生成する。
However, the method is not limited to this, and any oxalic acid aqueous solution containing lead ions, magnesium ions, and niobium ions may be used. This mixed oxalic acid aqueous solution is brought into contact with a basic gas or a basic aqueous solution to adjust the pH to 8 or higher. This method can be carried out by adding a basic aqueous solution or by blowing in a basic gas. This produces a white precipitate.

塩基性気体としては例えばジメチルアミンガスやアンモ
ニアガスなど 塩基性水溶液としては例えば水酸化テトラメチルアンモ
ニウムやジエチルアミンなど が挙げられる。
Examples of the basic gas include dimethylamine gas and ammonia gas, and examples of the basic aqueous solution include tetramethylammonium hydroxide and diethylamine.

次に該沈殿物を熱分解する。この熱分解は低温であるこ
とが望ましいが、低温過ぎると熱分解が不完全となり、
焼結体が破損し易くなる。また高温過ぎると粒子の成長
が著しくなり焼結に悪影響を及ぼすので、700〜90
0℃で行うことが好ましい。この熱分解より粒径約0.
3μmの微粒子が得られる。
The precipitate is then pyrolyzed. It is desirable that this thermal decomposition is carried out at a low temperature, but if the temperature is too low, the thermal decomposition will be incomplete.
The sintered body becomes easily damaged. Also, if the temperature is too high, particle growth will be significant and it will have a negative effect on sintering, so
Preferably, it is carried out at 0°C. This thermal decomposition results in a particle size of approximately 0.
Fine particles of 3 μm are obtained.

この微粒子粉末から焼成体を作るには、これを150〜
500  kg/cm”で−次成型する。−次成型の圧
力が高過ぎると成型体に歪みが生ずるので成型体が崩れ
ない程度の低圧であることが好ましい。
In order to make a fired body from this fine particle powder, it is necessary to
Next molding is carried out at 500 kg/cm''. If the pressure for the second molding is too high, distortion will occur in the molded body, so it is preferable that the pressure is low enough to prevent the molded body from collapsing.

得られた成型物をラバープレスにより1.6ton/c
m”以上の圧力で二次成型し、次いで酸素雰囲気中で焼
結すると焼結体が得られる。焼結は1000〜1300
℃で1〜10時間行う。1000℃未満では粒成長が進
行せず、高い誘電率のPMNが得られない。また、13
00℃を超えると酸化鉛が蒸発してしまい、誘電率が低
下するので、その範囲であることが好ましい。
The obtained molded product was pressed to 1.6 ton/c using a rubber press.
A sintered body can be obtained by performing secondary molding at a pressure of 1000 to 1300 m or more and then sintering in an oxygen atmosphere.
C. for 1 to 10 hours. If the temperature is lower than 1000°C, grain growth will not proceed and PMN with a high dielectric constant cannot be obtained. Also, 13
If the temperature exceeds 00°C, lead oxide will evaporate and the dielectric constant will decrease, so it is preferable that the temperature be within that range.

これにより、不純物が含有されることなく、また副生成
物の生成することもなく、極めて高純度でしかも高い誘
電率を持つ焼結体が得られる。
As a result, a sintered body with extremely high purity and high dielectric constant can be obtained without containing impurities or by-products.

実施例 五塩化ニオブをアンモニア水で水酸化物として沈殿させ
、得られた水酸化ニオブを熱しゅう酸中に投入してしゅ
う酸ニオブ水溶液を作った。このしゅう酸ニオブ水溶液
中のNb濃度はNbzosとして重量法で測定した結果
、0.07343 g/ccであった。
Example Niobium pentachloride was precipitated as a hydroxide with aqueous ammonia, and the obtained niobium hydroxide was poured into hot oxalic acid to prepare an aqueous solution of niobium oxalate. The Nb concentration in this niobium oxalate aqueous solution was measured as Nbzos by gravimetric method and was found to be 0.07343 g/cc.

この溶液10ccをNbに対して3/2モル量である2
、7449 gの硝酸鉛と1/2モル量である0、16
28 gの水酸化マグネシウムを純水50ccに溶解し
た後、濃硝酸24ccを硝酸酸性とした溶液を混合した
10 cc of this solution is 3/2 molar amount 2 with respect to Nb.
, 7449 g of lead nitrate and 1/2 molar amount of 0,16
After dissolving 28 g of magnesium hydroxide in 50 cc of pure water, a solution of 24 cc of concentrated nitric acid acidified with nitric acid was mixed.

この混合液を水酸化テトラメチルアンモニウムの水溶液
1000cc中に室温で7.5 cc/ff1inの速
度で滴下して白色沈殿を得た。この沈殿を水酸化テトラ
メチルアンモニウムを添加した水で2回洗浄し、100
℃で乾燥した後粉砕し、空気中で800℃で2時間熱分
解した。
This mixed solution was added dropwise to 1000 cc of an aqueous solution of tetramethylammonium hydroxide at a rate of 7.5 cc/ff1 inch at room temperature to obtain a white precipitate. This precipitate was washed twice with water to which tetramethylammonium hydroxide was added, and
After drying at °C, it was crushed and thermally decomposed in air at 800 °C for 2 hours.

得られた熱分解物を粉末X線回折によって調べたところ
プロブスカイト型のPMNの単−相であった。またこの
PMN粉末を走査型電子顕微鏡で調べたところ粒径は0
.30μmであった。
When the obtained thermal decomposition product was examined by powder X-ray diffraction, it was found to be a single phase of provskite-type PMN. Furthermore, when this PMN powder was examined using a scanning electron microscope, the particle size was 0.
.. It was 30 μm.

このPMN粉末を200 kg/cmzの圧力で、直径
811、厚さ5mの円板状に一次成型した後、1.6t
on/c11”の静水圧下で成型し、これを1220℃
で酸素ガスを流しながら2時間焼結した。
This PMN powder was first formed into a disk shape with a diameter of 811 mm and a thickness of 5 m at a pressure of 200 kg/cmz, and then 1.6 tons of
molded under hydrostatic pressure of on/c11” and heated to 1220°C.
Sintering was carried out for 2 hours while flowing oxygen gas.

得られたものは高い誘電率を示した。100Hz。The obtained material showed a high dielectric constant. 100Hz.

1 kHz 、 10kHzの各周波数における誘電率
と温度の関係は第1図に示す通りであった。
The relationship between the dielectric constant and temperature at each frequency of 1 kHz and 10 kHz was as shown in FIG.

図中−(実線)で示すものは本発明の方法で製造した焼
結体を示し、−・−(点線)で示すものは従来法(2)
に示す方法(Swartz法)で製造した焼結体を示す
In the figure, - (solid line) indicates the sintered body produced by the method of the present invention, and - - (dotted line) indicates the conventional method (2).
A sintered body manufactured by the method shown in (Swartz method) is shown.

この結果が示すように、本発明の方法で得られた焼結体
は、100 Hz、  1kHz 、 10kHzの各
周波数において、従来のものより高い誘電率を有するこ
とがわかる。
As the results show, the sintered body obtained by the method of the present invention has a higher dielectric constant than the conventional one at each frequency of 100 Hz, 1 kHz, and 10 kHz.

発明の効果 本発明の方法によると、次のような優れた効果を有する
Effects of the Invention The method of the present invention has the following excellent effects.

(1)迅速かつ容易に安定したPMN粉末が得られる。(1) Stable PMN powder can be obtained quickly and easily.

(2)得られた粉末は均一で高純度であり、その焼成物
は高い誘電率を有する。
(2) The obtained powder is uniform and highly pure, and the fired product has a high dielectric constant.

(3)従来法におけるような固相反応を二段も行う必要
がないので製造工程が簡易になり、熱量も少なくてすむ
ので安価に得られる。
(3) Since there is no need to carry out two stages of solid-phase reactions as in conventional methods, the manufacturing process is simplified, and the amount of heat required is small, so it can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は100 Hz、  1kHz 、 10kHzに
おける誘電率と温度との関係図を示す。 一線は本発明方法による焼結体、 ・−・−・・線は従来法による焼結体。 温度〔6C)
The drawing shows a diagram of the relationship between dielectric constant and temperature at 100 Hz, 1 kHz, and 10 kHz. The line represents a sintered body produced by the method of the present invention, and the line represents a sintered body produced by the conventional method. Temperature [6C]

Claims (1)

【特許請求の範囲】[Claims] 鉛イオン、マグネシウムイオン、ニオブイオンを3:1
:2に含有させたしゅう酸水溶液に、塩基性気体または
塩基性水溶液を接触させて沈澱物を生成させ、該沈澱物
を乾燥、熱分解することを特徴とするペロブスカイト型
のニオブ酸鉛マグネシウムの製造法。
3:1 lead ion, magnesium ion, niobium ion
: A perovskite-type lead magnesium niobate characterized by contacting the oxalic acid aqueous solution contained in 2 with a basic gas or a basic aqueous solution to form a precipitate, and drying and thermally decomposing the precipitate. Manufacturing method.
JP546987A 1987-01-13 1987-01-13 Production of perovskite type lead magnesium niobate Granted JPS63176309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP546987A JPS63176309A (en) 1987-01-13 1987-01-13 Production of perovskite type lead magnesium niobate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP546987A JPS63176309A (en) 1987-01-13 1987-01-13 Production of perovskite type lead magnesium niobate

Publications (2)

Publication Number Publication Date
JPS63176309A true JPS63176309A (en) 1988-07-20
JPH0333658B2 JPH0333658B2 (en) 1991-05-17

Family

ID=11612099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP546987A Granted JPS63176309A (en) 1987-01-13 1987-01-13 Production of perovskite type lead magnesium niobate

Country Status (1)

Country Link
JP (1) JPS63176309A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199716A (en) * 1982-05-17 1983-11-21 Mitsubishi Mining & Cement Co Ltd Manufacture of valence compensation type perovskite compound
JPS61291418A (en) * 1985-06-14 1986-12-22 Natl Inst For Res In Inorg Mater Production of easily sinterable raw material powder of tungsten bronze-type oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199716A (en) * 1982-05-17 1983-11-21 Mitsubishi Mining & Cement Co Ltd Manufacture of valence compensation type perovskite compound
JPS61291418A (en) * 1985-06-14 1986-12-22 Natl Inst For Res In Inorg Mater Production of easily sinterable raw material powder of tungsten bronze-type oxide

Also Published As

Publication number Publication date
JPH0333658B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
JP3314944B2 (en) Sinterable barium titanate fine particle powder and method for producing the same
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
JP3526886B2 (en) Method for producing composite oxide
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
US3708438A (en) Process for the preparation of lead containing piezoelectric powders
JPS63176309A (en) Production of perovskite type lead magnesium niobate
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
JPH0321487B2 (en)
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS61256923A (en) Production of pulverous perovskite type oxide powder
JPS61251516A (en) Production of perovskite type oxide
JPH0258230B2 (en)
JPS61291418A (en) Production of easily sinterable raw material powder of tungsten bronze-type oxide
US5102649A (en) Process for producing peroxoniobic acid sol
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPS59131505A (en) Preparation of oxide powder of perovskite structure containing zirconium
JPH0262496B2 (en)
JPS5939722A (en) Manufacture of perovskite type oxide powder
JP3127834B2 (en) Sputtering target for high dielectric film formation
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process
JPS62128924A (en) Production of zirconium oxide series fine powder
JPH0262497B2 (en)
JPH0292866A (en) Production of light transmitting sintered material of strontium titanate
JPH02188427A (en) Inorganic composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term