JPS6316999B2 - - Google Patents

Info

Publication number
JPS6316999B2
JPS6316999B2 JP57077777A JP7777782A JPS6316999B2 JP S6316999 B2 JPS6316999 B2 JP S6316999B2 JP 57077777 A JP57077777 A JP 57077777A JP 7777782 A JP7777782 A JP 7777782A JP S6316999 B2 JPS6316999 B2 JP S6316999B2
Authority
JP
Japan
Prior art keywords
aeration tank
amount
dissolved oxygen
concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57077777A
Other languages
Japanese (ja)
Other versions
JPS58196889A (en
Inventor
Koji Ishida
Kenichi Terakawa
Mitsuru Iwao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57077777A priority Critical patent/JPS58196889A/en
Publication of JPS58196889A publication Critical patent/JPS58196889A/en
Publication of JPS6316999B2 publication Critical patent/JPS6316999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 処理水中の溶存酸素濃度を一定化するように、
曝気槽への酸素供給量を設定時間ごとに調節する
曝気槽への酸素供給量制御方法に関する。
[Detailed Description of the Invention] In order to keep the dissolved oxygen concentration in the treated water constant,
The present invention relates to a method for controlling the amount of oxygen supplied to an aeration tank, which adjusts the amount of oxygen supplied to the aeration tank at set time intervals.

従来の上記方法としては、特開昭50−122060号
公報に示されるように、流入汚水量、浮遊物質濃
度、酸素供給量及び溶存酸素濃度夫々について設
定時間ごとに測定し、その測定値からの予測式に
基いて新たな酸素供給量を算出設定するものがあ
る。
As shown in Japanese Patent Application Laid-Open No. 50-122060, the conventional method described above is to measure the amount of inflowing sewage, suspended solids concentration, oxygen supply amount, and dissolved oxygen concentration at each set time, and calculate the results from the measured values. There is one that calculates and sets a new oxygen supply amount based on a prediction formula.

ところが、現状では、浮遊物質濃度の測定精度
が低く、その浮遊物質濃度の測定値を導入してい
るがために、外乱が大となり、かえつて制御不良
を招く欠点があり、又、基質濃度の変化が無視さ
れて良好な制御を行えない欠点があつた。
However, at present, the accuracy of measuring the suspended solids concentration is low, and since the measured value of the suspended solids concentration is used, disturbances are large, resulting in poor control. The disadvantage was that changes were ignored and good control could not be achieved.

本発明は、上記の点に鑑み、汚水の性状変化に
かかわらず、溶存酸素濃度及び酸素供給量を測定
するだけで、外乱少なく酸素供給量を良好に制御
でできるようにすることを目的とする。
In view of the above points, it is an object of the present invention to enable excellent control of the oxygen supply amount with minimal disturbance by simply measuring the dissolved oxygen concentration and the oxygen supply amount, regardless of changes in the properties of wastewater. .

次に、本発明方法の実施例を例示図に基いて説
明する。
Next, examples of the method of the present invention will be described based on illustrative drawings.

し尿や都市下水、産業廃水等の各種処理水を供
給し、ブロアー1によつて吸引した空気を散気管
2を通じて吹き込み供給して処理水を曝気処理す
る曝気槽3において、第1検出器4によつて検出
した処理水中の溶存酸素濃度(Ci)と、第2検出
器5によつて測定した酸素供給量(Fi)とから、
新たな時点の酸素供給量(Fi+1)を、設定時間
{(θ):例えば10分間}ごとに、下記予測式 に基いて算出設定し、その酸素供給量(Fi+1
が得られるように流量調整弁6を自動的に操作し
て曝気槽3内の溶存酸素濃度を一定化するように
酸素供給量を制御する。
In an aeration tank 3 that supplies various treated water such as human waste, urban sewage, and industrial wastewater, and aerates the treated water by blowing air sucked by a blower 1 through a diffuser pipe 2, a first detector 4 is provided. From the dissolved oxygen concentration (Ci) detected in the treated water and the oxygen supply amount (Fi) measured by the second detector 5,
The oxygen supply amount (Fi + 1 ) at a new point in time is predicted by the following formula for each set time {(θ): e.g. 10 minutes}. Calculate and set based on the oxygen supply amount (Fi + 1 )
The flow rate regulating valve 6 is automatically operated so that the amount of oxygen supplied is controlled so as to maintain the dissolved oxygen concentration in the aeration tank 3 constant.

図中7は後処理装置を示し、脱窒槽とか沈澱
槽、あるいは浮遊分離槽等、処理システム夫々に
応じて各種のものが適用される。
In the figure, numeral 7 indicates a post-treatment device, and various devices such as a denitrification tank, a sedimentation tank, or a floating separation tank are applied depending on the treatment system.

上記予測式において、(Si)は飽和溶存酸素濃
度、(C☆)は定数として設定される溶存酸素濃
度の制御目標値、ならびに、(m)は曝気槽の形
状及び種別によつて設定される定数であり、次
に、この予測式について説明する。
In the above prediction formula, (Si) is the saturated dissolved oxygen concentration, (C☆) is the control target value of the dissolved oxygen concentration set as a constant, and (m) is set depending on the shape and type of the aeration tank. This is a constant, and this prediction formula will be explained next.

酸素供給量を設定時間(θ)ごとに変更し、そ
のi番目の時点で考察すれば、酸素溶解速度
〔OTR〕iは、曝気槽3内への酸素供給量(Fi)
と曝気槽3内の酸素欠乏度(Si−Ci)に比例する
ことが知られ、次式で示される。
If the oxygen supply amount is changed every set time (θ) and considered at the i-th point, the oxygen dissolution rate [OTR]i is the oxygen supply amount (Fi) into the aeration tank 3.
is known to be proportional to the degree of oxygen deficiency (Si-Ci) in the aeration tank 3, and is expressed by the following equation.

〔OTR〕i=〓i・Fim(Si−Ci) (1) 〓i:曝気槽の形状及び種別、汚水の性状等によ
つて決められる定数 曝気槽3内の溶存酸素濃度(Ci)の変化は、上
記酸素溶解速度〔OTR〕iと、活性汚泥による
酸素摂取速度(U.R)iの収支関係から決まり、
次式で示される dCi/dt=〓i・Fim(Si−Ci)−(U.R)i (2) 設定時間(θ)の酸素濃度変化量をΔCとすれ
ば、(2)式を積分して ΔC=∫〓0dCi=Fim∫〓0〓i・(Si −Ci)dt−∫〓0(U.R)idt −(3) が得られる。そして、設定時間ごとにおいて、〓
i及び(U.R)iが近似的に一定と仮定すれば、 ΔC=Fim・〓i∫〓0(Si−Ci)dt −(U.R)i・θ (4) が得られる。
[OTR] i = i・Fi m (Si−Ci) (1) i: Constant determined by the shape and type of aeration tank, the properties of wastewater, etc. Dissolved oxygen concentration (Ci) in the aeration tank 3 The change is determined by the balance relationship between the oxygen dissolution rate [OTR]i and the oxygen uptake rate (UR)i by activated sludge,
dCi/dt=〓i・Fi m (Si−Ci)−(UR)i (2) If the amount of change in oxygen concentration during the set time (θ) is ΔC, then integrating formula (2) Then, ΔC=∫〓 0 dCi=Fi m ∫〓 0 〓i・(Si −Ci)dt−∫〓 0 (UR)idt −(3) is obtained. Then, at each set time, 〓
Assuming that i and (UR)i are approximately constant, ΔC=Fi m ·〓i∫〓 0 (Si−Ci)dt−(UR)i·θ (4) is obtained.

今、曝気槽3への酸素供給量が適正量(Fr)
に設定されたとすれば、その時、溶存酸素濃度
(Ci)は一定に保たれて制御目標値(C☆)に到
達すると共にdCi/dt=0となるので、(2)式は次
のように変更できる。
The amount of oxygen supplied to aeration tank 3 is now the appropriate amount (Fr)
If set to Can be changed.

〓i・Frm(Si−C☆)=(U.R)i (2′) しかし、この(2′)式では〓iが未知数であり
(U.R)iは算出不能である。そこで、(2′)式を
積分すると次式を得る。
〓i・Fr m (Si−C☆)=(UR)i (2′) However, in this formula (2′), 〓i is an unknown quantity and (UR)i cannot be calculated. Therefore, by integrating equation (2'), we obtain the following equation.

∫〓0〓i・Frm(Si−C☆)dt =∫〓0(U.R)idt (5′) ここで、〓iは設定時間(θ)の区間では近似
的に一定とする。これは、設定時間(θ)を比較
的短時間にとれば充分実用的に成り立つからであ
る。〓iが近似的に一定とみなし得る時間区分内
に(θ)を設定すると言い換えてもよい。また、
Siは被処理水の性状や槽内温度によつて変化はす
るが、設定時間(θ)内ではその変化巾は極めて
小さいので、(Si−C☆)は一定とみなすことが
でき、必然的に(U.R)iはこの区間で一定とな
る。したがつて、設定時間ごとにおいて〓i及び
(U.R)iが近似的に一定と仮定して(5′)式か
ら次式が得られる。
∫〓 0 〓i・Fr m (Si−C☆)dt =∫〓 0 (UR)idt (5′) Here, 〓i is approximately constant in the interval of the set time (θ). This is because it is sufficiently practical if the setting time (θ) is set to a relatively short time. In other words, (θ) is set within a time period in which i can be considered approximately constant. Also,
Although Si changes depending on the properties of the water to be treated and the temperature inside the tank, the range of change is extremely small within the set time (θ), so (Si−C☆) can be considered constant, and it is inevitable that (UR)i is constant in this interval. Therefore, assuming that 〓i and (UR)i are approximately constant at each set time, the following equation can be obtained from equation (5').

〓i・Frm∫〓0(Si−C☆)dt=(U.R)i・θ (5) 上記の(4)式と(5)式とから(U.R)i・θを消去
すれば次式が得られる。
〓i・Fr m ∫〓 0 (Si−C☆)dt=(UR)i・θ (5) If (UR)i・θ is eliminated from the above equations (4) and (5), the following equation is obtained. is obtained.

〓i・Frm∫〓0(Si−C☆)dt =〓i・Fim∫〓0(Si−Ci)dt−ΔC (6) Frmを算出するためにこれを整理すれば次式を
得る。
〓i・Fr m ∫〓 0 (Si−C☆)dt =〓i・Fi m ∫〓 0 (Si−Ci)dt−ΔC (6) To calculate Fr m , we can rearrange this to obtain the following equation. obtain.

Frm=Fim∫〓/0(Si−Ci)dt/∫〓/0(Si−C☆)dt −ΔC/〓i∫〓/0(Si−C☆)dt (7) しかし、〓iが未知であるためにこの(7)式から
はFrmの値を得られない。そこで、本発明者は
種々の考察の結果、(7)式の第2項が第1項に比べ
て工学的に無視し得るほど微少であることを確認
した。この点を、後述する第2図に基づいて次に
説明する。
Fr m = Fi m ∫〓/ 0 (Si−Ci)dt/∫〓/ 0 (Si−C☆)dt −ΔC/〓i∫〓/ 0 (Si−C☆)dt (7) However, 〓i Since Fr m is unknown, the value of Fr m cannot be obtained from equation (7). As a result of various considerations, the inventor of the present invention has confirmed that the second term in equation (7) is so small that it can be ignored from an engineering perspective compared to the first term. This point will be explained next based on FIG. 2, which will be described later.

設定時間(θ)を10分としたとき、溶存酸素濃
度の変化量ΔCの最大値は第2図のθ=120分から
θ=130分の区間にある。そこでこの区間におい
て諸データをサンプリングすると、ΔC=1.5mg/
、Si−Ciの平均値は5.5、Si−C☆の平均値は
6.0、Fr=0.45である。一方、mと〓iは曝気装
置の型式及び汚水の性状によつて異なるが、ごく
一般的な値としてはm=0.8、〓i=2.5である。
以上の値を(7)式に代入すると 第1項=(0.45)0.8×5.5×10/6×10=0.484 第2項=1.5/2.5×6×10=0.01 したがつて(7)式の値は Fr=(0.484−0.01)1/0.8=0.393m3/分 一方、Frの近似値として第2項を無視した値
であるFnは Fn=(0.484)1/0.8=0.403m3/分 以上のように、(7)式の第2項を無視した計算値
Fnは、理想値Frに極めて近似し、その差はわず
か2.5%にすぎない。
When the set time (θ) is 10 minutes, the maximum value of the amount of change ΔC in dissolved oxygen concentration is in the interval from θ=120 minutes to θ=130 minutes in FIG. Therefore, if we sample various data in this interval, ΔC=1.5mg/
, the average value of Si−Ci is 5.5, and the average value of Si−C☆ is
6.0, Fr=0.45. On the other hand, m and 〓i vary depending on the type of aeration equipment and the properties of wastewater, but the most common values are m = 0.8 and 〓i = 2.5.
Substituting the above values into formula (7), 1st term = (0.45) 0.8 ×5.5 × 10/6 × 10 = 0.484 2nd term = 1.5/2.5 × 6 × 10 = 0.01 Therefore, formula (7) The value is Fr = (0.484-0.01) 1/0.8 = 0.393m 3 /min On the other hand, Fn, which is the approximate value of Fr and ignoring the second term, is Fn = (0.484) 1/0.8 = 0.403m 3 /min. As mentioned above, the calculated value ignoring the second term of equation (7)
Fn is very close to the ideal value Fr, with a difference of only 2.5%.

以上の説明により、先の(7)式をFrの近似値で
あるFnとして次のように定義する。また、(5)式
の算出の箇所で既に説明したように(Si−C☆)
は定数とみなす。
Based on the above explanation, the above equation (7) is defined as Fn, which is an approximate value of Fr, as follows. Also, as already explained in the calculation of equation (5), (Si−C☆)
is considered a constant.

Fnm=Fim∫〓/0(Si−Ci)dt/∫〓/0(Si−C☆)dt =Fim∫〓/0(Si−Ci)dt/(Si−C☆)∫〓/0dt =Fim∫〓/0(Si−Ci)dt/(Si−C☆)・θ≒Frm
7′) 故に Fn={∫〓/0(Si−Ci)dt/(Si−C☆)・θ}1/m・F
i≒Fr(8) これにより、i+1番目の設定時間きざみにお
ける酸素供給量を(8)式で算出される値に設定すれ
ば、その酸素供給量が適正値に近づくことにな
り、新たな時点の酸素供給量(Fi+1)に対する
予測式として次式が算出される。
Fn m =Fi m ∫〓/ 0 (Si−Ci)dt/∫〓/ 0 (Si−C☆)dt =Fi m ∫〓/ 0 (Si−Ci)dt/(Si−C☆)∫〓/ 0 dt = Fi m ∫〓/ 0 (Si−Ci)dt/(Si−C☆)・θ≒Fr m (
7′) Therefore, Fn={∫〓/ 0 (Si−Ci)dt/(Si−C☆)・θ} 1/m・F
i≒Fr(8) As a result, if the oxygen supply amount at the i+1st set time step is set to the value calculated by formula (8), the oxygen supply amount will approach the appropriate value, and the new time point will be The following equation is calculated as a prediction equation for the oxygen supply amount (Fi+1).

Fi+1={∫〓/0(Si−Ci)dt/(Si−C☆)・θ}1/
m
・Fi(9) この(9)式に基づいて酸素供給量(Fi+1)を求
める場合、既に説明しているように飽和溶存酸素
濃度Siは一定であると仮定する。このSiは、液
温、溶解性固形物質の濃度、基質の種別、基質濃
度、等の諸因子によつて支配されることは既に広
く知られている。しかし、設定時間(θ)を短時
間にとれば上記諸因子はほとんど変化なく、Siは
近似的に一定とみなし得る。また、定数である
(m)は一般には0.8〜1.0の間に入る事例が多く、
制御目標値(C☆)は通常は0.5〜2mg/の範囲
に入ることが多いが、(C☆)は汚水の基質種別
によつてまちまちである。
Fi+1={∫〓/ 0 (Si−Ci)dt/(Si−C☆)・θ} 1/
m
·Fi(9) When calculating the oxygen supply amount (Fi+1) based on this equation (9), it is assumed that the saturated dissolved oxygen concentration Si is constant as already explained. It is already widely known that this Si is controlled by various factors such as liquid temperature, concentration of soluble solid substance, type of substrate, and substrate concentration. However, if the setting time (θ) is short, the above factors hardly change, and Si can be regarded as approximately constant. In addition, the constant (m) generally falls between 0.8 and 1.0 in many cases,
The control target value (C☆) usually falls within the range of 0.5 to 2 mg/, but (C☆) varies depending on the type of substrate of wastewater.

上述の如く、第1検出器4によつて検出される
その時点の溶存酸素濃度(Ci)を電気信号に変換
して発信器8から演算器9に入力すると共に、第
2検出器5によつて検出されるその時点の酸素供
給量(Fi)を演算器9に入力し、かつ、設定器1
0から定数(m)、(C☆)、(θ)を演算器9に入
力し、前記(9)式に基いて新たな時点の酸素供給量
(Fi+1)を算出し、それに基いて前記流量調整弁
6に対する操作回路11に指令信号を入力し、算
出された量の酸素を供給するように調整する。
As mentioned above, the dissolved oxygen concentration (Ci) at that point detected by the first detector 4 is converted into an electrical signal and inputted from the transmitter 8 to the calculator 9, and at the same time, it is inputted to the calculator 9 by the second detector 5. input the oxygen supply amount (Fi) detected at that time into the calculator 9, and
Input the constants (m), (C☆), and (θ) from 0 to the calculator 9, calculate the oxygen supply amount (Fi + 1 ) at a new time based on the above formula (9), and based on that, the above A command signal is inputted to the operating circuit 11 for the flow rate regulating valve 6, and adjustments are made so that the calculated amount of oxygen is supplied.

基質濃度を減少あるいは増加させて汚水の性状
を変化させながら上述の酸素供給量の制御を行つ
た結果、第2図に示すようなグラフを得た。
As a result of controlling the amount of oxygen supplied as described above while changing the properties of wastewater by decreasing or increasing the substrate concentration, a graph as shown in FIG. 2 was obtained.

即ち、溶存酸素濃度(Ci)が制御目標値
(C☆)に近い安定状態では、酸素供給量(Fi)、
飽和溶存酸素濃度(Si)及び溶存酸素濃度(Ci)
のいずれもが変化少なくほぼ一定の状態となる。
そして、基質濃度が減少すると活性汚泥の酸素摂
取量が減少して溶存酸素濃度(Ci)及び飽和溶存
酸素濃度(Si)が増大するが、上述の設定時間ご
との制御によつて酸素供給量(Fi)を段階的に調
節し、それに伴い、5〜6段階目の調節によつて
溶存酸素濃度(Ci)を制御目標値(C☆)に近い
安定状態に移行でき、他方、基質濃度が増加して
溶存酸素濃度(Ci)及び飽和溶存酸素濃度(Si)
が減少した場合においても、上述制御に基く酸素
供給量(Fi)の段階的な調節により、5〜6段階
目において溶存酸素濃度(Ci)を制御目標値に近
い安定状態に移行できることが明らかである。従
つて、設定時間を10分間とすれば、基質濃度に大
幅な変化があつたとしても、約1時間経過後には
安定した汚水処理を行えるのである。
In other words, in a stable state where the dissolved oxygen concentration (Ci) is close to the control target value (C☆), the oxygen supply amount (Fi),
Saturated dissolved oxygen concentration (Si) and dissolved oxygen concentration (Ci)
Both of them remain almost constant with little change.
When the substrate concentration decreases, the oxygen uptake of activated sludge decreases and the dissolved oxygen concentration (Ci) and saturated dissolved oxygen concentration (Si) increase. Fi) is adjusted in stages, and accordingly, the dissolved oxygen concentration (Ci) can be shifted to a stable state close to the control target value (C☆) by the adjustment in the 5th and 6th stages, while the substrate concentration increases. Dissolved oxygen concentration (Ci) and saturated dissolved oxygen concentration (Si)
It is clear that even when the oxygen concentration decreases, by adjusting the oxygen supply amount (Fi) in stages based on the control described above, it is possible to shift the dissolved oxygen concentration (Ci) to a stable state close to the control target value in the 5th and 6th stages. be. Therefore, if the set time is 10 minutes, even if there is a large change in substrate concentration, stable wastewater treatment can be performed after approximately one hour has elapsed.

本発明は10〜30m程度の浅い曝気槽3のみなら
ず、100m以上にも及ぶ深槽タイプの曝気槽や、
処理水をジグザグ状に流動させながら曝気処理す
るタイプの曝気槽にも適用できる。
The present invention is applicable not only to a shallow aeration tank 3 of about 10 to 30 m, but also to a deep tank type aeration tank of 100 m or more.
It can also be applied to an aeration tank where treated water is aerated while flowing in a zigzag pattern.

本発明を実施するにおいて、上記設定時間
(θ)としては、10分間に限らず、適宜所望の時
間に変更設定可能である。
In carrying out the present invention, the set time (θ) is not limited to 10 minutes, but can be changed to any desired time as appropriate.

以上要するに、本発明は、冒記した酸素供給量
の制御方法において、曝気槽3内の溶存酸素濃度
を検出し、新たな時点の酸素供給量(Fi+1)を、
下記の予測式 Fi:その時点における酸素供給量 Ci:その時点における検出溶存酸素濃度 Si:定数とみなされる飽和溶存酸素濃度 C:定数として設定される溶存酸素濃度の制御目
標値 m:曝気槽の形状及び種別によつて設定される定
数 に基いて設定する事を特徴とする。
In summary, the present invention detects the dissolved oxygen concentration in the aeration tank 3 and determines the oxygen supply amount (Fi+ 1 ) at a new time in the method for controlling the oxygen supply amount described above.
Prediction formula below Fi: Oxygen supply amount at that point Ci: Detected dissolved oxygen concentration at that point Si: Saturated dissolved oxygen concentration considered as a constant C: Control target value for dissolved oxygen concentration set as a constant m: Depending on the shape and type of the aeration tank The feature is that the settings are based on constants that are set accordingly.

つまり、その時点における溶存酸素濃度(Ci)
とそれまでの設定時間1回分における酸素供給量
(Fi)とを予測式に導入するだけでありながら、
新たな酸素供給量(Fi+1)を設定でき、それに
より、浮遊物質濃度や基質濃度等の測定値といつ
た、測定値そのものに大きな外乱の入りやすいも
のの導入を不用にして、汚水の性状変化にかかわ
らず、上述のように、それら変化に対応して酸素
供給量の制御を良好に行えるようになつた。
In other words, the dissolved oxygen concentration (Ci) at that point
Although it only introduces the amount of oxygen supply (Fi) for one set time up to that point into the prediction formula,
It is possible to set a new oxygen supply amount (Fi+ 1 ), which eliminates the need to introduce measurement values such as suspended solids concentration and substrate concentration, which can easily cause large disturbances, and allows changes in the properties of sewage. Regardless, as mentioned above, it has become possible to effectively control the oxygen supply amount in response to these changes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る曝気槽への酸素供給量制御
方法の実施例を示し、第1図は曝気槽を示すフロ
ーシート、第2図は実験結果を示すグラフであ
る。 3……曝気槽。
The drawings show an embodiment of the method for controlling the amount of oxygen supplied to an aeration tank according to the present invention, and FIG. 1 is a flow sheet showing the aeration tank, and FIG. 2 is a graph showing experimental results. 3...Aeration tank.

Claims (1)

【特許請求の範囲】 1 曝気槽3への酸素供給量を設定時間(θ)ご
とに調節する曝気槽3への酸素供給量制御方法で
あつて、曝気槽3内の溶存酸素濃度を検出し、新
たな時点の酸素供給量(Fi+1)を、下記の予測
Fi:その時点における酸素供給量 Ci:その時点における検出溶存酸素濃度 Si:定数とみなされる飽和溶存酸素濃度 C☆:定数として設定される溶存酸素濃度の制御
目標値 m:曝気槽の形状及び種別によつて設定される定
数 に基いて設定する事を特徴とする曝気槽への酸素
供給量制御方法。
[Scope of Claims] 1. A method for controlling the amount of oxygen supplied to the aeration tank 3, which adjusts the amount of oxygen supplied to the aeration tank 3 at every set time (θ), the method comprising detecting the concentration of dissolved oxygen in the aeration tank 3. , the oxygen supply amount (Fi + 1 ) at the new point is calculated using the following prediction formula: Fi: Oxygen supply amount at that point Ci: Detected dissolved oxygen concentration at that point Si: Saturated dissolved oxygen concentration considered as a constant C☆: Control target value for dissolved oxygen concentration set as a constant m: Shape and type of aeration tank A method for controlling the amount of oxygen supplied to an aeration tank, characterized in that the amount of oxygen supplied to the aeration tank is set based on a constant set by.
JP57077777A 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank Granted JPS58196889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077777A JPS58196889A (en) 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077777A JPS58196889A (en) 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank

Publications (2)

Publication Number Publication Date
JPS58196889A JPS58196889A (en) 1983-11-16
JPS6316999B2 true JPS6316999B2 (en) 1988-04-12

Family

ID=13643384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077777A Granted JPS58196889A (en) 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank

Country Status (1)

Country Link
JP (1) JPS58196889A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS50122060A (en) * 1974-03-15 1975-09-25
JPS5110659A (en) * 1974-07-15 1976-01-28 Susumu Hashimoto

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS50122060A (en) * 1974-03-15 1975-09-25
JPS5110659A (en) * 1974-07-15 1976-01-28 Susumu Hashimoto

Also Published As

Publication number Publication date
JPS58196889A (en) 1983-11-16

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JP4464851B2 (en) Operation control method for aeration apparatus
JPS5838235B2 (en) Aeration tank air flow control device
JPS6316999B2 (en)
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JPH09122681A (en) Water quality controlling apparatus
JPS6339698A (en) Method for controlling biological nitrification process
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPS5775190A (en) Method and device for automatic control of sewage treatment by activated sludge method
JPS5845913B2 (en) Microbial reaction rate control method in activated sludge method
JPH0679717B2 (en) Return sludge amount control device
JPH10286585A (en) Aeration air volume controlling apparatus
JPH0579400B2 (en)
JP3637819B2 (en) Waste water nitrification method
JP2004136186A (en) Method and apparatus for controlling ph of industrial waste water
JPH035876B2 (en)
SU724453A1 (en) Automatic aerotank control device
JPS62262797A (en) Controlling method for biological nitrification process
JPS6397296A (en) Flow rate controller for return sludge
JPS5442853A (en) Device of treating activated sludge
JP2003053388A (en) Control system and control method for biologically nitrogen removing facility
JPH04305297A (en) Activated sludge treatment controller
SU817028A1 (en) Method of automatic control of vinyl chloride emulsion polymerization process
JPS55111896A (en) Flow control apparatus for returned sludge
JPH01130791A (en) Treatment of sewage