JPH0679284A - Pre/middle chlorination dosage controller for purification plant - Google Patents

Pre/middle chlorination dosage controller for purification plant

Info

Publication number
JPH0679284A
JPH0679284A JP23486392A JP23486392A JPH0679284A JP H0679284 A JPH0679284 A JP H0679284A JP 23486392 A JP23486392 A JP 23486392A JP 23486392 A JP23486392 A JP 23486392A JP H0679284 A JPH0679284 A JP H0679284A
Authority
JP
Japan
Prior art keywords
chlorine
injection rate
expected
chlorine injection
inferring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23486392A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsukura
洋 津倉
Masao Fujio
昌男 藤生
Hiroshi Shimazaki
弘志 島崎
Keiichi Tsukitari
圭一 月足
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP23486392A priority Critical patent/JPH0679284A/en
Publication of JPH0679284A publication Critical patent/JPH0679284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To enable automatic operation with an optimum dosage in spite of an abrupt fluctua tion in the weather and water quality by inferring a prechlorine dosage dividedly to the terms based on predicted meteorological factors and water quality factors, further inferring a correction rate and combing these values to determine a target prechlorine dosage. CONSTITUTION:Respective inferring means 101 to 104 for inferring a predicted insolation quantity from the predicted weather 1 and the predicted climatic temp. 2, the meteorological factor terms from the predicted insolation quantity 4 and the predicted water temp. 3, a predicted chlorine demand from the predicted org. matter concn. 5 and predicted inorg. matter concn. 6 of raw water and the water quality factors of the prechlorine dosage from the predicted chlorine demand and the predicted water temp. are provided. The insolation quantity correction term of the prechlorine dosage from the difference between the predicted and the present insolation quantity, the chlorine demand correction term of the prechlorine dosage from the difference between the predicted and the present chlorine demand 7, the org. matter concn. correction term from the target and the present org. matter concn. 8, 9 of the outflow of a treatment basin and the residucal chlorine concn. correction term from the target and the present residucal chlorine concn. 10, 11 are inferred by respective inferring means 105 to 108. The target prechlorine dosage 12 is determined by summing up the respective terms of the prechlorine dosage by an arithmetic means 109.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、浄水場における前/
中塩素注入制御装置に関する。
BACKGROUND OF THE INVENTION This invention is used in
Middle chlorine injection control device

【0002】[0002]

【従来の技術】上水道処理を行う浄水場では、図12に
示すように河川水等の原水を一旦着水井1201に貯水
し、ここで前塩素注入を行った後急撹拌池1202、フ
ロック形成池1203、沈殿池1204を経ることによ
って原水中の鉄、マンガンあるいは藻類等を除去する。
次いで中塩素注入を行った後濾過池1205を通し、続
いて後塩素注入を行い、浄水池1206を介して送、配
水される。図中1207はフラッシュミキサー、120
8はフロッキュレータパドル、1209は傾斜板沈降装
置である。
2. Description of the Related Art In a water purification plant for water supply treatment, raw water such as river water is temporarily stored in a landing well 1201 as shown in FIG. 12, where pre-chlorination is carried out, followed by rapid agitation basin 1202 and flock formation basin. Iron, manganese, algae, etc. in the raw water are removed by passing through 1203 and the sedimentation tank 1204.
Next, medium chlorine is injected and then passed through the filter basin 1205, followed by post chlorine injection, and then sent through the clean water basin 1206 and distributed. In the figure, 1207 is a flash mixer, and 120
Reference numeral 8 is a flocculator paddle, and 1209 is an inclined plate settling device.

【0003】ここで前塩素注入を行う目的は原水中のア
ンモニア窒素(NH3−N)、全鉄(Fe)、全マンガン
(Mn)の除去及び藻類処理等であり、最近では水道水
源水質の悪化等により前塩素注入処理を行う浄水場が増
加している。浄水場における実際の前塩素注入処理は、
原水(被処理水)の水質因子例えばNH3−N濃度、K
MnO4消費量、全鉄濃度あるいは全マンガン濃度を考
慮しながら、また気象因子例えば季節、天候、日射量あ
るいは風速等を考慮しながら前塩素注入率を人為的に決
定し、水質や天候等が変化した場合にその都度前塩素注
入率を手動変更しているのが実情である。
Here, the purpose of pre-chlorine injection is to remove ammonia nitrogen (NH 3 —N), total iron (Fe), total manganese (Mn), and algae treatment in raw water. Due to deterioration, the number of water treatment plants that perform pre-chlorine injection treatment is increasing. The actual pre-chlorination process at the water treatment plant is
Water quality factors of raw water (water to be treated) such as NH 3 -N concentration, K
The pre-chlorine injection rate is artificially determined by considering MnO 4 consumption, total iron concentration or total manganese concentration, and also considering meteorological factors such as season, weather, insolation or wind speed to determine the water quality and weather. The actual situation is to manually change the chlorine injection rate before each change.

【0004】[0004]

【発明が解決しようとする課題】前塩素注入率を決定す
る水質因子の測定対象はNH3−N濃度、KMnO4消費
量、塩素要求量、全鉄、全Mn濃度等であり、これらは
ほとんど手分析で得られる非連続データ(1日1回)で
あるため、連続で注入処理する場合に制御遅れ等の問題
がある。また当日の水質は前日の水質分析結果からの予
測であるため、当日の水質が前日と大きく変動する場合
には誤差を生じる。
The water quality factors that determine the pre-chlorine injection rate are measured for NH 3 -N concentration, KMnO 4 consumption, chlorine demand, total iron, total Mn concentration, etc. Since it is discontinuous data (once a day) obtained by manual analysis, there is a problem such as control delay when performing continuous injection processing. Also, the water quality of the day is a prediction from the water quality analysis results of the previous day, so an error will occur if the water quality of the day greatly changes from the previous day.

【0005】一方、気象因子についても予想される当日
の気温、温度、日射量等を使用するため不確定要素が大
きかった。このため、実際の天候が予想した天候から大
きく外れた場合には、人為的に前塩素注入率を変更しな
ければならなかった。
On the other hand, with respect to the meteorological factor as well, the uncertain factor is large because the expected temperature, temperature, solar radiation amount, etc. of the day are used. Therefore, if the actual weather deviates significantly from the expected weather, the pre-chlorine injection rate must be artificially changed.

【0006】また、前塩素を着水井にて注入してその結
果が判明するまでには、施設滞留時間に相当する3〜4
時間程度かかり、このため、その間における各種変動量
を見込んだ上で注入率を決めなければならない。仮にこ
の変動を考慮しないとすると、3〜4時間後の沈殿水残
留塩素が一定にならず、大きく変動することになる。浄
水場のオペレータはこうした要因を人為的・経験的に考
慮しながら前塩素注入率を決定しているが、それでも予
想以上の変動に対しては注入不足や注入過剰が発生して
所定の処理効果が得られず、水質基準(トリハロメタン
量0.1mg/l)を越える可能性が生じる。また種々の
情報を判断しながら人為的に前塩素注入率を最適値に近
づくように変更するのは、オペレータに大きな負担がか
かると共に、その回数にも通常1日当たり5〜10回程
度と限界がある。
[0006] In addition, before the chlorine is injected into the landing well and the result is known, it is 3 to 4 which corresponds to the residence time of the facility.
It takes about time, and therefore, the injection rate must be determined in consideration of various variations during that time. If this variation is not taken into consideration, the residual chlorine in the precipitated water after 3 to 4 hours will not be constant and will vary greatly. The operator of the water purification plant decides the pre-chlorine injection rate by artificially and empirically considering these factors, but even if it exceeds the expected fluctuation, insufficient injection or excessive injection will occur and the prescribed treatment effect will occur. Is not obtained, and there is a possibility that the water quality standard (trihalomethane amount 0.1 mg / l) will be exceeded. Further, it is a great burden on the operator to artificially change the pre-chlorine injection rate to approach the optimum value while judging various information, and the number of times is usually about 5 to 10 times a day. is there.

【0007】本発明はこのような事情のもとになされた
ものであり、その目的は、浄水場の前塩素注入制御ある
いは中塩素注入制御を行う装置において、気象及び水質
の要因の急激な変動にも対応して最適注入率で自動運転
できる装置を提供することにある。
The present invention has been made under such circumstances, and an object thereof is to rapidly change factors of weather and water quality in a device for controlling pre-chlorine injection or medium-chlorine injection control of a water purification plant. It is to provide a device that can automatically operate at an optimum injection rate.

【0008】[0008]

【課題を解決するための手段】この発明の構成を図1ま
たは図2に示す。この発明に係る浄水場の前塩素注入制
御装置は、フロック形成池及び沈殿池よりなる処理池に
原水を導入する浄水場にて、前記原水に対する前塩素注
入を制御する装置において、次の手段を備えたものであ
る。
The structure of the present invention is shown in FIG. 1 or FIG. The pre-chlorine injection control device for a water purification plant according to the present invention is a water purification plant that introduces raw water into a treatment basin consisting of a floc formation pond and a sedimentation basin. Be prepared.

【0009】(1)予想天候および予想気温から予想日
射量を推論する手段101。
(1) A means 101 for inferring an expected amount of solar radiation from expected weather and expected temperature.

【0010】(2)予想日射量および予想水温から前塩
素注入率の気象要因項を推論する手段102。
(2) Means 102 for inferring the meteorological factor term of the pre-chlorine injection rate from the predicted solar radiation amount and the predicted water temperature.

【0011】(3)原水の予想有機物濃度および予想無
機物濃度から予想塩素要求量を推論する手段103。
(3) Means 103 for inferring the expected chlorine demand from the expected organic matter concentration and the expected inorganic matter concentration of the raw water.

【0012】(4)予想塩素要求量および予想水温から
前塩素注入率の水質要因項を推論する手段104。
(4) A means 104 for inferring the water quality factor term of the pre-chlorine injection rate from the predicted chlorine demand and the predicted water temperature.

【0013】(5)予想日射量および現在日射量の差か
ら前塩素注入率の日射量補正項を推論する手段105。
(5) Means 105 for inferring a solar radiation amount correction term of the pre-chlorine injection rate from the difference between the estimated solar radiation amount and the present solar radiation amount.

【0014】(6)予想塩素要求量および現在塩素要求
量の差から前塩素注入率の塩素要求量補正項を推論する
手段106。
(6) Means 106 for inferring the chlorine demand correction term of the previous chlorine injection rate from the difference between the predicted chlorine demand and the present chlorine demand.

【0015】(7)処理池流出水の目標有機物濃度およ
び現在有機物濃度の差から前塩素注入率の有機物濃度補
正項を推論する手段107。
(7) A means 107 for inferring an organic matter concentration correction term for the pre-chlorine injection rate from the difference between the target organic matter concentration and the present organic matter concentration of the treated pond effluent.

【0016】(8)処理池流出水の目標残留塩素濃度お
よび現在残留塩素濃度の差から前塩素注入率の残留塩素
濃度補正項を推論する手段108。
(8) Means 108 for inferring the residual chlorine concentration correction term of the previous chlorine injection rate from the difference between the target residual chlorine concentration and the present residual chlorine concentration of the treated pond effluent.

【0017】(9)前塩素注入率の各項を合算して目標
前塩素注入率を求める手段109。
(9) Means 109 for obtaining the target pre-chlorine injection rate by summing up each term of the pre-chlorine injection rate.

【0018】また、この発明に係る浄水場の中塩素注入
制御装置は、フロック形成池及び沈殿池よりなる処理池
の後段にろ過池が配置された浄水場にて、ろ過池流入水
に対する中塩素注入を制御する装置において、次の手段
を備えたものである。
Further, the medium chlorine injection control device of the water purification plant according to the present invention is a medium water chlorine injection control device in a water purification plant in which a filtration basin is arranged at the rear stage of a treatment basin consisting of a floc formation basin and a sedimentation basin. A device for controlling injection is provided with the following means.

【0019】(1)ろ過池水量からろ過池における予想
滞留時間を推論する手段201。
(1) A means 201 for inferring an expected residence time in the filter from the amount of water in the filter.

【0020】(2)予想滞留時間、現在日射量およびろ
過池の現在温度要素から中塩素注入率の気象要因項を推
論する手段202。
(2) A means 202 for inferring the meteorological factor term of the medium chlorine injection rate from the expected residence time, the present amount of solar radiation and the present temperature element of the filter basin.

【0021】(3)ろ過池流入水の現在有機物濃度およ
び現在塩素要求量から予想塩素要求量を推論する手段2
03。この手段203は、現有機物濃度および現塩素要
求量の他に、ろ過池における除マンガン処理の有無を入
力パラメータとして推論を行うものとすることもでき
る。
(3) Means 2 for inferring the expected chlorine demand from the current organic matter concentration of the inflow water of the filter and the present chlorine demand
03. The means 203 can make an inference with the presence or absence of manganese removal treatment in the filter basin as an input parameter in addition to the current organic matter concentration and the current chlorine demand.

【0022】(4)予想塩素要求量およびろ過池の現在
温度要素から中塩素注入率の水質要因項を推論する手段
204。
(4) Means 204 for inferring the water quality factor term of the medium chlorine injection rate from the expected chlorine demand and the current temperature element of the filter basin.

【0023】(5)日射量変動に基づいて中塩素注入率
の日射量補正項を推論する手段205。
(5) Means 205 for inferring a solar radiation amount correction term for the medium chlorine injection rate based on the fluctuation of the solar radiation amount.

【0024】(6)ろ過池流出水の目標有機物濃度およ
び現在有機物濃度の差から中塩素注入率の有機物濃度補
正項を推論する手段206。
(6) Means 206 for inferring an organic matter concentration correction term for the medium chlorine injection rate from the difference between the target organic matter concentration and the present organic matter concentration of the effluent of the filtration basin.

【0025】(7)ろ過池流出水の目標残留塩素濃度お
よび現在残留塩素濃度の差から中塩素注入率の残留塩素
濃度補正項を推論する手段207。
(7) Means 207 for inferring the residual chlorine concentration correction term of the medium chlorine injection rate from the difference between the target residual chlorine concentration and the present residual chlorine concentration of the effluent of the filtration pond.

【0026】(8)中塩素注入率の各項を合算して目標
中塩素注入率を求める手段208。
(8) Means 208 for obtaining the target medium chlorine injection rate by summing up each term of the medium chlorine injection rate.

【0027】ここで、上記の前/中塩素注入制御装置に
おいて、各種の推論に用いる現在有機物濃度は、紫外線
吸光度を指標として検出されたものを用いれば好適であ
る。また、各種パラメータを推論するにあたり、ファジ
ィ推論を用いれば好適である。なお、各種補正項の推論
において入力パラメータの差を求めるにあたり、入力パ
ラメータの偏差を用いるだけでなく、その経時的挙動
(たとえば偏差の変化率)を用いて推論を行う態様をと
ることもできる。
Here, in the above-mentioned front / medium chlorine injection control device, it is preferable that the present organic matter concentration used for various inferences is one detected by using the ultraviolet absorbance as an index. Moreover, it is preferable to use fuzzy inference for inferring various parameters. Note that in obtaining the difference between the input parameters in the inference of various correction terms, not only the deviation of the input parameter may be used, but also the behavior over time (for example, the rate of change of the deviation) may be used to make the inference.

【0028】[0028]

【作用】上記の前塩素注入制御装置では、制御時前に、
予想天候や予想気温等の予想気象要因から予測日射量さ
らには注入率の気象要因項を推論し、たとえば制御日の
予測日射量パターン等を求めておく。また、原水の予測
有機物濃度や予測無機物濃度等の水質要因から予測塩素
要求量さらには注入率の水質要因項を求めておく。
[Operation] In the above-mentioned chlorine injection control device, before the control,
The predicted solar radiation amount and the weather factor term of the injection rate are deduced from the predicted weather factors such as the predicted weather and the predicted temperature, and the predicted solar radiation pattern of the control day, for example, is obtained. Also, from the water quality factors such as the predicted organic matter concentration and the predicted inorganic matter concentration of raw water, the water quality factor term of the predicted chlorine demand and the injection rate is obtained.

【0029】このうえで制御時には、上記の気象要因項
・水質要因項を合算して目標前塩素注入率を求める。こ
のとき、気象要因・水質要因はフィードフォワード因子
であるので、各種のフィードバック因子に基づいて補正
項を求めて目標前塩素注入率の演算に使用することとす
る。フィードバック因子としては、予測気象要因・予測
水質要因の現在値とのずれや、処理池流出水の目標有機
物濃度と現在有機物濃度とのずれ、目標残留塩素濃度と
現在残留塩素濃度とのずれ等を用いる。
Further, at the time of control, the pre-target chlorine injection rate is obtained by summing the above-mentioned meteorological factor term and water quality factor term. At this time, since the meteorological factor and the water quality factor are feedforward factors, a correction term is obtained based on various feedback factors and used to calculate the pre-target chlorine injection rate. Feedback factors include deviations between the current values of predicted weather factors and predicted water quality factors, deviations between the target organic matter concentration and the current organic matter concentration of the treated pond effluent, deviations between the target residual chlorine concentration and the current residual chlorine concentration, etc. To use.

【0030】また、中塩素注入制御においても、同様に
気象要因・水質要因をフィードフォワード因子とし、各
種の補正項をフィードバック因子として目標中塩素注入
率を求める。ただしこの場合、注入率の気象要因項の推
論にあたって、滞留時間が比較的短いので、ろ過池にお
ける予測滞留時間を推論してこの予測滞留時間と現在気
象要因とから注入率の気象要因項を推論する一方で、日
射量の変動を検出してこの変動に基づいて気象要因項の
補正項を求める手法をとる。
Also in the medium chlorine injection control, the target medium chlorine injection rate is similarly obtained by using the meteorological factor / water quality factor as a feedforward factor and various correction terms as feedback factors. However, in this case, since the retention time is relatively short in inferring the meteorological factor term of the injection rate, the estimated retention time in the filter is inferred and the meteorological factor term of the infusion rate is inferred from this estimated retention time and the current meteorological factor. On the other hand, the method of detecting the variation of the amount of solar radiation and obtaining the correction term of the meteorological factor term based on this variation is adopted.

【0031】[0031]

【実施例】以下、この発明の実施例を説明する。図3
は、この発明の一実施例に係る前塩素注入率制御システ
ムの基本ハードウエア構成を示す。図において、301
は各種プロセス制御を行うプロセス制御装置、302は
ファジィ演算装置であり、ファジィ推論部(推論エンジ
ン)や知識データベースを含む。303は本装置の主制
御を行う中央処理装置、304は入力装置、305は表
示装置である。また306は、沈殿池の流出段における
塩素濃度や有機物濃度等を測定する計器群である。この
実施例では、有機物濃度計として紫外線吸光度を指標と
する計器を使用している。307は、原水に前塩素を注
入する注入装置である。
Embodiments of the present invention will be described below. Figure 3
FIG. 3 shows a basic hardware configuration of a pre-chlorine injection rate control system according to an embodiment of the present invention. In the figure, 301
Is a process control device for controlling various processes, and 302 is a fuzzy arithmetic device, which includes a fuzzy inference section (inference engine) and a knowledge database. Reference numeral 303 is a central processing unit that performs main control of the present apparatus, 304 is an input device, and 305 is a display device. Further, reference numeral 306 is a group of instruments for measuring chlorine concentration, organic matter concentration, etc. at the outflow stage of the sedimentation tank. In this embodiment, a meter using ultraviolet absorbance as an index is used as the organic matter concentration meter. An injection device 307 injects pre-chlorine into raw water.

【0032】上のプロセス制御装置301やファジィ演
算装置302、中央処理装置303等により実現される
制御システムの基本構成を図4に示す。401はファジ
ィ推論部であり、後述するアルゴリズムに従ってファジ
ィ推論を行い、前塩素注入率の各項D1,D2,ΔD1
ΔD2,ΔDa,ΔDbを出力するものである。このファ
ジィ推論部401で用いられる制御ルールやメンバシッ
プ関数は、あらかじめ知識データベース格納部402に
格納されている。これら制御ルールやメンバシップ関数
の例を図5,6に示す。マンマシンインタフェース40
3は、ファジィルール等の設定入力のためのものであ
り、キーボード、マウス等の入力装置を備えている。手
動入力部404は、入力された予想天候やPAC注入率
等の取り込みを行うものである。プロセスデータ入力部
405は、残留塩素濃度やUV(紫外線吸光度)値を取
り込んで、ファジィ推論で使用する入力データ(たとえ
ば残留塩素濃度については残塩偏差eと残塩偏差変化率
de/dt)を生成するものである。これらの入力デー
タは、入力データ処理部408を介してファジィ推論部
401内のメモリに入力される。
FIG. 4 shows a basic configuration of a control system realized by the process control device 301, the fuzzy arithmetic device 302, the central processing unit 303 and the like. Reference numeral 401 denotes a fuzzy inference unit, which performs fuzzy inference according to an algorithm to be described later, and each term D 1 , D 2 , ΔD 1 ,
It outputs ΔD 2 , ΔD a , and ΔD b . The control rules and membership functions used in the fuzzy inference unit 401 are stored in the knowledge database storage unit 402 in advance. Examples of these control rules and membership functions are shown in FIGS. Man-machine interface 40
Reference numeral 3 is for inputting settings such as fuzzy rules, and is provided with an input device such as a keyboard and a mouse. The manual input unit 404 captures the input expected weather, PAC injection rate, and the like. The process data input unit 405 takes in the residual chlorine concentration and the UV (ultraviolet absorbance) value, and inputs the input data used for fuzzy inference (for example, the residual salt deviation e and the residual salt deviation change rate de / dt for the residual chlorine concentration). To generate. These input data are input to the memory in the fuzzy inference unit 401 via the input data processing unit 408.

【0033】推論結果出力処理部406は、ファジィ推
論部401の推論値D1,D2,ΔD1,ΔD2,ΔDa
ΔDbの出力処理を行うものであり、注入量算出部40
7は、上記の推論値を前塩素注入率D3,D4と共に合算
して目標前塩素注入率を求めて注入装置に出力するもの
である。
The inference result output processing unit 406 includes inference values D 1 , D 2 , ΔD 1 , ΔD 2 , ΔD a , of the fuzzy inference unit 401.
The injection amount calculation unit 40 performs the output processing of ΔD b.
In reference numeral 7, the inferred value is added together with the pre-chlorine injection rates D 3 and D 4 to obtain the target pre-chlorine injection rate and output to the injection device.

【0034】図7は、前塩素注入率の各項のアルゴリズ
ムを示す。この図を参照しながら実施例装置の動作を説
明すると、まず制御当日前にあらかじめ予想天候等の気
象要因および予想無機物等の水質要因を設定入力し、こ
れらの入力データを用いて前ファジィ推論を行い、塩素
注入率D1,D2を推論しておく。
FIG. 7 shows an algorithm for each term of the pre-chlorine injection rate. The operation of the embodiment apparatus will be described with reference to this figure. First, before the control day, weather factors such as expected weather and water quality factors such as expected inorganic substances are set and input, and the pre-fuzzy inference is performed using these input data. Then, the chlorine injection rates D 1 and D 2 are inferred.

【0035】図8は日射量の塩素消費への影響を示す。
この図から解るように、日射量は塩素消費の動向に大き
な影響を与える。そこで制御実施日当日の日中の予想平
均気温と日中の予想天候とから予想日射量を推論し、こ
の予想日射量と日中の予想平均水温とから気象要因に基
づく前塩素注入率D1を求める。天候と日射量の相関関
係を図9に示す。なお、推論する予想日射量は、日の出
から日の入までの時間の直射日射量または全天日射量で
ある。予想日射量の推論では、予想天候及び予想平均気
温を条件部(前件部)とし、予想日射量を結論部(後件
部)とするファジィルール(推論規則)を用いる。前塩
素注入率D1の推論では、予想日射量及び予想平均水温
を条件部(前件部)とし、前塩素注入率D1を結論部
(後件部)とするファジィルールを用いる。なお予想天
候の数値の割り当て方については、雨または雪ならば
0、曇ならば1、晴ならば2としている。
FIG. 8 shows the effect of solar radiation on chlorine consumption.
As can be seen from this figure, the amount of solar radiation has a great influence on the trend of chlorine consumption. Therefore, the expected insolation amount is inferred from the expected average temperature during the day on the day of control execution and the expected weather during the day, and the pre-chlorine injection rate D 1 based on meteorological factors is calculated from the estimated insolation amount and the expected average water temperature during the day. Ask for. FIG. 9 shows the correlation between the weather and the amount of solar radiation. The estimated solar radiation amount to be inferred is the direct solar radiation amount or the total solar radiation amount during the time from sunrise to sunset. In the inference of the expected solar radiation amount, a fuzzy rule (inference rule) that uses the expected weather and the expected average temperature as the condition part (preceding part) and the expected solar radiation amount as the conclusion part (consequent part) is used. In the previous inference chlorine injection rate D 1, the expected amount of solar radiation and the expected average water temperature condition part and (antecedent), using the fuzzy rules which the pre chlorine injection rate D 1 and Conclusions section (consequent). The numerical value of the forecast weather is assigned as 0 for rain or snow, 1 for cloudy weather, and 2 for clear weather.

【0036】次に、制御実施日当日の水質要因、例えば
無機物塩素要求量、有機物塩素要求量及び平均水温から
決まる前塩素注入率D2を求める。この推論では、まず
制御実施日当日の予想無機物(NH3−N等)塩素要求量
と予想有機物(KMnO4消費量等)とから予想塩素要求
量を推論し、この予想塩素要求量と予想平均水温とから
水質要因に基づく前塩素注入率D2を推論する。予想塩
素要求量の推論では、予想無機物塩素要求量及び予想有
機物塩素要求量を条件部とし、予想塩素要求量を結論部
とするファジィルールを用いる。前塩素注入率D2の推
論では、予想塩素要求量及び予想平均水温を条件部と
し、前塩素注入率D2を結論部とするファジィルールを
用いる。塩素要求量については、オンラインの計測信号
の信頼性が低いため、上記のように予想無機物量と予想
有機物量とから求めた関係規則によりファジィ推論を実
行して算出することが望ましい。
Next, the pre-chlorine injection rate D 2 determined from the water quality factor on the day of the control execution, for example, the required chlorine amount of inorganic matter, the required chlorine amount of organic matter and the average water temperature is obtained. In this inference, first, the expected chlorine demand is inferred from the expected inorganic substance (NH 3 -N etc.) chlorine demand and the expected organic matter (KMnO 4 consumption etc.) on the day of the control execution, and the expected chlorine demand and the expected average are calculated. The pre-chlorine injection rate D 2 based on the water quality factor is inferred from the water temperature. The inference of the expected chlorine demand uses a fuzzy rule that uses the expected inorganic chlorine demand and the expected organic chlorine demand as the condition parts and the expected chlorine demand as the conclusion part. In the previous inference chlorine injection rate D 2, expected chlorine demand and the expected average water temperature of condition part, using fuzzy rules for a pre chlorine injection rate D 2 and conclusion part. Since the reliability of the online measurement signal is low, it is desirable to execute the fuzzy inference based on the relational rules obtained from the expected inorganic substance amount and the expected organic substance amount as described above to calculate the chlorine demand amount.

【0037】上記の推論で取り扱う入力パラメータは、
気象要因及び水質要因のいずれについても予測値を用い
るので、確率100%で的中することはない。このため
実際の値と予想値とのずれ分による誤差をなくすため
に、気象要因補正項ΔD1と水質要因補正項ΔD2を求め
て、上記の推論値D1,D2を補正することとしている。
The input parameters handled by the above inference are
Since predicted values are used for both weather and water quality factors, there is no chance of hitting with a probability of 100%. Therefore, in order to eliminate the error due to the difference between the actual value and the predicted value, the meteorological factor correction term ΔD 1 and the water quality factor correction term ΔD 2 are obtained, and the inferred values D 1 and D 2 are corrected. There is.

【0038】気象要因補正項ΔD1は、当初の予想天候
が大きく外れ、外れた状態がある程度の時間継続する場
合に用いられるものであり、前記第1段部31で求めた
予想日射量と現在天候変化とを条件部とし、前塩素補正
注入率ΔD1を結論部とするファジィルールによって推
論される。現在天候変化の数値表示については、既に述
べたように各天候に数値が割り当てられているので、こ
の数値の変化量を用いる。例えば雨→晴ならば+2、変
化なしならば±0、晴→雨ならば−2とする。一方、水
質要因補正項ΔD2は、予想塩素要求量と現在推定塩素
要求量とを条件部とし、前塩素注入率D2の補正量に相
当する前塩素補正注入率ΔD2を結論部とするファジィ
ルールによって推論される。
The meteorological factor correction term ΔD 1 is used when the initially predicted weather is greatly deviated and the deviated state continues for a certain period of time, and the estimated solar radiation amount obtained in the first step portion 3 1 is used. It is inferred by the fuzzy rule that the current weather change is the condition part and the pre-chlorine correction injection rate ΔD 1 is the conclusion part. As for the numerical display of the current weather change, a numerical value is assigned to each weather as described above, so the change amount of this numerical value is used. For example, if rain → clear, +2; if no change, ± 0; if clear → rain, −2. On the other hand, the water quality factors correction term [Delta] D 2 is the predicted chlorine demand and condition part and a current estimated chlorine demand, chlorine correction injection rate [Delta] D 2 prior corresponding to pre-correction amount of the chlorine injection rate D 2 and conclusion part Inferred by fuzzy rules.

【0039】また、着水井より前の工程で粉末活性炭注
入処理を実施する場合があり、この場合には粉末活性炭
による前塩素の吸着量を上乗せする。この吸着量に対応
する前塩素注入率をD3とすると、D3=k3(=1/5
〜1/4)×粉末活性炭注入率として表される。また藻
類等が浄水施設で増加する場合には、殺藻処理のために
5〜10ppm程度前塩素注入率を上乗せする。この前
塩素注入率をD4とする。これらの値は、必要により手
動入力される。
In some cases, the powder activated carbon injection treatment is carried out in the step before the landing well, and in this case, the adsorption amount of pre-chlorine by the powder activated carbon is added. If the pre-chlorine injection rate corresponding to this adsorption amount is D 3 , D 3 = k 3 (= 1/5
~ 1/4) x powder activated carbon injection rate. Further, when algae and the like increase in the water purification facility, a pre-chlorine injection rate of about 5 to 10 ppm is added for algicidal treatment. The previous chlorine injection rate is D 4 . These values are manually input if necessary.

【0040】また、沈殿池の流出段におけるUV値を指
標として流出水の有機物濃度を認識し、その濃度に応じ
て前塩素注入率ΔDaを求める。この推論では、UV値
の目標値・現在値の偏差eとその変化率de/dtとを
条件部とし、前塩素注入率ΔDaを結論部とするファジ
ィルールを用いる。
Further, the concentration of organic matter in the effluent water is recognized using the UV value at the outflow stage of the settling tank as an index, and the pre-chlorine injection rate ΔD a is determined according to the concentration. In this inference, a fuzzy rule is used in which the deviation e between the target value and the current value of the UV value and its change rate de / dt are used as a condition part, and the pre-chlorine injection rate ΔD a is used as a conclusion part.

【0041】さらに、沈殿池出口の残留塩素の目標値と
現在の残留塩素量との偏差に応じて前塩素補正注入率Δ
bを求める。この推論では、現在の残留塩素量とその
目標値との偏差(残塩偏差)eと、残塩偏差eの時間的
変化率de/dtとを条件部とし、前塩素補正注入率Δ
aを結論部とするファジィルールを用いる。
Further, according to the deviation between the target value of residual chlorine at the outlet of the sedimentation tank and the current residual chlorine amount, the pre-chlorine correction injection rate Δ
Find D b . In this inference, the deviation (residual salt deviation) e between the current amount of residual chlorine and its target value and the temporal change rate de / dt of the residual salt deviation e are used as conditions, and the pre-chlorine correction injection rate Δ
A fuzzy rule whose conclusion is D a is used.

【0042】上述実施例の如く日射量及び塩素要求量を
ファジィ推論により予測すれば、これらのセンサーを省
略でき、特に市販の塩素要求量計は信頼性が低く、高価
であることから、その利点は大きい。
If the solar radiation amount and the chlorine demand amount are predicted by fuzzy reasoning as in the above-mentioned embodiment, these sensors can be omitted, and in particular, the commercially available chlorine demand meter is unreliable and expensive, which is an advantage. Is big.

【0043】ここで前塩素注入率を手動設定した場合と
上述の実施例のようにファジィ推論により決定した場合
とについて夫々シミュレーション運転を行ったところ、
図10に示す結果が得られた。図中(1),(2)は夫
々手動設定を行った場合の注入率及び残留塩素量を示
し、(3)(4)は夫々ファジィ推論により決定した場
合の注入率及び残留塩素量を示す。ただしファジィ推論
を利用した場合の塩素注入量は478リットル/日、手
動設定による場合の塩素注入量は474リットル/日で
あった。図10の結果から本発明により注入制御を行え
ば、手動設定の場合に比べて残留塩素量が目標値に近く
なり、従って注入率が適切であることがわかる。
Here, when the pre-chlorine injection rate was manually set and the case where the pre-chlorine injection rate was determined by fuzzy inference as in the above-mentioned embodiment, the simulation operation was performed respectively,
The results shown in FIG. 10 were obtained. In the figure, (1) and (2) respectively show the injection rate and the residual chlorine amount when manual setting was performed, and (3) and (4) respectively show the injection rate and the residual chlorine amount when determined by fuzzy inference. . However, the chlorine injection amount using the fuzzy reasoning was 478 liters / day, and the chlorine injection amount using the manual setting was 474 liters / day. From the result of FIG. 10, it is understood that when the injection control is performed according to the present invention, the residual chlorine amount becomes closer to the target value than in the case of manual setting, and therefore the injection rate is appropriate.

【0044】次に、この発明を中塩素注入率の制御に適
用した例を示す。図11は、中塩素注入率の演算に使用
されるアルゴリズムを示す。この場合、ろ過池における
滞留時間が30分程度と比較的短いので、前塩素注入率
の演算のように予想日射量を用いるのではなく、滞留時
間と現在の気象要因とから中塩素注入率D1を求めるこ
ととする。滞留時間は、ろ過水量を条件部とし滞留時間
を結論部とするファジィルールを用いて推論される。中
塩素注入率D1は、滞留時間、現在日射量、現在気温お
よび現在水温を条件部とし、D1を結論部とするファジ
ィルールを用いて推論される。
Next, an example in which the present invention is applied to control of the medium chlorine injection rate will be shown. FIG. 11 shows the algorithm used to calculate the medium chlorine injection rate. In this case, since the residence time in the filter basin is relatively short, about 30 minutes, the medium chlorine injection rate D is calculated from the retention time and the current meteorological factors, instead of using the estimated solar radiation amount as in the calculation of the pre-chlorine injection rate. We will ask for 1 . The retention time is inferred using a fuzzy rule with the amount of filtered water as the condition part and the retention time as the conclusion part. The medium chlorine injection rate D 1 is inferred using a fuzzy rule in which the residence time, the amount of solar radiation, the current temperature, and the current water temperature are the condition parts, and D 1 is the conclusion part.

【0045】また水質要因による中塩素注入率D2につ
いても、現在値を用いて推論を行うこととする。すなわ
ち、現在UV値、現在推定塩素要求量およびろ過池の除
マンガン処理の有無を条件部とし、塩素要求量を結論部
とするファジィルールを用いて推定塩素要求量を求め
る。さらに現在水温と推定塩素要求量とを条件部とし、
中塩素注入率D2を結論部とするファジィルールを用い
て中塩素注入率D2を求める。ろ過池において除マンガ
ン処理が行われると、負荷が減少して塩素消費に影響を
与えるため、必要により除マンガン処理の有無を手動設
定して推論に使用する。
The medium chlorine injection rate D 2 due to the water quality factor is also inferred using the current value. That is, the estimated chlorine demand amount is obtained using a fuzzy rule in which the current UV value, the currently estimated chlorine demand amount, and the presence or absence of manganese removal treatment in the filter basin are used as the condition parts and the chlorine demand amount is used as the conclusion part. Furthermore, with the current water temperature and the estimated chlorine demand as the condition part,
The medium chlorine injection rate D 2 is obtained by using a fuzzy rule whose conclusion is the medium chlorine injection rate D 2 . If manganese removal treatment is performed in the filter basin, the load will be reduced and the chlorine consumption will be affected. Therefore, if necessary, the presence or absence of manganese removal treatment is manually set and used for inference.

【0046】さらに、日射量やろ過池流出段におけるU
V値、残留塩素濃度をフィードバック因子とし、中塩素
注入率の補正項ΔD1,ΔD2,ΔDaを求める。補正項
ΔD1の推論では、日射量偏差(日射量の変動分)eと
その変化率Δe/Δtとを条件部とし、ΔD1を結論部
とするファジィルールが用いられる。補正項ΔD2の推
論では、UV値の目標値・測定現在値の偏差eとその変
化率Δe/Δtとを条件部とし、ΔD2を結論部とする
ファジィルールが用いられる。補正項ΔDaの推論で
は、残留塩素濃度の目標値・測定現在値の偏差eとその
変化率Δe/Δtとを条件部とし、ΔDaを結論部とす
るファジィルールが用いられる。他は、前塩素注入率制
御の場合と同様である。
Furthermore, the amount of solar radiation and U in the outflow stage of the filter basin
V value, the residual chlorine concentration of the feedback factor, the correction term [Delta] D 1 of the middle chlorine injection rate, [Delta] D 2, obtains the [Delta] D a. In the inference of the correction term ΔD 1 , a fuzzy rule that uses the solar radiation deviation (change of solar radiation) e and its rate of change Δe / Δt as the condition part and ΔD 1 as the conclusion part is used. In the inference of the correction term ΔD 2 , a fuzzy rule is used in which the deviation e between the target value of the UV value and the measured current value and its change rate Δe / Δt are used as the condition parts, and ΔD 2 is used as the conclusion part. In the inference of the correction term ΔD a , a fuzzy rule is used in which the deviation e between the target value and the present measured value of the residual chlorine concentration and its change rate Δe / Δt are used as the condition parts, and ΔD a is used as the conclusion part. Others are the same as the case of pre-chlorine injection rate control.

【0047】[0047]

【発明の効果】以上説明したようにこの発明によれば、
前塩素注入制御において、予想される気象要因に基づく
項と予想される水質要因に基づく項とに分けて前塩素注
入率を推論すると共に、それら予想要因と現実の要因と
の差に応じて補正量を推論し、更に有機物濃度や残留塩
素量に基づいて補正量を推論し、これらの値を組み合わ
せて前塩素注入率を決定しているため、時間遅れ等の誤
差を極力抑えることができると共に、有機物濃度や残留
塩素量を一定に制御することができ、更に気象要因や水
質要因の急激な変化にも対応できる。
As described above, according to the present invention,
In pre-chlorine injection control, the pre-chlorine injection rate is inferred by dividing it into terms based on the expected meteorological factors and terms based on the expected water quality factors, and is corrected according to the difference between those expected factors and actual factors. The amount of the chlorine is inferred, and the correction amount is inferred based on the organic matter concentration and the residual chlorine amount, and the pre-chlorine injection rate is determined by combining these values, so errors such as time delay can be suppressed as much as possible. In addition, it is possible to control the concentration of organic matter and the amount of residual chlorine at a constant level, and it is also possible to respond to sudden changes in weather and water quality factors.

【0048】また中塩素注入制御では、中塩素注入率の
気象要因項を推論にあたって、滞留時間を推論してこの
値と現在の気象要因とに基づいて推論を行うので、時間
遅れ等の誤差をより一層抑えることができる。
Further, in the medium chlorine injection control, when the meteorological factor term of the medium chlorine injection rate is inferred, the residence time is inferred and the inference is performed based on this value and the present meteorological factor. It can be further suppressed.

【0049】したがってこの発明によれば、前/中塩素
を最適注入率で注入することができ、このため手動運転
時よりも注入量を大幅に削減することができると共に、
トリハロメタン量を低減化でき、この結果安全でおいし
い水を供給することができる。また自動演算を行ってい
るのでオペレータの負担が軽減できる。
Therefore, according to the present invention, the front / medium chlorine can be injected at the optimum injection rate, so that the injection amount can be significantly reduced as compared with the manual operation, and
The amount of trihalomethane can be reduced, and as a result, safe and delicious water can be supplied. Further, since the automatic calculation is performed, the burden on the operator can be reduced.

【0050】更にこうした効果に加え次のような効果も
ある。ベテランオペレータの知識や経験を制御ルールと
メンバシップ関数の形で表現でき、ノウハウの共用化が
図れる。制御ルールとメンバシップ関数を状況に応じて
改良変更を行うことができ、制御アルゴリズムの改善も
期待できる。推論結果をCRT等で確認できる。
In addition to these effects, there are the following effects. Knowledge and experience of veteran operators can be expressed in the form of control rules and membership functions, and know-how can be shared. The control rules and membership functions can be improved and changed according to the situation, and the control algorithm can also be expected to improve. The inference result can be confirmed on a CRT or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of the present invention.

【図2】この発明の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of the present invention.

【図3】実施例装置の基本ハードウエア構成を示す説明
図。
FIG. 3 is an explanatory diagram showing a basic hardware configuration of the embodiment apparatus.

【図4】実施例装置のシステム構成の概略を示すブロッ
ク図。
FIG. 4 is a block diagram showing an outline of a system configuration of the embodiment apparatus.

【図5】制御ルールの1例を示す説明図。FIG. 5 is an explanatory diagram showing an example of a control rule.

【図6】メンバシップ関数の1例を示す説明図。FIG. 6 is an explanatory diagram showing an example of a membership function.

【図7】前塩素注入率演算のアルゴリズムを示す説明
図。
FIG. 7 is an explanatory diagram showing an algorithm of pre-chlorine injection rate calculation.

【図8】日射量の塩素消費に対する影響を示すグラフ。FIG. 8 is a graph showing the effect of solar radiation on chlorine consumption.

【図9】天候と日射量との相関を示すグラフ。FIG. 9 is a graph showing a correlation between weather and the amount of solar radiation.

【図10】シミュレーション運転の結果を示すグラフ。FIG. 10 is a graph showing the result of simulation operation.

【図11】中塩素注入率演算のアルゴリズムを示す説明
図。
FIG. 11 is an explanatory diagram showing an algorithm for calculating the medium chlorine injection rate.

【図12】浄水場を示す構成図。FIG. 12 is a configuration diagram showing a water purification plant.

【符号の説明】[Explanation of symbols]

101…予想日射量推論手段 102…注入率気象要因項推論手段 103…予想塩素要求量推論手段 104…注入率水質要因項推論手段 105…日射量補正項推論手段 106…水質要因補正項推論手段 107…有機物濃度補正項推論手段 108…残留塩素濃度補正項推論手段 109…目標前塩素注入率演算手段 Reference numeral 101 ... Expected solar radiation amount inference means 102 ... Injection rate meteorological factor term inference means 103 ... Expected chlorine demand amount inference means 104 ... Injection rate water quality factor term inference means 105 ... Solar radiation amount correction term inference means 106 ... Water quality factor correction term inference means 107 ... organic matter concentration correction term inference means 108 ... residual chlorine concentration correction term inference means 109 ... pre-target chlorine injection rate calculation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 月足 圭一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiichi Tsukiashi 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside the Meidensha Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 フロック形成池及び沈殿池よりなる処理
池に原水を導入する浄水場にて、前記原水に対する前塩
素注入を制御する装置において、 予想天候および予想気温から予想日射量を推論する手段
と、 該予想日射量および予想水温から前塩素注入率の気象要
因項を推論する手段と、 原水の予想有機物濃度および予想無機物濃度から予想塩
素要求量を推論する手段と、 該予想塩素要求量および予想水温から前塩素注入率の水
質要因項を推論する手段と、 前記予想日射量および現在日射量の差から前塩素注入率
の日射量補正項を推論する手段と、 前記予想塩素要求量および現在塩素要求量の差から前塩
素注入率の塩素要求量補正項を推論する手段と、 処理池流出水の目標有機物濃度および現在有機物濃度の
差から前塩素注入率の有機物濃度補正項を推論する手段
と、 処理池流出水の目標残留塩素濃度および現在残留塩素濃
度の差から前塩素注入率の残留塩素濃度補正項を推論す
る手段と、 前塩素注入率の各項を合算して目標前塩素注入率を求め
る手段とを備えたことを特徴とする浄水場の前塩素注入
制御装置。
1. A means for inferring an expected amount of solar radiation from an expected weather and an expected temperature in an apparatus for controlling pre-chlorine injection to the raw water at a water treatment plant introducing the raw water into a treatment pond including a floc formation pond and a sedimentation pond. And means for inferring the meteorological factor term of the pre-chlorine injection rate from the expected solar radiation amount and expected water temperature, means for inferring the expected chlorine demand amount from the expected organic matter concentration and expected inorganic matter concentration of the raw water, and the expected chlorine demand amount and Means to infer the water quality factor term of the pre-chlorine injection rate from the predicted water temperature, means to infer the solar radiation correction term of the pre-chlorine injection rate from the difference between the expected solar radiation amount and the present solar radiation amount, the expected chlorine demand amount and the present Means to infer the chlorine demand correction term of the pre-chlorine injection rate from the difference in chlorine demand, and the organic matter concentration of the pre-chlorine injection rate from the difference between the target organic matter concentration and the current organic matter concentration of the treatment pond effluent. The means for inferring the correction term, the means for inferring the residual chlorine concentration correction term for the pre-chlorine injection rate from the difference between the target residual chlorine concentration and the current residual chlorine concentration in the treated pond effluent, and the respective terms for the pre-chlorine injection rate are added And a pre-chlorine injection control device for a water purification plant, which is provided with means for obtaining a pre-target chlorine injection rate.
【請求項2】 フロック形成池及び沈殿池よりなる処理
池の後段にろ過池が配置された浄水場にて、ろ過池流入
水に対する中塩素注入を制御する装置において、 ろ過池水量からろ過池における予想滞留時間を推論する
手段と、 該予想滞留時間、現在日射量およびろ過池の現在温度要
素から中塩素注入率の気象要因項を推論する手段と、 ろ過池流入水の現在有機物濃度および現在塩素要求量か
ら予想塩素要求量を推論する手段と、 該予想塩素要求量およびろ過池の現在温度要素から中塩
素注入率の水質要因項を推論する手段と、 日射量変動に基づいて中塩素注入率の日射量補正項を推
論する手段と、 ろ過池流出水の目標有機物濃度および現在有機物濃度の
差から中塩素注入率の有機物濃度補正項を推論する手段
と、 ろ過池流出水の目標残留塩素濃度および現在残留塩素濃
度の差から中塩素注入率の残留塩素濃度補正項を推論す
る手段と、 中塩素注入率の各項を合算して目標中塩素注入率を求め
る手段とを備えたことを特徴とする浄水場の中塩素注入
制御装置。
2. A device for controlling medium chlorine injection to the inflow water of a filter at a water treatment plant in which the filter is placed after the treatment tank consisting of a floc formation tank and a sedimentation tank, Means for inferring the expected residence time, means for inferring the meteorological factor term of the medium chlorine injection rate from the expected residence time, the current solar radiation and the current temperature element of the filter, the current organic matter concentration of the inflow water of the filter and the current chlorine Means to infer the expected chlorine demand from the demand, means to infer the water quality factor term of the medium chlorine injection rate from the estimated chlorine requirement and the current temperature element of the filter, and the medium chlorine injection rate based on the fluctuation of the solar radiation Means to infer the solar radiation correction term for the filter, the means to infer the organic matter concentration correction term for the medium chlorine injection rate from the difference between the target organic matter concentration and the current organic matter concentration in the effluent of the filter basin, and the target residue of the effluent in the filter effluent. A means for inferring the residual chlorine concentration correction term for the medium chlorine injection rate from the difference between the elemental concentration and the current residual chlorine concentration, and a means for obtaining the target medium chlorine injection rate by summing each term of the medium chlorine injection rate were provided. The chlorine injection control device in the water purification plant.
【請求項3】 請求項2記載の装置において、前記予想
塩素要求量を推論する手段は、前記現在有機物濃度およ
び現在塩素要求量の他にろ過池における除マンガン処理
の有無を入力パラメータとして推論を行うものであるこ
とを特徴とする浄水場の中塩素注入制御装置。
3. The apparatus according to claim 2, wherein the means for inferring the expected chlorine demand is inferred by using the presence or absence of manganese removal treatment in the filter basin as an input parameter in addition to the current organic matter concentration and the current chlorine demand. An inside chlorine injection control device for water purification plants characterized by being performed.
【請求項4】 請求項1ないし3記載の装置において、
前記現在有機物濃度は、紫外線吸光度を指標として検出
されたものを用いることを特徴とする浄水場の前塩素注
入制御装置または中塩素注入制御装置。
4. The device according to claim 1, wherein
A pre-chlorine injection control device or a medium chlorine injection control device of a water purification plant, wherein the present organic matter concentration is one detected using ultraviolet absorption as an index.
【請求項5】 請求項1ないし4記載の装置において、
各種パラメータを推論する手段としてファジィ推論手段
を用いたことを特徴とする浄水場の前塩素注入制御装置
または中塩素注入制御装置。
5. The device according to claim 1, wherein
A pre-chlorine injection control device or a medium-chlorine injection control device of a water purification plant, characterized by using a fuzzy inference means as a means for inferring various parameters.
JP23486392A 1992-09-02 1992-09-02 Pre/middle chlorination dosage controller for purification plant Pending JPH0679284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23486392A JPH0679284A (en) 1992-09-02 1992-09-02 Pre/middle chlorination dosage controller for purification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23486392A JPH0679284A (en) 1992-09-02 1992-09-02 Pre/middle chlorination dosage controller for purification plant

Publications (1)

Publication Number Publication Date
JPH0679284A true JPH0679284A (en) 1994-03-22

Family

ID=16977528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23486392A Pending JPH0679284A (en) 1992-09-02 1992-09-02 Pre/middle chlorination dosage controller for purification plant

Country Status (1)

Country Link
JP (1) JPH0679284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043521B1 (en) * 2008-08-04 2011-06-23 이태일 System and method for computing chlorine input ratio
JP2016168572A (en) * 2015-03-13 2016-09-23 株式会社東芝 Chlorine injection rate setting method, chlorine injection rate setting device and chlorine injection rate setting system
JP2020168606A (en) * 2019-04-03 2020-10-15 株式会社東芝 Chlorine injection control device, chlorine injection control system, chlorine injection control method and computer program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043521B1 (en) * 2008-08-04 2011-06-23 이태일 System and method for computing chlorine input ratio
JP2016168572A (en) * 2015-03-13 2016-09-23 株式会社東芝 Chlorine injection rate setting method, chlorine injection rate setting device and chlorine injection rate setting system
JP2020168606A (en) * 2019-04-03 2020-10-15 株式会社東芝 Chlorine injection control device, chlorine injection control system, chlorine injection control method and computer program

Similar Documents

Publication Publication Date Title
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JP2002126721A (en) Method and apparatus for controlling injection ratio of chemicals
JPH0679284A (en) Pre/middle chlorination dosage controller for purification plant
WO1993007089A1 (en) Method of controlling wastewater purification plants using quality evaluation of measuring data
JP2699588B2 (en) Pre-chlorination injection control device for water purification plant
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JPH03165892A (en) Controller for preinjection of chlorine in water purifying plant
Dongsheng et al. A case study on the IMC for ozone dosing process of drinking water treatment
JPH06114377A (en) Automatic injection device of chloride agent in proportion to ultraviolet rays
Dongsheng et al. Case study on the advanced control for ozone dosing process of drinking water treatment
JPH078711A (en) Filtration pond cleaning time controlling apparatus
JPS58137488A (en) Method for controlling injection of chlorine in water purifying plant
Gamiz et al. Feed-forward control for a Drinking Water Treatment Plant chlorination process
JPH0215278B2 (en)
JPS61133193A (en) Guidance device for controlling injection of chlorine in water purifying plant
JPH04305206A (en) Flocculating and filtration tank for water treatment
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
JPH07144195A (en) Chlorine injection control system
JPH0443718B2 (en)
JPH03224694A (en) Chlorine dosing control device in water purification plant
JPH10202268A (en) Chlorine injector at water treating plant
JPS6234407B2 (en)
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment
JPH0768270A (en) Chlorine injection control device
JPS62174802A (en) Process control method