JPS58196889A - Controlling method for quantity of oxygen supplied into aeration tank - Google Patents

Controlling method for quantity of oxygen supplied into aeration tank

Info

Publication number
JPS58196889A
JPS58196889A JP57077777A JP7777782A JPS58196889A JP S58196889 A JPS58196889 A JP S58196889A JP 57077777 A JP57077777 A JP 57077777A JP 7777782 A JP7777782 A JP 7777782A JP S58196889 A JPS58196889 A JP S58196889A
Authority
JP
Japan
Prior art keywords
oxygen
water
supplied
concentration
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57077777A
Other languages
Japanese (ja)
Other versions
JPS6316999B2 (en
Inventor
Koji Ishida
宏司 石田
Kenichi Terakawa
寺川 憲一
Mitsuru Iwao
充 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57077777A priority Critical patent/JPS58196889A/en
Publication of JPS58196889A publication Critical patent/JPS58196889A/en
Publication of JPS6316999B2 publication Critical patent/JPS6316999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To reduce disturbances and facilitate control of the quantity of oxygen supplied to water to be treated, by a method wherein the concentration of dissolved oxygen in water being treated in an aeration tank is detected, and a quantity of oxygen which quantity is set on the basis of a specified estimating formula at a new moment is supplied at a set time. CONSTITUTION:Water to be treated such as feces, town sewage and industrial waste water is supplied into the aeration tank 3 in which an aeration treatment of the water is conducted by blowing air (sucked in by a blower 1) into the water through a diffusing pipe 2. In said aeration tank 3, the quantity Fi+1 of oxygen to be supplied at a new moment is set at a set theta (e.g., 10min) by calculating on the basis of Formula I , from the concentration Ci of dissolved oxygen in the water detected by the first detector 4 and the quantity Fi of oxygen supplied which is detected by the second detector 5. A flow control valve 6 is automatically operated so as to supply the thus set quantity of oxygen, whereby the quantity of oxygen supplied is controlled so that the concentration of dissolved oxygen within the tank 3 becomes constant.

Description

【発明の詳細な説明】 処理水中の躬存V巣濃度を一定化するように、m A 
1Idlへの一′S供給瀘を設定時間ごとに調節する暢
気槽へのV巣併給菫制御方太に−する。
[Detailed description of the invention] mA
The 1'S supply filter to 1Idl is adjusted at set time intervals to control the V-storage combined supply to the air tank.

従来の上1方法としては、特開昭60−1ggoao号
公報にボされるように、流入汚水蓋、浮遊物置一度、酸
素供給蓋及び鍍存酸索績度犬々について設定時間ごとに
@足し、その測定値からの予測式に基いて析たな酸素供
給量を算出設定するものかあ40 ところが、現状では、浮遊物質濃度の測定精度が低く、
その浮遊物質濃度の測定値を導入しているがために、外
乱が大となシ、かえって制御不iを招く欠点があプ、父
、基質濃度の変化が無視されて良好なIJ四を行えない
欠点があった。
As described in Japanese Unexamined Patent Application Publication No. 1986-1, the conventional method is to add the inflow sewage lid, floating material storage, oxygen supply lid, and stored acid search rate at each set time. 40 However, at present, the measurement accuracy of suspended solids concentration is low;
Since the measured value of the suspended solids concentration is introduced, there is a drawback that the disturbance is large and leads to poor control, and changes in the substrate concentration are ignored, making it difficult to perform good IJ. There were no drawbacks.

零発1は、上記の点に−み、汚水の性状変化にかかわら
す、躬存峻索#度及び酸素供給車を測定するだけで、外
乱少なく酸素供給−を良好に−j@Jできるようにする
ことを1的とする次に、本発明方法の実施例を例示図に
へいて説明する。
In view of the above points, Zero-Hatsu 1 is designed to ensure good oxygen supply with minimal disturbance, regardless of changes in the properties of sewage, by simply measuring the current level of the rope and the oxygen supply vehicle. Next, embodiments of the method of the present invention will be described with reference to illustrative drawings.

し尿や都市F水、産業廃水等の各種処理水を供給し、ブ
ロアーfl)によって吸引した’!uを敢気管(2)を
通じて吹き込み供給して処理水金曝気処理する曝気槽(
3)において、第1@出器(4)によって検出した処理
水中の溶存酸**JJi(Cりと、第2検出器(6)に
よって測定した酸爾供給鴛(Fi)とから、析たな時点
の酸素供給ji(Fj+x)を、設定時間((θ):例
えば70分l1ことに、F記に基いて算出投了し、その
酸素供給!(Fム十1)が得られるように丸m調整弁(
6)を目薊的VC操作して曝気槽(3)内の隈存酸素濃
度を一定化するように酸巣供給蓋をf#lJ#する。
Various types of treated water such as human waste, urban F water, and industrial wastewater are supplied and sucked by a blower (fl). The aeration tank (
In 3), the dissolved acid **JJi (C) in the treated water detected by the first detector (4) and the acid supply (Fi) measured by the second detector (6) were determined. The oxygen supply ji (Fj + m adjustment valve (
6), operate the VC manually and close the acid nest supply lid so as to keep the ambient oxygen concentration in the aeration tank (3) constant.

国中(7)は後処理装置を示し、脱室慣とかtA:、m
慣、りるいは浮遊分離槽等、処理システム火々に心して
6種のものが適用される。
Kuninaka (7) shows a post-processing device, such as tA:, m
Six types of treatment systems, such as water treatment, floating separation tanks, etc., are applied in consideration of the risk of fire.

上ml予測式において、(SN)は飽和溶存酸素一度、
(C)は定数として設定される剤存鉦素濃度の傳」御目
樟侭、ならびに、(nl)は−気槽の形状及び櫨WIJ
によって設定される定紋であり、次に、この予測式につ
いて説明する。
In the above ml prediction formula, (SN) is saturated dissolved oxygen once,
(C) is the concentration of the drug present, which is set as a constant, and (nl) is the shape of the air tank and the
Next, this prediction formula will be explained.

w本供給崖を設定時間(θ)ごとに変更し、そのi4j
目の時点で考察すれば、酸素溶解速度(OTR)量は、
@気槽(3)内への酸素供給ff1(Fl)と1永気4
13)内の酸系欠乏度(St−ct)に比例する仁とが
川ら?L、次式で小される。
Change the w book supply cliff every set time (θ), then i4j
If considered at the point of view, the amount of oxygen dissolution rate (OTR) is
@Oxygen supply into air tank (3)ff1 (Fl) and 1eiqi4
13) Nitogakawa et al. is proportional to the degree of acid deficiency (St-ct) in L is reduced by the following formula.

[0T11]i  =  l旧 ・目 (s+−c轟)
(1)tKi:曝気槽のノヒ状及び積別、汚水の性状等
によって決められる定数 一気4i11(31内のg存1113に譲Ji (CI
) ノ質化は、上記fiklk溶解速度(OTR)i 
と、油性汚泥による酸粛炎収速度(U、R)iの収支囲
体から決まシ、次式でボされる dc1/dt  ”1lci @F1  (St−C1
)  −(U、 輩)i       (2)設定II
−f面(のの酸単一度藁付電をΔCとすれば、(2)式
τ積分して −C−A d Ci −k ’″/’、III・(Si
−CiJdt−へL1.R月dt  −t3Jが付られ
る。 そして、設定時間ごとりこおいて、+1及び(υ
、R)iか近似的に一定とj定すれは゛、が付られる。
[0T11] i = l old ・eyes (s+-c roar)
(1) tKi: A constant determined by the aeration tank's nozzle shape, separation, sewage properties, etc.
) The above fiklk dissolution rate (OTR) i
dc1/dt ``1lci @F1 (St-C1
) −(U, hai)i (2) Setting II
If the acid uniformity of the −f plane (of
-CiJdt-L1. R month dt -t3J is attached. Then, by setting aside the set time, +1 and (υ
, R) If j is determined to be approximately constant, ``'' is added.

1、−気槽(3)への酸素伝桁殖が適正蔽(Fr)に設
定されたとすれば、ヤリ時、d存酸素a度(CA)は一
定に床たれてル1j御目標値(C)に)り達−すると共
ICdC愈/dt=(Jとなる。 従って第(21式t
c i−人−Tると八に槙〕Jし一〇、tKi−Fr’
f(61−C町dt ;(tJ、R) i・Otb+か
舟りれる。
1. - If the oxygen transmission to the air tank (3) is set to the appropriate shielding (Fr), then during the actuation, the oxygen concentration (CA) will remain constant and reach the target value (Fr). When C) is reached, both ICdC/dt = (J. Therefore, the (21st formula t
c i-person-T and 8 ni Maki] J and 10, tKi-Fr'
f (61-C town dt; (tJ, R) i・Otb+ or boat.

+41式と(01式から(U、1月・θを的去すれば、
tKt−Fr/”、(St−c”) at =lKr−
pt /’:(St−Cs> (1に一Δc  +a+
となり、従って、格塵IれQよ、 が与えられる。 これに基き、Frの近似値として示さ
れるようにF鳳を次式のように定義する。
From the +41 formula and (01 formula, if you remove (U, January and θ),
tKt-Fr/", (St-c") at =lKr-
pt /': (St-Cs> (1 to 1Δc +a+
Therefore, the following is given. Based on this, F is defined as shown in the following equation as an approximate value of Fr.

これにより、i+1番目の設定時間きざみにおける酸菓
P、給−を(81式で算出される鴨に獣疋すれrよ、そ
のV$供給磁が越止侭に近づくことになり、析だな時点
の酸系供給−(Fi+りに対する予測式として次式が算
出される。
As a result, the sour P and supply at the i+1th set time increment are calculated using formula 81. The following equation is calculated as a prediction equation for the acid system supply at the time - (Fi+).

上he式に2いて、飽相溶存酸木TIk度(St)は時
間と八に変動するが、溶存#素濃度(Cりに比べて藁動
中が小さいことが、溶存酸素量(DO)のbひ合作試験
で一緒されて2す、釘似的に飽和溶存tJlt素象度(
別ンは一定であると仮定する従って、飽和溶存酸5I#
度(Sl)を定数と兄なし1所定の数値を代入する。
In the above equation, the saturated dissolved acid wood TIk degree (St) varies with time, but the fact that the dissolved oxygen concentration (St) is smaller in the straw than in the dissolved oxygen content (DO) When combined in the b-hi joint test, the saturated dissolved tJlt elemental degree (
Assuming that the difference is constant, therefore, saturated dissolved acid 5I#
Assign the degree (Sl) to a constant and a predetermined numerical value.

上述の如く、第l検出11+4)によって検出きれるそ
の時点の溶存酸素濃度(CI)を電気41号に変換して
発イe4器(8)から演算器(9)K入力すると共に、
第2検出器(6)によって検出されるその時点の酸素供
給M (Fi)を演算器(9)K入力し、かつ、設疋器
(lO)から定数−、(C)、(θ)を演紳詣(9)K
人力し、111記(11)式に基いて析たな時、軸のI
!P素供素置給量1+1)を鼻出し、それに基いて前記
111着l1I4整弁(6)に対する操作回路(Ilに
指令イー号全人力し、算出された童の酸素を供給するよ
うに調整する1、 基質#灰を減少あるいは増加させて汚水の性状を藁化さ
せながら上述の酸素供給量の制御を行った結果、*sg
図に示すようなグク7を得た。
As mentioned above, the dissolved oxygen concentration (CI) at that point, which can be detected by the first detection 11+4), is converted into electric No. 41 and inputted from the generator e4 (8) to the calculator (9)K,
The current oxygen supply M (Fi) detected by the second detector (6) is input to the calculator (9) K, and the constants -, (C), (θ) are input from the setting device (lO). Performance performance (9) K
When manually analyzed based on equation 111 (11), the axis I
! Based on this, the operation circuit for the 111th Arrival 11I4 valve (6) is given full power to the command E, and adjustments are made to supply the calculated amount of oxygen to the child. 1. As a result of controlling the amount of oxygen supplied as described above while reducing or increasing the substrate #ash and changing the properties of the wastewater to straw, *sg
Guku 7 as shown in the figure was obtained.

即ち、溶存酸素濃度(Ci)が1lIllJ御目欅値(
C☆)に近い安定状態では、酸素供給量(Fl) a飽
和溶存酸素濃度(St)及び溶存酸素濃度(CI)のい
ずれもが変化少なくはぼ一定の状態となる。
That is, the dissolved oxygen concentration (Ci) is 1lIllJ Omoku Keyaki value (
In a stable state close to C☆), both the oxygen supply amount (Fl), the saturated dissolved oxygen concentration (St), and the dissolved oxygen concentration (CI) remain almost constant with little change.

そして1.MS質濃度が減少すると活性汚泥の酸素@取
置が減少して溶存酸素濃度(Ct)及び飽和溶存酸素濃
度(Sりが増大するか、上述の設定時間ごとの1飢によ
って酸素供給−(Fi)を段階的に調節し、それに伴い
、j−4段階目の調節によって溶存酸素濃度(C1)を
制御目株値(C)に近い安定状態に移行でき、他方、羞
′JK濃度が増加して溶存酸素濃度(Cり及び飽和溶存
酸素fiK(Si)か減少した場合においても、上述制
御に盾く酸素供給jt(Fりの段階的な#1節により、
s−j段階目に2いて溶存酸系#度(C1)を副−目憚
偏に近い安定状台に移行できることが(7)らかであ/
)1J  従って、設定時間を10分間とすれ龜、裁置
濃度に大輪な変化があったとしても、約/時聞経過波に
は安定した汚水処理を行えるのでのる。
And 1. When the MS concentration decreases, the activated sludge oxygen @ reserve decreases, and the dissolved oxygen concentration (Ct) and the saturated dissolved oxygen concentration (S) increase, or the oxygen supply (Fi ) is adjusted in stages, and accordingly, the j-4th stage adjustment allows the dissolved oxygen concentration (C1) to shift to a stable state close to the control strain value (C), while the JK concentration increases. Even when the dissolved oxygen concentration (C and saturated dissolved oxygen fiK (Si) decreases), the oxygen supply jt (F) is maintained in step #1 to protect against the above control.
It is clear (7) that the dissolved acid system # degree (C1) can be transferred to a stable stage close to the secondary deviation at the s-j stage.
) 1J Therefore, even if there is a large change in the concentration in the water, if the set time is set to 10 minutes, stable sewage treatment can be performed over a period of time.

本発明は10〜J□θm程度の浅いm気槽(3)のみな
らず、100m以上にも及ぶ深漬タイプの1気慣や、処
理水をジグデグ状に流動させながら暢気処理するタイプ
の@気僧にも廟出できる又、上ml予測式において、そ
の−−A債(,5)の形状や種別、あるいは、処理水の
櫨亀犬々に応じて過当な袖止保数を乗じるとか加算する
等、適宜補正を加えるようにしても良い1、 本発明を実施するにおいて、上6ピ設定時間(θ)とし
てtま、70分間に限らず、適宜所頃の1・1間に質吏
設定1J14!、である。
The present invention is applicable not only to a shallow m-air tank (3) of approximately 10 to J□θm, but also to a deep submersion type tank (3) that extends over 100 m, and a type that performs air treatment while flowing treated water in a zig-deg shape. Also, in the above ml prediction formula, an unreasonable number of sleeves is multiplied depending on the shape and type of the A bond (, 5), or the size of the treated water. In carrying out the present invention, the upper 6-pin setting time (θ) is not limited to 70 minutes, but may be adjusted between 1 and 1 as appropriate. Official setting 1J14! , is.

以上要するに、本発明は、官記した酸素供給量の制御方
法において、m気槽]3)内のだ存酸菓濃度を検出し、
新たな時点の酸素供給1(Fi+s)を、’Fjf己の
予測式 FI:その時点における酸素供給1 C1:その時点における検出溶存Flllk譲度Sム:
定叙とみなされる飽相躬存wk本譲度C:疋奴として設
定される溶存酸素濃度の制−目一一 、、、:m気槽の)し状及び種別によって設定される定
数 に1俵いて設定する嚇を特徴とする1、つまり、その時
点における溶存酸素濃度(C1)とそれ1での奴定時聞
/回分にふ・ける酸素供給fi (Fl)とを予測式に
尋人するたけでありながら、粕たなw巣供給jt(FI
+1)を設定でき、それにより、浮遊物質濃度や裁置濃
度等の測定値といった、測子−そのものに大きな外乱の
入りやすいもののノ4人茫不用にして、汚水の柱状変化
にかかわらず、上述のように、それら変化に対応してM
!巣供給にの1ulJ偶全良好に行えるようになった。
In summary, the present invention provides a method for controlling the amount of oxygen supplied that is officially registered, by detecting the concentration of sour candy remaining in the m-air tank]3),
Oxygen supply 1 (Fi + s) at a new time is expressed as 'Fjf' own prediction formula FI: Oxygen supply 1 at that time C1: Detected dissolved Flllk yield rate S at that time:
The limit of dissolved oxygen concentration that is considered to be fixed is 1. 1, which is characterized by a warning set in advance, that is, the dissolved oxygen concentration at that point (C1) and the oxygen supply fi (Fl) for the scheduled time/batch at that time are calculated using a predictive formula. Although it is bamboo, it is a lees w nest supply jt (FI
+1) can be set, thereby eliminating the need for large disturbances to the measuring element itself, such as measured values such as suspended solids concentration and suspended solids concentration, and regardless of columnar changes in sewage, the above-mentioned In response to these changes, M
! I am now able to supply 1ulJ evenly to the nest without any problem.

【図面の簡単な説明】[Brief explanation of drawings]

図面は水弁唖JK保る1気債への酸単供給墓−」一方法
の仄施例全ボし、第1図は啄気楡を示す70−シート、
第2因は実験結果を示すグク7である 印・・・・・・曝気檜 −牧dI藁剥r
The drawing is a complete example of a method of supplying acid to the water valve JK keeping 1 Qi bonds, and Figure 1 is a 70-sheet showing the Qi elm,
The second cause is Guku 7, which indicates the experimental results. Aerated cypress - Maki dI straw peeling r

Claims (1)

【特許請求の範囲】 @気槽(3)への酸素供給蓋を設定時間切ごとに調節す
る雀気債(3)への酸素供給m IIJ帥方法であって
、曝気4m +31内の溶存酸素濃度を慣出し、新F1
=その時点におけるIl*供給蓋 C1:その時点における検出溶存M巣一度Sに疋畝とみ
なされる飽和溶存酸素一度☆ C:に数として設定される溶存fR索濃度のホ1j営目
憚愉 mニー気慣のIし状及び種別によって&疋される疋奴 に硫いて設定する事を特徴とする暢気槽への酸素供給m
1tilJ飢方法。
[Claims] @An oxygen supply m IIJ method to the air tank (3) in which the oxygen supply lid to the air tank (3) is adjusted at set intervals, and the dissolved oxygen in the aeration 4m +31 is Get used to concentration, new F1
= Il at that time * Supply cap C1: Detected dissolved M at that time Once saturated dissolved oxygen, which is regarded as a ridge in S ☆ C: Dissolved fR concentration set as a number in H Oxygen supply to the air tank, which is characterized by being set according to the condition and type of the air condition.
1tilJ hunger method.
JP57077777A 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank Granted JPS58196889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077777A JPS58196889A (en) 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077777A JPS58196889A (en) 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank

Publications (2)

Publication Number Publication Date
JPS58196889A true JPS58196889A (en) 1983-11-16
JPS6316999B2 JPS6316999B2 (en) 1988-04-12

Family

ID=13643384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077777A Granted JPS58196889A (en) 1982-05-10 1982-05-10 Controlling method for quantity of oxygen supplied into aeration tank

Country Status (1)

Country Link
JP (1) JPS58196889A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS50122060A (en) * 1974-03-15 1975-09-25
JPS5110659A (en) * 1974-07-15 1976-01-28 Susumu Hashimoto

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS50122060A (en) * 1974-03-15 1975-09-25
JPS5110659A (en) * 1974-07-15 1976-01-28 Susumu Hashimoto

Also Published As

Publication number Publication date
JPS6316999B2 (en) 1988-04-12

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
US4130481A (en) Maintaining optimum settling rate of activated sludge
JPS58196889A (en) Controlling method for quantity of oxygen supplied into aeration tank
JP6818951B1 (en) Water treatment equipment and water treatment method
JPH09122681A (en) Water quality controlling apparatus
JP2909723B2 (en) Wastewater treatment control method and apparatus
JPH0820104B2 (en) Pouring temperature controller
JPH08126897A (en) Nitrifying treatment device
JPH01130790A (en) Treatment of sewage
JPH06335694A (en) Controller of device for biologically treating waste water
JPS6221598B2 (en)
JPH06328091A (en) Sludge capacity index estimating method in control system for biological treatment device
JPH0679284A (en) Pre/middle chlorination dosage controller for purification plant
JP2018138289A (en) Water treatment apparatus for water treatment process and treatment method thereof
SU724453A1 (en) Automatic aerotank control device
JPS5586587A (en) Sewage treating apparatus
JPS59105889A (en) Controlling method for volume of aerating air
SU791632A1 (en) Device for automatic control of oxytank loading
JPS58183989A (en) Apparatus for controlling discharge of sludge in precipitating pool
JP3338046B2 (en) Process control equipment for activated sludge treatment
SU584033A1 (en) Method of automatic control of yeast-growing process
JPH04330995A (en) Anaerobic water treating device
JPH0119957B2 (en)
JPS5556895A (en) Predictive controlling method for concentration of mixed liquor suspended solid in active sludge method
JPH0224342B2 (en)