JPS63174376A - Manufacture of infrared detector - Google Patents

Manufacture of infrared detector

Info

Publication number
JPS63174376A
JPS63174376A JP62006725A JP672587A JPS63174376A JP S63174376 A JPS63174376 A JP S63174376A JP 62006725 A JP62006725 A JP 62006725A JP 672587 A JP672587 A JP 672587A JP S63174376 A JPS63174376 A JP S63174376A
Authority
JP
Japan
Prior art keywords
crystal layer
substrate
exposed
layer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62006725A
Other languages
Japanese (ja)
Other versions
JPH0638511B2 (en
Inventor
Toshio Yamagata
山形 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62006725A priority Critical patent/JPH0638511B2/en
Publication of JPS63174376A publication Critical patent/JPS63174376A/en
Publication of JPH0638511B2 publication Critical patent/JPH0638511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the hollow part between a semiconductor crystal layer and a substrate and to prevent an electrode from being disconnected by a method wherein the semiconductor crystal layer adhered on the substrate is developed after the rear of the crystal layer is exposed from the rear of the substrate at the same time as the crystal layer is exposed from its upper surface through a photo mask. CONSTITUTION:An HgCdTe crystal layer 2 is adhered on an insulative substrate 1, which transmits ultraviolet rays, with a bonding agent 3 and after the layer 2 is formed into a thin layer, the unnecessary bonding agent 3 is removed. Then, a P-type photo resist 4 is applied. Then, the layer 2 is exposed with ultraviolet rays 9 from its upper surface side through a photo mask 5. Subsequently, by performing an exposure on the whole surface from the rear of the substrate 1, the resist to intrude into the overhang part on the peripheral part of the layer 2 is exposed. After that, a developing processing is performed to form a prescribed resist pattern 8 for lift-off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体を用いた赤外線検出素子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an infrared detection element using a semiconductor.

〔従来の技術〕[Conventional technology]

一般に、HgCdTe、Pb5nTe、In5b等の半
導体結晶層は高怒度の赤外線検出素子用材料として知ら
れており、これらを用いた素子は基本的には厚さ10μ
m程度の半導体結晶層に電極端子を形成し、その間の抵
抗変化を検出するよう構成されたものである。この赤外
線検出素子、例えばHg Cd T e結晶層を用いた
赤外線検出素子の従来の製造方法を示すと、その主要工
程は以下のようなものである。
In general, semiconductor crystal layers such as HgCdTe, Pb5nTe, and In5b are known as materials for high-intensity infrared detection elements, and elements using these are basically 10μ thick.
This device is configured to form electrode terminals on a semiconductor crystal layer of approximately m thickness, and to detect resistance changes therebetween. A conventional method for manufacturing an infrared detecting element, for example, an infrared detecting element using a Hg Cd Te crystal layer, includes the following main steps.

まず第2図(a)に示すように、絶縁性基板1上にHg
CdTe結晶層2を接着剤3により接着した後、第2図
(b)のようにこれを研磨・エツチングによって所定の
厚さ、通常は10μm程度に薄層化すると共にその端部
11をなだらかにする。次に、第2図(C)に示すよう
に基板1上に露出した不要の接着剤3を酸素プラズマに
よってエツチング除去する。これは、不要の接着剤を残
しておくと後で積層する電極膜の剥離やクラック発生に
よる断線を生じ易いためである。続いて、第2図(d)
に示すように、Hg Cd T e結晶層2の感光部と
する幅りの感光領域を設定するレジストパターン8を形
成し、これをマスクとしてHg Cd T e結晶層2
の表面を軽くエツチングした後、第2図(e)に示すよ
うにいわゆるリフトオフ法によって電極材料である導電
体膜13を成膜する。ここで結晶層表面を軽くエツチン
グするのは表面に形成した酸化膜を除去するためである
First, as shown in FIG. 2(a), Hg is placed on the insulating substrate 1.
After bonding the CdTe crystal layer 2 with an adhesive 3, as shown in FIG. 2(b), it is polished and etched to a predetermined thickness, usually about 10 μm, and its edges 11 are smoothed. do. Next, as shown in FIG. 2(C), the unnecessary adhesive 3 exposed on the substrate 1 is removed by etching using oxygen plasma. This is because if unnecessary adhesive is left behind, the electrode film that will be laminated later is likely to peel off or breakage due to cracks will occur. Next, Figure 2(d)
As shown in FIG. 2, a resist pattern 8 is formed to set a wide photosensitive region to be the photosensitive portion of the Hg Cd Te crystal layer 2, and using this as a mask, the Hg Cd Te crystal layer 2 is exposed.
After lightly etching the surface, a conductive film 13, which is an electrode material, is formed by a so-called lift-off method, as shown in FIG. 2(e). The reason why the surface of the crystal layer is lightly etched here is to remove the oxide film formed on the surface.

次いで第2図(f)に示すようにレジストパターン14
をマスクとしてイオンミリングエツチングを施すことで
、第2図(g)に示すように赤外線検出素子が製造され
ないた。
Next, as shown in FIG. 2(f), a resist pattern 14 is formed.
By performing ion milling etching using the mask as a mask, no infrared detecting element was manufactured as shown in FIG. 2(g).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このように作られた赤外線検出素子を液体窒素
温度に冷却して使用を重ねているうちに導通不良を生ず
るものがあり、調査した結果以下の問題点が判明した。
However, as infrared detecting elements manufactured in this way are cooled to liquid nitrogen temperature and repeatedly used, some conductivity failures occur, and as a result of investigation, the following problems were found.

すなわち、従来の方法で製造した赤外線検出素子の結晶
層周辺端部を詳細に見ると、第3図(a)〜(d)に示
される。第3図(a)のように、接着剤3の段差部で電
極の導電体膜13が基板1からトンネル状に浮いた状態
となっており、この部分が冷却時のストレス等で断線し
たものであった。
That is, a detailed view of the peripheral edge of the crystal layer of an infrared detecting element manufactured by the conventional method is shown in FIGS. 3(a) to 3(d). As shown in FIG. 3(a), the conductor film 13 of the electrode is floating in a tunnel shape from the substrate 1 at the stepped portion of the adhesive 3, and this portion is disconnected due to stress during cooling, etc. Met.

更に、このトンネル状の中空部15は以下のようにして
形成されたものであった。
Furthermore, this tunnel-shaped hollow part 15 was formed as follows.

すなわち、(i)接着剤の酸素プラズマによるエツチン
グ時に、第3図(a)に示すように接着剤層3がHgC
dTe結晶層2の下までアンダーカットされる。(ii
)リフトオフのためのレジストパターン8を形成する時
、ポジ形レジストでは結晶層下は露光されないため現像
後に、第3図(b)に示すように、レジスト残り7が生
じる。(iii)続いて結晶層表面の酸化膜を除去する
ために軽くイオンエツチングする際にこのレジスト残り
7が露出し、その上に導電体膜13が、第3図(C)に
示すように積層される。(iv)次いで、レジストパタ
ーン8を除去する時、ないし、それ以後の工程で有機溶
剤を使用する際にレジスト残り7は溶は去り、第3図(
d)に示す中空15が形成される。
That is, (i) when the adhesive is etched with oxygen plasma, the adhesive layer 3 becomes HgC as shown in FIG. 3(a).
The undercut is made to the bottom of the dTe crystal layer 2. (ii
) When forming the resist pattern 8 for lift-off, the area under the crystal layer is not exposed in the case of a positive resist, so that a resist residue 7 is left after development, as shown in FIG. 3(b). (iii) Subsequently, when light ion etching is performed to remove the oxide film on the surface of the crystal layer, the remaining resist 7 is exposed, and the conductive film 13 is laminated thereon as shown in FIG. 3(C). be done. (iv) Next, when the resist pattern 8 is removed or when an organic solvent is used in a subsequent process, the remaining resist 7 is dissolved away, as shown in FIG.
A hollow 15 shown in d) is formed.

これらの工程で、レジストをネガ型とすればこうした問
題はないが、ネガ型レジストは使用後の剥離が容易では
なく、HgCdTe等の半導体結晶層を加工する場合に
は使用薬品、処理温度による劣化が問題となり使いにく
い欠点がある。
These problems do not occur if the resist is negative in these processes, but negative resists are not easy to peel off after use, and when processing semiconductor crystal layers such as HgCdTe, they may deteriorate due to the chemicals used and the processing temperature. There are drawbacks that make it difficult to use.

このように導電体膜が基板から遊離している状態は断線
を生じ易く、またそれに至らないまでも素子へ通電する
電流許容量を制限する等で、信頼性を大きく低下させて
いた。
Such a state in which the conductor film is separated from the substrate tends to cause disconnection, and even if it does not lead to disconnection, it limits the amount of current that can be applied to the element, greatly reducing reliability.

本発明の目的は、このような中空部の発生をなくし、電
極の断線を防止した信頼性の高い赤外線検出素子の製造
方法を提供することにある。
An object of the present invention is to provide a highly reliable method of manufacturing an infrared detection element that eliminates the occurrence of such hollow portions and prevents disconnection of electrodes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の赤外線検出素子の製造方法は、紫外線を透過す
る絶縁性基板上に半導体結晶層を接着しこれをR層化か
らして不要の接着剤を除去した後、電極端子部をリフト
オフ法によって形成する赤外線検出素子の製造方法にお
いて、前記結晶層上の感光領域を設定するためのフォト
レジストパターンを形成する際に、前記結晶層の上面側
から前記レジストパターンのフォトマスクを介して露光
すると共に、前記基板の裏面から少くとも前記結晶層の
周辺端部を露光してから現像することを特徴とする。
The method for manufacturing an infrared detecting element of the present invention involves bonding a semiconductor crystal layer onto an insulating substrate that transmits ultraviolet rays, forming an R layer on the layer, removing unnecessary adhesive, and then forming an electrode terminal portion using a lift-off method. In the method for manufacturing an infrared detection element, when forming a photoresist pattern for setting a photosensitive area on the crystal layer, exposing the crystal layer from the upper surface side through a photomask of the resist pattern and , the method is characterized in that at least a peripheral edge of the crystal layer is exposed from the back surface of the substrate and then developed.

〔実施例〕〔Example〕

以下本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)〜(d)は本発明の赤外線検出素子の製造
方法の一実施例を工程順に示した断面図であり、基本的
には第2図に示した従来の方法と似ているが、主な差異
は、絶縁性基板として紫外線に対して透明なものを使用
すること、及び第2図(d)に示したリフトオフ工程の
際のフォトレジストパターンの形成方法にある。従って
このリフトオフ用のフォトレジストの形成工程を中心に
、HgCdTeを用いた場合を説明する。
FIGS. 1(a) to 1(d) are cross-sectional views showing an embodiment of the method for manufacturing an infrared detecting element of the present invention in the order of steps, which is basically similar to the conventional method shown in FIG. However, the main difference lies in the use of an insulating substrate that is transparent to ultraviolet light and the method of forming the photoresist pattern during the lift-off process shown in FIG. 2(d). Therefore, the case where HgCdTe is used will be explained, focusing on the process of forming the photoresist for lift-off.

まず、紫外線を透過する絶縁性基板1上にHgCdTe
結晶層2を接着剤3により接着し、これを薄層化した後
、不要の接着を酸素プラズマによリエッチング除去する
。ここまでは、基板として紫外線が透過するものを使用
する点を除けば、第2図(a)〜(e>と全く同じであ
る。次にリフトオフ用レジストパターン形成工程として
、まず従来と同様に、第1図(a)に示すようにポジ型
フォトレジスト4を塗布する。この時、接着剤3はHg
 Cd T e結晶層2よりも内側にアンダーカットさ
れており、フォトレジストはそのオーバーハング部にも
入り込む。続いて、従来と同様に、第1図(b)に示す
ように素子の感光領域をおおうフォトマスク5を介して
HgCdTe結晶層2の上面側から紫外線9により露光
を行なう。これによりフォトレジスト4は露光された部
分6が現像の際に溶けるように変化するが、HgCdT
e結晶層2のオーバーハング部の直下のフォトレジスト
7は露光されないまま残り、この残りが信頼性の低下を
ひきおこしていた。
First, HgCdTe is placed on an insulating substrate 1 that transmits ultraviolet rays.
After bonding the crystal layer 2 with an adhesive 3 and thinning it, unnecessary bonding is removed by etching with oxygen plasma. The process up to this point is exactly the same as in Figures 2 (a) to (e), except that a substrate that transmits ultraviolet rays is used.Next, as the lift-off resist pattern forming process, first, as in the conventional method, , as shown in FIG. 1(a), apply a positive photoresist 4. At this time, the adhesive 3 is Hg
There is an undercut inside the Cd Te crystal layer 2, and the photoresist also penetrates into the overhang part. Subsequently, as in the prior art, exposure to ultraviolet rays 9 is performed from the upper surface side of the HgCdTe crystal layer 2 through a photomask 5 covering the photosensitive region of the element, as shown in FIG. 1(b). As a result, the photoresist 4 changes so that the exposed portion 6 melts during development, but the HgCdT
The photoresist 7 directly under the overhang portion of the e-crystal layer 2 remained unexposed, and this residue caused a decrease in reliability.

本実施例では続いてこれを除去するため、第1図(c)
に示すように、基板1の裏面から全面に紫外線露光を行
なう。この時、オーバーハングの未露光であったレジス
ト7は基板1を透過した紫外線によって露光され、一方
、感光領域を設定するためのリフトオフ用レジストパタ
ーン8はHgCdTe結晶層2が紫外線をさえぎるため
、影響はされない。この後に従来と同様に現像処理する
ことで、第1図(d)に示すように結晶層2のオーバー
ハング部のレジスト残りのない所定のリフトオフ用レジ
ストパターンが形成される。
In this embodiment, in order to remove this, as shown in FIG. 1(c).
As shown in FIG. 2, the entire surface of the substrate 1 is exposed to ultraviolet light from the back side. At this time, the overhanging unexposed resist 7 is exposed to the ultraviolet light that has passed through the substrate 1, while the lift-off resist pattern 8 for setting the photosensitive area is affected by the HgCdTe crystal layer 2 blocking the ultraviolet light. Not allowed. Thereafter, development is carried out in the same manner as in the prior art, thereby forming a predetermined lift-off resist pattern with no resist remaining in the overhang portion of the crystal layer 2, as shown in FIG. 1(d).

以後の工程は、第2図に示した従来の方法と同様に行な
う。すなわち、第2図(d)から(g)に示した方法と
同様に、いわゆるリフトオフ法によって電極・材料であ
る導電体を形成し、ついでイオンミリングエツチングに
よって形状加工を行ない、赤外線検出素子が得られる。
The subsequent steps are performed in the same manner as the conventional method shown in FIG. That is, similar to the method shown in FIGS. 2(d) to (g), a conductor as an electrode/material is formed by the so-called lift-off method, and then the shape is processed by ion milling etching to obtain an infrared detection element. It will be done.

こうして得られた素子は、従来の素子が電極導電体膜が
基板から遊離して断線等による信頼性の低下を招いてい
たのに対し、その原因である結晶層オーバーハング部の
未露光フォトレジストを除去しているため、そうした問
題のない信頼性の高い素子となっている。
In contrast to conventional devices, where the electrode conductor film was separated from the substrate and caused a decrease in reliability due to disconnection, etc., the device thus obtained was able to remove the unexposed photoresist in the overhang of the crystal layer, which was the cause of this problem. This eliminates these problems, making it a highly reliable device.

尚、以上の実施例で、基板の裏面からの紫外線露光を全
面に行なっているが、本質的には結晶層のオーバーハン
グが形成される結晶層周辺部を露光しさえすればよい。
In the above embodiments, the entire surface of the substrate is exposed to ultraviolet light from the back surface, but essentially it is sufficient to expose only the peripheral portion of the crystal layer where an overhang of the crystal layer is formed.

全面に露光するのは特にマスクを必要とせず最も簡単な
ためであるが、その場合には結晶層のない部分のフォト
レジストはすべて除去されてしまうため、例えば結晶店
外に以後のマスク露光のための目合せ用マークを設ける
場合等では、その部分をおおうようにして露光すること
が必要である。
It is easiest to expose the entire surface because it does not require a mask, but in that case, all the photoresist in areas where there is no crystal layer will be removed, so for example, a place outside the crystal store for subsequent mask exposure will be removed. In the case where an alignment mark is provided for the purpose of alignment, it is necessary to expose the area so as to cover it.

また、この実施例では半導体結晶層としてHgCdTe
を用いているが、これはPb5nTeやI nSbでも
全く同様である。また、基板としては、紫外線を透過し
かつ熱伝導性のよいものとしてサファイアが通しており
、フォトレジストとしてはシプレー社のマイクロポジッ
ト等の通常のポジ型レジストであればよい。更に導電体
膜としてはCrとAnの積層ないしはInやA47等が
適している。
In addition, in this example, HgCdTe is used as the semiconductor crystal layer.
The same applies to Pb5nTe and InSb. The substrate is made of sapphire, which transmits ultraviolet rays and has good thermal conductivity, and the photoresist may be any ordinary positive type resist such as Microposit manufactured by Shipley. Further, as the conductive film, a stack of Cr and An, In, A47, etc. are suitable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、リフトオフ用の
レジスト用のレジストパターンの形成時に、半導体結晶
層下の未露光のフォトレジストを基板裏面から露光し除
去することができるのでその上に積層される導電体膜が
基板から遊離するようなことがなく、断線しにくい、信
頼性の高い赤外線検出素子を製造できる。
As explained above, according to the present invention, when forming a resist pattern for a lift-off resist, the unexposed photoresist under the semiconductor crystal layer can be exposed and removed from the back surface of the substrate, so that a layer can be stacked on top of it. It is possible to manufacture a highly reliable infrared detecting element in which the conductive film does not come loose from the substrate and is less likely to be disconnected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例のリフトオフ
レジストパターン形成工程を工程順に示す断面図、第2
図(a)〜(g>は従来の製造方法を工程順に示す断面
図、第3図(a)〜(d)は第2図の製造方法のリフト
オフ工程を工程順に示す断面図である。 1・・・紫外線を透過する絶縁性基板、2・・・HgC
dTe結晶層、3・・・接着剤、4・・・フォトレジス
ト、5・・・フォトマスク、6・・・露光された部分の
フォトレジスト、7・・・結晶層下のフォトレジスト、
8・・・リフトオフ用レジストパターン、9・・・紫外
線、11・・・結晶層の端部、13・・・電極の導電体
膜、14・・・レジストパターン、15・・・中空部。 2 HgCt Te 閉& 郷1 図 第2 図
1(a) to 1(d) are cross-sectional views showing the lift-off resist pattern forming process according to an embodiment of the present invention in order of process;
Figures (a) to (g) are cross-sectional views showing the conventional manufacturing method in order of process, and Figures 3 (a) to (d) are cross-sectional views showing the lift-off process of the manufacturing method of Figure 2 in order of process. ...Insulating substrate that transmits ultraviolet rays, 2...HgC
dTe crystal layer, 3... Adhesive, 4... Photoresist, 5... Photomask, 6... Photoresist in the exposed part, 7... Photoresist under the crystal layer,
8... Resist pattern for lift-off, 9... Ultraviolet light, 11... Edge of crystal layer, 13... Conductor film of electrode, 14... Resist pattern, 15... Hollow part. 2 HgCt Te Close & Go 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 紫外線を透過する絶縁性基板上に半導体結晶層を接着し
これを薄層化からして不要の接着剤を除去した後、電極
端子部をリフトオフ法によつて形成する赤外線検出素子
の製造方法において、前記結晶層上の感光領域を設定す
るためのフォトレジストパターンを形成する際に、前記
結晶層の上面側から前記レジストパターンのフォトマス
クを介して露光すると共に、前記基板の裏面から少くと
も前記結晶層の周辺端部を露光してから現像することを
特徴とする赤外線検出素子の製造方法。
In a method for manufacturing an infrared detecting element, which involves bonding a semiconductor crystal layer onto an insulating substrate that transmits ultraviolet rays, thinning the layer, removing unnecessary adhesive, and then forming electrode terminal portions by a lift-off method. , when forming a photoresist pattern for setting a photosensitive area on the crystal layer, exposure is performed from the upper surface side of the crystal layer through a photomask of the resist pattern, and at least the photoresist pattern is exposed from the back surface of the substrate. A method for manufacturing an infrared detecting element, comprising exposing a peripheral edge of a crystal layer to light and then developing it.
JP62006725A 1987-01-13 1987-01-13 Method of manufacturing infrared detection element Expired - Lifetime JPH0638511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006725A JPH0638511B2 (en) 1987-01-13 1987-01-13 Method of manufacturing infrared detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006725A JPH0638511B2 (en) 1987-01-13 1987-01-13 Method of manufacturing infrared detection element

Publications (2)

Publication Number Publication Date
JPS63174376A true JPS63174376A (en) 1988-07-18
JPH0638511B2 JPH0638511B2 (en) 1994-05-18

Family

ID=11646228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006725A Expired - Lifetime JPH0638511B2 (en) 1987-01-13 1987-01-13 Method of manufacturing infrared detection element

Country Status (1)

Country Link
JP (1) JPH0638511B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173181A (en) * 1989-11-30 1991-07-26 Nec Corp Manufacture of photoconductive infrared detector
US7625097B2 (en) 2002-09-06 2009-12-01 Toshiba Elevator Kabushiki Kaisha Illuminated elevator including cold-cathode flourescent lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173181A (en) * 1989-11-30 1991-07-26 Nec Corp Manufacture of photoconductive infrared detector
US7625097B2 (en) 2002-09-06 2009-12-01 Toshiba Elevator Kabushiki Kaisha Illuminated elevator including cold-cathode flourescent lamp

Also Published As

Publication number Publication date
JPH0638511B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JPS6161261B2 (en)
US5784131A (en) Method for fabricating liquid crystal display in which the pixel electrode has a particular connection to the drain electrode and is formed over a storage capacitor
US4678542A (en) Self-alignment process for thin film diode array fabrication
JPS61263172A (en) Manufacture of thin-film solar cell
JP4466213B2 (en) Method for manufacturing solid-state imaging device
KR970006733B1 (en) Thin film transistor manufacturing method
US6589864B2 (en) Method for defining windows with different etching depths simultaneously
JPS63174376A (en) Manufacture of infrared detector
JPS62142323A (en) Manufacture of mask for x-ray photo-lithography and mask obtained by the manufacture
JP3179927B2 (en) Method for manufacturing photoelectric conversion device
JPS5814568A (en) Manufacture of thin film transistor matrix array
JPS59104523A (en) Production of infrared-ray detector
JPS62139333A (en) Manufacture of infrared ray detecting element
JPS63275167A (en) Manufacture of contact image sensor
JP3021563B2 (en) Solid-state imaging device
KR100212269B1 (en) Manufacturing method of liquid crystal display device
JPH07109903B2 (en) Method for manufacturing photoconductive infrared detector
JPH02288237A (en) Manufacture of thin film transistor
JPH0764108A (en) Semiconductor device and its production
JPS6022501B2 (en) Manufacturing method of semiconductor device
JPS58175863A (en) Processing of semiconductor element
JPS62101087A (en) Manufacture of infrared detector
JPS6164173A (en) Manufacture of infrared detecting element
JPH0287667A (en) Manufacture of thin film transistor matrix
JPS59189673A (en) Manufacture of thin film transistor