JPH0443718B2 - - Google Patents

Info

Publication number
JPH0443718B2
JPH0443718B2 JP6854084A JP6854084A JPH0443718B2 JP H0443718 B2 JPH0443718 B2 JP H0443718B2 JP 6854084 A JP6854084 A JP 6854084A JP 6854084 A JP6854084 A JP 6854084A JP H0443718 B2 JPH0443718 B2 JP H0443718B2
Authority
JP
Japan
Prior art keywords
measuring means
measuring
stock solution
cod
anaerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6854084A
Other languages
Japanese (ja)
Other versions
JPS60212293A (en
Inventor
Fumitaka Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP59068540A priority Critical patent/JPS60212293A/en
Publication of JPS60212293A publication Critical patent/JPS60212293A/en
Publication of JPH0443718B2 publication Critical patent/JPH0443718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は有機性廃棄物等の嫌気性処理装置、
特に高度処理における反応を適正に維持するよう
にした嫌気性処理装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to an anaerobic treatment device for organic waste, etc.
In particular, the present invention relates to an anaerobic treatment apparatus that appropriately maintains reactions in advanced treatment.

〔従来技術〕[Prior art]

従来、嫌気性処理は30日程度の滞留時間で消化
を行うものがあり、運転状況の設定、管理等はラ
フでよく、人手により行われていた。このような
処理では、滞留時間が長いため、装置が大形化す
る欠点があり、これを解決するために滞留時間が
短く(例えば2〜10時間から数日間)高度処理を
行う嫌気性処理が提案されている。
Conventionally, anaerobic processing has been used to perform digestion with a residence time of about 30 days, and the setting and management of operating conditions were rough and had to be done manually. This type of treatment has the disadvantage that the equipment becomes large due to the long residence time.To solve this problem, anaerobic treatment, which performs advanced treatment with short residence time (for example, from 2 to 10 hours to several days), is recommended. Proposed.

滞留時間の短い嫌気性処理は、例えば嫌気反応
を酸生成相とメタン生成相の段階に分けたり、あ
るいはスラツジブランケツトや流動層等を利用し
て処理を高効率にすることにより、滞留時間を短
くするとともに高度処理を行うものである。この
ような高効率の高度処理では、嫌気槽における条
件を所定値に維持する必要があり、その管理が不
十分であると、処理水が悪化し、場合によつては
処理が不可能になるという問題点があつた。
Anaerobic treatment with a short residence time can be achieved by, for example, dividing the anaerobic reaction into an acid production phase and a methane production phase, or by making the treatment highly efficient by using a sludge blanket, fluidized bed, etc. It shortens the time and performs advanced processing. In such highly efficient advanced treatment, it is necessary to maintain the conditions in the anaerobic tank at a predetermined value, and if this is insufficiently controlled, the treated water will deteriorate and in some cases, treatment will become impossible. There was a problem.

このような高度処理を行う従来の嫌気性処理装
置では、フイードバツク方式による制御が行われ
ているが、原液の組成や量が変化したり、周囲の
条件が変化する場合には、このような制御では嫌
気槽の反応を一定に維持することは困難であり、
安定した処理が行えないという問題点があつた。
Conventional anaerobic treatment equipment that performs such advanced processing uses feedback control, but this type of control is necessary when the composition or amount of the stock solution changes, or when the surrounding conditions change. It is difficult to maintain a constant reaction in the anaerobic tank,
There was a problem that stable processing could not be performed.

〔発明の目的〕[Purpose of the invention]

この発明は上記問題点を解決するためのもの
で、嫌気槽内の反応状態を検出して原液供給量を
調整することにより、反応状態に合つた滞留時間
に調整して嫌気反応を一定に維持し、高効率で高
度の処理を安定して行うことができる嫌気性処理
装置を提供することを目的としている。
This invention is intended to solve the above problems, and by detecting the reaction state in the anaerobic tank and adjusting the amount of stock solution supplied, the residence time is adjusted to match the reaction state and the anaerobic reaction is maintained at a constant level. The object of the present invention is to provide an anaerobic treatment device that can stably perform high-level treatment with high efficiency.

〔発明の構成〕[Structure of the invention]

この発明は、嫌気性処理により有機物を分解す
る嫌気槽と、この嫌気槽に原液を供給するための
原液供給ポンプを有する原液供給手段と、 嫌気槽から処理液を取出す処理液取出手段と、 嫌気槽から生成ガスを取出すガス取出手段と、 原液に蒸気を供給するための第1のコントロー
ル弁を有する蒸気供給手段と、 原液に中和剤を供給するための第2のコントロ
ール弁を有する中和剤供給手段と、 原液のPHを測定する第1のPH測定手段、および
嫌気槽内液のPHを測定する第2のPH測定手段と、 原液の流量を測定する流量測定手段と、 原液のCODを測定する第1のCOD測定手段、
および処理液のCODを測定する第2のCOD測定
手段と、 蒸気供給後の原液の温度を測定する第1の温度
測定手段、および嫌気槽内液の温度を測定する第
2の温度測定手段と、 嫌気槽内液の有機酸濃度を測定する有機酸濃度
測定手段と、 嫌気槽内液の酸化還元電位を測定する酸化還元
電位測定手段と、 生成ガスの炭酸ガス濃度を測定する炭酸ガス濃
度測定手段と、 第1の温度測定手段、流量測定手段および第1
のCOD測定手段の信号から嫌気処理のための最
適温度となるように第1のコントロール弁の開度
の設定値を演算し、第2の温度測定手段の信号か
ら嫌気槽内液の温度を設定値に保つように第1の
コントロール弁の開度の設定値を補正し、かつ第
1のPH測定手段および流量測定手段の信号から嫌
気処理のための最適PHとなるように第2のコント
ロール弁の開度の設定値を演算し、第2のPH測定
手段の信号から嫌気槽内液のPHを設定値に保つよ
うに第2のコントロール弁の開度の設定値を補正
し、かつ第1のCOD測定手段の信号から嫌気処
理のための最適流量となるように原液供給ポンプ
の設定値を演算し、有機酸濃度測定手段、酸化還
元電位測定手段、第2のCOD測定手段および炭
酸ガス濃度測定手段の信号から嫌気槽内液の有機
酸濃度、酸化還元電位、処理液のCOD、および
生成ガスの炭酸ガス濃度を所定値に保つように原
液供給ポンプの流量の設定値を補正して制御する
演算制御装置と を備えたことを特徴とする嫌気性処理装置であ
る。
The present invention provides: an anaerobic tank for decomposing organic matter through anaerobic treatment; a stock solution supply means having a stock solution supply pump for supplying the stock solution to the anaerobic tank; a processing liquid extraction means for taking out the processing liquid from the anaerobic tank; A neutralizer comprising: a gas extraction means for taking out the produced gas from the tank; a steam supply means having a first control valve for supplying steam to the stock solution; and a second control valve for supplying a neutralizing agent to the stock solution. a first PH measuring means for measuring the PH of the stock solution; a second PH measuring means for measuring the PH of the solution in the anaerobic tank; a flow rate measuring means for measuring the flow rate of the stock solution; and a COD of the stock solution. a first COD measuring means for measuring;
and a second COD measuring means for measuring the COD of the treated liquid; a first temperature measuring means for measuring the temperature of the raw liquid after steam supply; and a second temperature measuring means for measuring the temperature of the liquid in the anaerobic tank. , an organic acid concentration measuring means for measuring the organic acid concentration of the liquid in the anaerobic tank, a redox potential measuring means for measuring the redox potential of the liquid in the anaerobic tank, and a carbon dioxide concentration measuring means for measuring the carbon dioxide concentration of the produced gas. means, a first temperature measuring means, a flow rate measuring means and a first temperature measuring means;
From the signal from the COD measuring means, the opening degree setting value of the first control valve is calculated so as to achieve the optimum temperature for anaerobic treatment, and from the signal from the second temperature measuring means, the temperature of the liquid in the anaerobic tank is set. The setting value of the opening degree of the first control valve is corrected so that the opening degree is maintained at the same value, and the second control valve is corrected so that the opening degree of the first control valve is maintained at the optimum pH value for anaerobic treatment based on the signals from the first pH measurement means and the flow rate measurement means. calculates the set value of the opening of the second control valve, and corrects the set value of the opening of the second control valve so as to maintain the pH of the liquid in the anaerobic tank at the set value based on the signal from the second PH measuring means; The setting value of the stock solution supply pump is calculated to obtain the optimum flow rate for anaerobic treatment from the signal of the COD measuring means of the organic acid concentration measuring means, the redox potential measuring means, the second COD measuring means and the carbon dioxide concentration. Based on the signal from the measuring means, the flow rate settings of the stock solution supply pump are corrected and controlled to maintain the organic acid concentration of the anaerobic tank solution, oxidation-reduction potential, COD of the treated solution, and carbon dioxide concentration of the produced gas at predetermined values. This is an anaerobic treatment device characterized by being equipped with an arithmetic and control device that performs the following steps.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面の実施例により説明する。
図面は実施例の系統図である。図面において、1
は嫌気槽であつて、嫌気処理により有機物を分解
するように嫌気状態に維持されている。嫌気槽1
の下部には原液供給管2および排泥管3が連絡
し、上部には処理液排出管4およびガス排出管5
が連絡している。原液供給管2には原液供給ポン
プP1および混合器6が設けられており、第1の
コントロール弁V1を有する蒸気管7が混合器6
に連絡し、第2のコントロール弁V2を有する薬
注管8が原液供給管2に連絡している。嫌気槽1
から循還ポンプP2を有する循環液管9が原液供
給管2に連絡している。
Hereinafter, the present invention will be explained with reference to embodiments of the drawings.
The drawing is a system diagram of the embodiment. In the drawing, 1
is an anaerobic tank and is maintained in an anaerobic state to decompose organic matter through anaerobic treatment. Anaerobic tank 1
A raw solution supply pipe 2 and a sludge drainage pipe 3 are connected to the lower part of the , and a treated liquid discharge pipe 4 and a gas discharge pipe 5 are connected to the upper part of the .
is in contact. The stock solution supply pipe 2 is provided with a stock solution supply pump P 1 and a mixer 6, and a steam pipe 7 with a first control valve V 1 is connected to the mixer 6.
A dosing pipe 8 with a second control valve V 2 is connected to the stock solution supply pipe 2 . Anaerobic tank 1
A circulating liquid line 9 with a circulation pump P 2 connects to the stock liquid supply line 2 .

10は全体の制御を行う演算制御器、11は原
液供給ポンプP1の流量を調節するポンプ制御器、
PH1は原液のPHを測定する第1のPH計であり、そ
の信号は演算制御器10に与えられ、ここで演算
されたコントロール弁V2の開度の設定値により、
コントロール弁V2の開度を制御するようになつ
ている。FRSは原液の流量を測定する流量計、
COD1は原液のCODを測定する第1のCOD計で、
それぞれ信号は演算制御器10に与えられ、ここ
で演算された原液供給ポンプP1の流量の設定値
により、ポンプ制御器11を介して原液供給ポン
プP1の流量を制御するようになつている。T1
混合器6の温度を測定する第1の温度計で、信号
は演算制御器10に与えられ、ここで演算された
コントロール弁V1の開度の設定値により、コン
トロール弁V1の開度を制御するようになつてい
る。
10 is an arithmetic controller that performs overall control; 11 is a pump controller that adjusts the flow rate of the stock solution supply pump P1 ;
PH 1 is the first PH meter that measures the PH of the stock solution, and its signal is given to the arithmetic controller 10, and based on the set value of the opening degree of the control valve V 2 calculated here,
The opening degree of control valve V2 is controlled. FRS is a flowmeter that measures the flow rate of stock solution.
COD 1 is the first COD meter that measures the COD of the stock solution.
Each signal is given to the calculation controller 10, and the flow rate of the stock solution supply pump P1 is controlled via the pump controller 11 based on the set value of the flow rate of the stock solution supply pump P1 calculated here. . T1 is a first thermometer that measures the temperature of the mixer 6, and a signal is given to the arithmetic controller 10, and based on the set value of the opening degree of the control valve V1 calculated here, the control valve V1 is adjusted. It is designed to control the opening degree.

PH2は循環液(嫌気槽内液)のPHを測定する第
2のPH計で、その信号は演算制御器10に与えら
れ、演算結果によりコントロール弁V2の開度の
設定値を補正するようになつている。OAは循環
液の有機酸濃度を測定する濃度計、ORPは嫌気
槽1の酸化還元電位を測定するORP計、COD2
処理液のCODを測定する第2のCOD計、CO2
生成ガスの炭酸ガス濃度を測定するCO2計で、そ
れぞれ信号は演算制御器10に与えられ、演算結
果によりポンプ制御器11を介して原液供給ポン
プP1の流量の設定値を補正するようになつてい
る。T2は嫌気槽1の温度を測定する第2の温度
計で、信号は演算制御器10に与えられ、コント
ロール弁V1の開度の設定値を補正するようにな
つている。
PH 2 is a second PH meter that measures the PH of the circulating fluid (liquid in the anaerobic tank), and its signal is given to the arithmetic controller 10, which corrects the set value of the opening degree of the control valve V 2 based on the arithmetic result. It's becoming like that. OA is a concentration meter that measures the organic acid concentration of the circulating fluid, ORP is an ORP meter that measures the redox potential of anaerobic tank 1, COD 2 is the second COD meter that measures the COD of the treated fluid, and CO 2 is the produced gas. The CO 2 meter measures the carbon dioxide concentration of each, and each signal is given to the arithmetic controller 10, and the set value of the flow rate of the stock solution supply pump P1 is corrected via the pump controller 11 based on the arithmetic result. There is. T2 is a second thermometer that measures the temperature of the anaerobic tank 1, and a signal is given to the arithmetic controller 10 to correct the set value of the opening degree of the control valve V1 .

以上の構成において、原液供給管2から原液供
給ポンプP1により被処理原液が供給され、蒸気
管7から加温用の蒸気が供給されて、混合器6で
混合して加温され、薬注管8から中和剤が供給さ
れて、中和して嫌気槽1に導入される。嫌気槽1
では槽内の汚泥と混合して嫌気性処理が行われ、
嫌気性細菌の作用により、原液中の有機物が有機
酸に分解し、有機酸がさらにメタンおよび炭酸ガ
スに分解する。嫌気槽1内の混合液は循環液管9
を通つて循環し、汚泥は排泥管3から、処理液は
処理液排出管4から、生成ガスはガス排出管5か
らそれぞれ排出される。
In the above configuration, the stock solution to be treated is supplied from the stock solution supply pipe 2 by the stock solution supply pump P 1 , heating steam is supplied from the steam pipe 7, mixed and heated in the mixer 6, and the chemical injection is performed. A neutralizing agent is supplied from the pipe 8, neutralized, and introduced into the anaerobic tank 1. Anaerobic tank 1
The sludge is mixed with the sludge in the tank and subjected to anaerobic treatment.
Due to the action of anaerobic bacteria, the organic matter in the stock solution is decomposed into organic acids, and the organic acids are further decomposed into methane and carbon dioxide gas. The mixed liquid in the anaerobic tank 1 is circulated through the circulating liquid pipe 9.
The sludge is discharged from the sludge discharge pipe 3, the treatment liquid is discharged from the treatment liquid discharge pipe 4, and the generated gas is discharged from the gas discharge pipe 5.

以上の処理において、嫌気槽1内の温度は反応
効率を高めるために重要な因子である。そこで温
度計T1の信号によりコントロール弁V1の開度を
設定値に調整し、原液が所定温度になるように調
整される。ここで所定温度とは、原液が嫌気槽1
に投入され嫌気処理を受けた時に最適温度に維持
可能な設定値であり、原液の流量、濃度等により
変化するので、流量計FRS、COD計COD1の信号
等を入力して演算制御器10において演算され
る。原液を所定温度に調整しても、嫌気槽1にお
ける実際の処理では種々の要因により温度が変動
し、効率が低下するので、温度計T2の信号によ
りコントロール弁V1の開度の設定値が補正され
る。この段階における補正も温度計T1、流量計
FRS、COD計COD1、COD2等の信号を入力して
演算を行い嫌気槽1内の温度が反応の最適温度に
維持されるように行われる。
In the above processing, the temperature within the anaerobic tank 1 is an important factor for increasing reaction efficiency. Therefore, the opening degree of the control valve V1 is adjusted to a set value based on the signal from the thermometer T1 , and the stock solution is adjusted to a predetermined temperature. Here, the predetermined temperature means that the stock solution is in the anaerobic tank 1.
This is a setting value that can be maintained at the optimum temperature when it is put into the water and subjected to anaerobic treatment, and it changes depending on the flow rate, concentration, etc. of the stock solution. It is calculated in Even if the stock solution is adjusted to a predetermined temperature , during actual treatment in the anaerobic tank 1 , the temperature will fluctuate due to various factors and the efficiency will decrease. is corrected. Corrections at this stage are also made using the thermometer T 1 and the flowmeter
Calculations are performed by inputting signals from FRS, COD meters COD 1 , COD 2, etc., and the temperature inside the anaerobic tank 1 is maintained at the optimum temperature for the reaction.

嫌気槽1のPHも反応に重要な因子となるので、
PH計PH1の信号によりコントロール弁V2の開度を
設定値に調整し、原液が所定PHとなるように調整
される。ここで所定PHとは、嫌気槽1に導入され
嫌気性反応を受けたときに最適PHとなる設定値で
あり、原液の流量等により変化するので、流量計
FRSの信号等を入力して演算される。原液を所
定PHに調整しても嫌気槽1では、生成する有機酸
によりPHが設定値を外れて変動し、反応効率が低
下するので、PH計PH2の信号によりコントロール
弁V2の開度の設定値が補正される。
The pH of anaerobic tank 1 is also an important factor in the reaction, so
The opening degree of the control valve V2 is adjusted to the set value based on the signal from the PH meter PH1 , and the stock solution is adjusted to a predetermined pH. Here, the predetermined PH is the setting value that becomes the optimum PH when introduced into the anaerobic tank 1 and undergoes an anaerobic reaction, and since it changes depending on the flow rate of the stock solution, etc.
Calculated by inputting FRS signals, etc. Even if the stock solution is adjusted to the specified pH, the pH in the anaerobic tank 1 will fluctuate beyond the set value due to the generated organic acid, reducing the reaction efficiency . The set value of is corrected.

嫌気処理において最も重要な因子は負荷となる
原液の供給量であり、原液の有機物によつて嫌気
槽1における滞留時間を変化させる必要があるた
め、COD計COD1の信号により適正な流量の設定
値が演算制御器10において演算され、ポンプ制
御器11により原液供給ポンプP1の供給量が調
整され、流量計FRSによつてチエツクされる。
ここで適正な流量とは、原液が嫌気槽1に導入さ
れ、前記温度およびPHで嫌気処理を受けたとき、
放流基準を満足する処理水質まで処理されるのに
必要な滞留時間となる単位時間当りの流量であ
り、原液のCODによつて変化する。
The most important factor in anaerobic treatment is the supply amount of the stock solution that acts as a load, and the residence time in the anaerobic tank 1 needs to be changed depending on the organic matter in the stock solution, so the appropriate flow rate can be set using the signal from the COD meter COD 1. The value is calculated in the arithmetic controller 10, the supply amount of the stock solution supply pump P1 is adjusted by the pump controller 11, and checked by the flowmeter FRS.
The appropriate flow rate here means that when the stock solution is introduced into the anaerobic tank 1 and subjected to anaerobic treatment at the above temperature and pH,
It is the flow rate per unit time that is the residence time required to treat the treated water to a quality that satisfies the discharge standards, and it changes depending on the COD of the raw solution.

このように原液のCODによつて流量を調整し
て原液の供給を行つても、種々の要因により嫌気
槽1内の反応状態を一定に維持することは困難で
あるので、本発明では嫌気槽1内の反応状態を検
出し、滞留時間を調整するため原液供給ポンプ
P1の流量の設定値が補正される。補正の第1の
手段として、嫌気槽1内の有機酸濃度が濃度計
OAによつて測定され、その濃度が高くなつたと
きは原液供給量も少なくし、濃度が低くなつたと
きは原液供給量を多くするように補正される。
Even if the flow rate is adjusted according to the COD of the stock solution and the stock solution is supplied, it is difficult to maintain a constant reaction state in the anaerobic tank 1 due to various factors. A stock solution supply pump is used to detect the reaction state in 1 and adjust the residence time.
The flow rate set value of P1 is corrected. As a first means of correction, the organic acid concentration in the anaerobic tank 1 can be measured using a concentration meter.
It is measured by OA, and when the concentration increases, the amount of stock solution supplied is decreased, and when the concentration becomes low, the amount of stock solution supplied is corrected to increase.

補正の第2の手段として嫌気槽1内の酸化還元
電位がORP計ORPによつて測定され、所定値よ
り高いときは供給量を少なくし、低いときは多く
するように補正される。補正の第3の手段として
処理液のCODがCOD計COD2により測定され、所
定値より高い場合は供給量を少なくし、低いとき
は多くするように補正され、放流基準を越えると
きは供給が停止される。補正の第4の手段として
生成ガス中の炭酸ガス濃度がCO2計CO2により測
定され、所定値より高い場合は供給量を多くし、
逆の場合は少なくするように補正される。
As a second means of correction, the oxidation-reduction potential in the anaerobic tank 1 is measured by an ORP meter, and when it is higher than a predetermined value, the supply amount is reduced, and when it is lower than a predetermined value, it is corrected to be increased. As a third means of correction, the COD of the processing liquid is measured using a COD meter COD 2 , and if it is higher than a predetermined value, the supply amount is reduced, if it is low, it is corrected to be increased, and if it exceeds the discharge standard, the supply amount is reduced. will be stopped. As a fourth means of correction, the carbon dioxide concentration in the produced gas is measured using a CO 2 meter, and if it is higher than a predetermined value, the supply amount is increased,
In the opposite case, the amount is corrected to decrease.

原液供給量の補正は、上記第1ないし第4の手
段が並列的に行われ、どれか1つの要因に異常が
発生した場合、直ちに原液供給量を補正して反応
を正常な状態に戻すようにされている。この場
合、各測定手段の信号により設定値との差を求
め、流量計FRSおよびCOD計COD1の信号から、
適正な補正量が演算制御器10において演算さ
れ、ポンプ制御器11により補正が行われる。
The correction of the stock solution supply amount is carried out in parallel by the above-mentioned first to fourth means, so that if an abnormality occurs in any one of the factors, the stock solution supply amount is immediately corrected to return the reaction to a normal state. is being used. In this case, find the difference from the set value using the signals from each measuring means, and calculate the difference from the signals from the flowmeter FRS and COD meter COD 1 .
An appropriate correction amount is calculated by the calculation controller 10, and the correction is performed by the pump controller 11.

以上の制御では温度計T1、PH計pH1、COD計
COD1よりに原液の温度、PH、CODが測定され、
これにより設計値に従つた設定値が演算され、設
定値に従つたフイードフオワード制御が行われ
る。そしてこのようなフイードフオワード制御を
行つても実際の反応状態は変動するので、温度計
T2、PH計pH2、濃度計OA、ORP計ORP、COD
計COD2、CO2計CO2等により嫌気槽1の温度、
PH、有機酸濃度、酸化還元電位、処理水のCOD、
生成ガスの炭酸ガス濃度等の反応状態を検出し、
フイードバツク制御を行う。ここでフイードバツ
ク制御はフイードフオワード制御の設定値を補正
するように行われるので、これらの一方による制
御に比べて安定した嫌気反応を行うことができ
る。
In the above control, thermometer T 1 , PH meter pH 1 , COD meter
COD 1 measures the temperature, PH, and COD of the stock solution,
As a result, a set value according to the design value is calculated, and feed forward control is performed according to the set value. Even with such feed-forward control, the actual reaction state will fluctuate, so the thermometer
T 2 , PH meter pH 2 , concentration meter OA, ORP meter ORP, COD
The temperature of anaerobic tank 1 is determined by the total COD 2 , CO 2 , etc.
PH, organic acid concentration, redox potential, COD of treated water,
Detects reaction conditions such as carbon dioxide concentration of produced gas,
Performs feedback control. Since the feedback control is performed so as to correct the set value of the feedback control, a more stable anaerobic reaction can be performed than with control using only one of these controls.

なお、以上の説明において、嫌気槽1における
反応方法は従来から行われている方法が採用で
き、例えば酸生成相とメタン生成相に分離する方
法、これらを別の槽で行う方法、スラツジブラン
ケツトを使用する方法、流動層を使用する方法な
どが採用できる。また上記実施例においては、原
液および処理水のCODを測定するようにしたが、
TOCその他の水質を表わす値を測定して制御を
行つてもよい。嫌気槽1の反応状態の検出のため
に前記各項目を並列的に測定して制御するように
したが、これらの一部の項目のみによつて制御し
てもよく、さらに前記以外の反応状態を示す項目
によつて制御してもよく、これらの項目の測定は
人手により測定してもよい。
In the above explanation, the reaction method in the anaerobic tank 1 can be a conventional method, such as a method of separating an acid production phase and a methane production phase, a method of performing these in separate tanks, a method of performing a sludge run, etc. A method using a bucket, a method using a fluidized bed, etc. can be adopted. In addition, in the above example, the COD of the raw solution and the treated water was measured.
Control may also be performed by measuring TOC and other values representing water quality. In order to detect the reaction state of the anaerobic tank 1, the above-mentioned items are measured and controlled in parallel, but it is also possible to control only some of these items, and furthermore, the reaction state other than the above may be controlled. It may be controlled by items indicating , and these items may be measured manually.

本発明はし尿、食品工業廃水などの高濃度また
は低濃度の有機性廃水の処理に広く適用可能であ
る。
The present invention is widely applicable to the treatment of high-concentration or low-concentration organic wastewater such as human waste and food industry wastewater.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、嫌気槽内の反応状態を検出し
て原液供給量を調整するようにしたので、反応状
態に合つた滞留時間に調整して嫌気反応を一定に
維持し、高効率で高度の処理を安定して行うこと
ができる。
According to the present invention, since the reaction state in the anaerobic tank is detected and the supply amount of the stock solution is adjusted, the anaerobic reaction can be kept constant by adjusting the residence time to match the reaction state, and the anaerobic reaction can be maintained at a constant level with high efficiency. processing can be performed stably.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例の系統図であり、1は嫌気槽、1
0は演算制御器、11はポンプ制御器、P1,P2
はポンプ、FRSは流量計、COD1は第1のCOD
計、COD2は第2のCOD計、T1は第1の温度計、
T2は第2の温度計、PH1は第1のPH計、PH2は第2
のPH計、ORPはORP計、CO2はCO2計である。
The drawing is a system diagram of the example, where 1 is an anaerobic tank;
0 is the calculation controller, 11 is the pump controller, P 1 , P 2
is the pump, FRS is the flow meter, COD 1 is the first COD
COD 2 is the second COD meter, T 1 is the first thermometer,
T 2 is the second thermometer, PH 1 is the first PH meter, PH 2 is the second
PH meter is PH meter, ORP is ORP meter, CO 2 is CO 2 meter.

Claims (1)

【特許請求の範囲】 1 嫌気性処理により有機物を分解する嫌気槽
と、 この嫌気槽に原液を供給するための原液供給ポ
ンプを有する原液供給手段と、 嫌気槽から処理液を取出す処理液取出手段と、 嫌気槽から生成ガスを取出すガス取出手段と、 原液に蒸気を供給するための第1のコントロー
ル弁を有する蒸気供給手段と、 原液に中和剤を供給するための第2のコントロ
ール弁を有する中和剤供給手段と、 原液のPHを測定する第1のPH測定手段、および
嫌気槽内液のPHを測定する第2のPH測定手段と、 原液の流量を測定する流量測定手段と、 原液のCODを測定する第1のCOD測定手段、
および処理液のCODを測定する第2のCOD測定
手段と、 蒸気供給後の原液の温度を測定する第1の温度
測定手段、および嫌気槽内液の温度を測定する第
2の温度測定手段と、 嫌気槽内液の有機酸濃度を測定する有機酸濃度
測定手段と、 嫌気槽内液の酸化還元電位を測定する酸化還元
電位測定手段と、 生成ガスの炭酸ガス濃度を測定する炭酸ガス濃
度測定手段と、 第1の温度測定手段、流量測定手段および第1
のCOD測定手段の信号から嫌気処理のための最
適温度となるように第1のコントロール弁の開度
の設定値を演算し、第2の温度測定手段の信号か
ら嫌気槽内液の温度を設定値に保つように第1の
コントロール弁の開度の設定値を補正し、かつ第
1のPH測定手段および流量測定手段の信号から嫌
気処理のための最適PHとなるように第2のコント
ロール弁の開度の設定値を演算し、第2のPH測定
手段の信号から嫌気槽内液のPHを設定値に保つよ
うに第2のコントロール弁の開度の設定値を補正
し、かつ第1のCOD測定手段の信号から嫌気処
理のための最適流量となるように原液供給ポンプ
の設定値を演算し、有機酸濃度測定手段、酸化還
元電位測定手段、第2のCOD測定手段および炭
酸ガス濃度測定手段の信号から嫌気槽内液の有機
酸濃度、酸化還元電位、処理液のCOD、および
生成ガスの炭酸ガス濃度を所定値に保つように原
液供給ポンプの流量の設定値を補正して制御する
演算制御装置と を備えたことを特徴とする嫌気性処理装置。
[Scope of Claims] 1. An anaerobic tank for decomposing organic matter through anaerobic treatment; a stock solution supply means having a stock solution supply pump for supplying the stock solution to the anaerobic tank; and a processing liquid extraction means for taking out the processing liquid from the anaerobic tank. , a gas extraction means for taking out the generated gas from the anaerobic tank, a steam supply means having a first control valve for supplying steam to the stock solution, and a second control valve for supplying a neutralizing agent to the stock solution. a neutralizing agent supplying means having: a first PH measuring means for measuring the PH of the stock solution; a second PH measuring means for measuring the PH of the solution in the anaerobic tank; a flow rate measuring means for measuring the flow rate of the stock solution; a first COD measuring means for measuring the COD of the stock solution;
and a second COD measuring means for measuring the COD of the treated liquid; a first temperature measuring means for measuring the temperature of the raw liquid after steam supply; and a second temperature measuring means for measuring the temperature of the liquid in the anaerobic tank. , an organic acid concentration measuring means for measuring the organic acid concentration of the liquid in the anaerobic tank, a redox potential measuring means for measuring the redox potential of the liquid in the anaerobic tank, and a carbon dioxide concentration measuring means for measuring the carbon dioxide concentration of the produced gas. means, a first temperature measuring means, a flow rate measuring means and a first temperature measuring means;
From the signal from the COD measuring means, the opening degree setting value of the first control valve is calculated so as to achieve the optimum temperature for anaerobic treatment, and from the signal from the second temperature measuring means, the temperature of the liquid in the anaerobic tank is set. The setting value of the opening degree of the first control valve is corrected so that the opening degree is maintained at the same value, and the second control valve is corrected so that the opening degree of the first control valve is maintained at the optimum pH value for anaerobic treatment based on the signals from the first pH measurement means and the flow rate measurement means. calculates the set value of the opening of the second control valve, and corrects the set value of the opening of the second control valve so as to maintain the pH of the liquid in the anaerobic tank at the set value based on the signal from the second PH measuring means; The setting value of the stock solution supply pump is calculated to obtain the optimum flow rate for anaerobic treatment from the signal of the COD measuring means of the organic acid concentration measuring means, the redox potential measuring means, the second COD measuring means and the carbon dioxide concentration. Based on the signal from the measuring means, the flow rate settings of the stock solution supply pump are corrected and controlled to maintain the organic acid concentration of the anaerobic tank solution, oxidation-reduction potential, COD of the treated solution, and carbon dioxide concentration of the produced gas at predetermined values. An anaerobic treatment device comprising: an arithmetic and control device that performs
JP59068540A 1984-04-06 1984-04-06 Anaerobic treatment apparatus Granted JPS60212293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068540A JPS60212293A (en) 1984-04-06 1984-04-06 Anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068540A JPS60212293A (en) 1984-04-06 1984-04-06 Anaerobic treatment apparatus

Publications (2)

Publication Number Publication Date
JPS60212293A JPS60212293A (en) 1985-10-24
JPH0443718B2 true JPH0443718B2 (en) 1992-07-17

Family

ID=13376675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068540A Granted JPS60212293A (en) 1984-04-06 1984-04-06 Anaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JPS60212293A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024287A (en) * 1987-03-31 1991-06-18 Yamaha Hatsudiki Kabushiki Kaisha Engine unit for vehicle
JP4206504B2 (en) * 1997-02-20 2009-01-14 栗田工業株式会社 Anaerobic treatment method and anaerobic treatment device
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment

Also Published As

Publication number Publication date
JPS60212293A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
KR100627874B1 (en) Sewage advanced treatment control system and the method thereof
JP2009502494A (en) Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor
KR20120101464A (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
KR20010052484A (en) Method for regulating aeration during waste water biological treatment
JP7215821B2 (en) water treatment equipment
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JPH0443718B2 (en)
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JPS60202788A (en) Treating apparatus for waste water containing fluorine and phosphorus
JP3906509B2 (en) Two-phase anaerobic wastewater treatment equipment
JP4908016B2 (en) Waste water treatment control system and control method
KR20070096786A (en) Method and apparatus for surplus sludge treatment
JP3697933B2 (en) Water treatment method and apparatus using ozone
JPH08257588A (en) Anaerobic treatment of organic waste liquid
JP3750923B2 (en) Method for adjusting activated sludge, method and apparatus for treating organic wastewater using the same
JP3376620B2 (en) Biological denitrification treatment apparatus and biological denitrification treatment method
JP3999869B2 (en) Biological water treatment equipment
JPS61287497A (en) Anaerobic digester
JPS62155999A (en) Method for controlling biological nitrification and denitrification process
JP2880816B2 (en) Anaerobic water treatment equipment
JPH0475079B2 (en)
CN111943354B (en) Carbon source adding method and system for denitrification filter tank system
JP7248724B2 (en) water treatment equipment
JP7422590B2 (en) Methane fermentation treatment method and methane fermentation treatment equipment
JPH09290298A (en) Method of adjusting feed methanol quantity and aerated quantity in nitrifying/denitrifying device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term