JPH07144195A - Chlorine injection control system - Google Patents

Chlorine injection control system

Info

Publication number
JPH07144195A
JPH07144195A JP29485093A JP29485093A JPH07144195A JP H07144195 A JPH07144195 A JP H07144195A JP 29485093 A JP29485093 A JP 29485093A JP 29485093 A JP29485093 A JP 29485093A JP H07144195 A JPH07144195 A JP H07144195A
Authority
JP
Japan
Prior art keywords
chlorine
injection
water
chlorine injection
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29485093A
Other languages
Japanese (ja)
Inventor
Akio Hayazaki
昭男 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP29485093A priority Critical patent/JPH07144195A/en
Publication of JPH07144195A publication Critical patent/JPH07144195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To be most preferable from a broad view point and to prevent deterioration of water quality by decreasing a phenomenon of an excessive injection of chlorine or a short injection, in a chlorine injection control system at a sewerage treating plate. CONSTITUTION:Turbidity TB of treating water flowing in a chlorine mixing pool, water temp. TP of the mixing pool, residual chlorine DC of discharging water from the mixture pool and a manual analysis estimated value of the treating water are defined as input variables, and the chlorine injection quality is performed with fuzzy interference by a fuzzy interference means 7 and a chlorine injection objective value is obtained with a ratio against a discharge flow rate, a chlorine injection machine 10 is controlled by a deviation from an actual chlorine injection quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】プロセスコントロールなどの制御
装置による下水処理場の塩素注入制御にファジィ推論を
導入して最適化した塩素注入制御方式に関する。
[Industrial application] The present invention relates to a chlorine injection control system optimized by introducing fuzzy reasoning into chlorine injection control of a sewage treatment plant by a control device such as a process control.

【0002】[0002]

【従来の技術】現状の塩素注入制御においては、下水処
理場の処理水の水質はほぼ一定であるとの前提の下で、
処理水量に対して一定比率で塩素を注入する塩素注入制
御方式を一般的に使用している。
2. Description of the Related Art In the current chlorine injection control, it is assumed that the quality of treated water in a sewage treatment plant is almost constant.
A chlorine injection control method is generally used in which chlorine is injected at a fixed ratio to the amount of treated water.

【0003】[0003]

【発明が解決しようとする課題】下水処理場を質的な観
点から概念的に表現すると、流入下水を沈砂池;最初沈
殿池、エアレーションタンク,最終沈殿池などの各種プ
ロセスにより生物化学的処理を行ない、得られた処理水
を更に殺菌処理した後放流水として放流する一連のプロ
セスということとなる。
When the sewage treatment plant is conceptually expressed from a qualitative viewpoint, the influent sewage is treated by various processes such as a sedimentation basin; a first sedimentation basin, an aeration tank, and a final sedimentation basin. This is a series of processes in which the resulting treated water is further sterilized and then discharged as discharged water.

【0004】なお、放流に際しては、総量規制などの放
流水質基準があり、残留塩素などについても規定されて
いる。
In the case of discharge, there are standards for discharged water quality such as total amount regulation, and residual chlorine is also specified.

【0005】一般的に、下水処理場のような生物化学的
処理では急激な変化に対して追従する反応応答性に関し
て冗長性があると云われており、実際の下水処理場では
季節,降雨,時刻などの質的,量的な流入下水の変動に
より処理水がある程度、それらの変動に影響される。
Generally, it is said that biochemical treatment such as a sewage treatment plant has redundancy with respect to reaction response to follow a sudden change. The treated water is affected to some extent by qualitative and quantitative fluctuations of inflowing sewage such as time of day.

【0006】このため処理水量に対して一定の比率で塩
素を注入する量的な制御方式では、次のような課題があ
る。
Therefore, the quantitative control system in which chlorine is injected at a constant ratio to the amount of treated water has the following problems.

【0007】(1)処理水の水質を考慮した制御でな
い。
(1) It is not a control considering the quality of treated water.

【0008】(2)塩素の注入の評価因子の一つである
放流水の残留塩素量を考慮した制御でない。
(2) It is not a control that considers the residual chlorine content of discharged water, which is one of the evaluation factors for chlorine injection.

【0009】(3)量的な制御が主体であり、質的な要
素を考慮しないため、マクロ的に最適な制御ではなく、
過注入による薬品消費量と注入ポンプの電力消費量の増
大によるコスト高や少注入による放流水質の悪化等を生
ずる可能性がある。
(3) Since the main control is quantitative control and qualitative factors are not taken into consideration, it is not macro-optimal control and
There is a possibility that the chemical consumption due to over-injection and the electric power consumption of the injecting pump increase, resulting in high cost and deterioration of discharged water quality due to small injection.

【0010】この発明は、上記の課題にかんがみなされ
たものであり、マクロ的に最適で、過注入や少注入を減
少させる安定な塩素注入制御を可能とし、少注入時の放
流水質の悪化の防止をはかる塩素注入制御方式を提供す
ることを目的とする。
The present invention has been made in view of the above problems, is macroscopically optimal, and enables stable chlorine injection control that reduces over-injection and low-injection, and can reduce the quality of discharged water during low-injection. The purpose is to provide a chlorine injection control method for prevention.

【0011】[0011]

【課題を解決するための手段】本発明は、処理プロセス
より流入する処理水を塩素混和池に導き塩素を注入して
水質の悪化を防止する下水処理場の塩素注入制御方式に
おいて、前記塩素混和池へ流入する処理水の濁度信号,
混和池の水温信号,混和池より放流する放水の残留塩素
信号および前記処理水の手動分析評価値を入力変数とし
出力変数の塩素注入量をファジィ推論で算出するファジ
ィ推論手段と、前記塩素注入量と前記放流水の放流流量
信号を入力し注入比率に基づく演算により塩素注入量目
標値を算出する比率調節手段と、前記注入量目標値と前
記混和池へ投入される実塩素注入量との偏差により塩素
注入機を制御するPI調節手段とで構成される。
The present invention relates to a chlorine injection control system for a sewage treatment plant, which introduces treated water flowing from a treatment process into a chlorine mixing tank to inject chlorine to prevent deterioration of water quality. Turbidity signal of treated water flowing into the pond,
Fuzzy inference means for calculating the chlorine injection amount of the output variable by fuzzy inference using the water temperature signal of the mixing pond, the residual chlorine signal of the discharged water discharged from the mixing pond and the manual analysis evaluation value of the treated water as input variables, and the chlorine injection amount. And a ratio adjusting means for calculating the chlorine injection amount target value by calculation based on the injection ratio by inputting the discharge flow rate signal of the discharged water, and the deviation between the injection amount target value and the actual chlorine injection amount injected into the mixing pond. And PI adjusting means for controlling the chlorine injector.

【0012】[0012]

【作用】処理水の濁度,混和池の水温,放流水の残留塩
素および処理水の手分析評価値などの質的な要素をファ
ジィ推論手段へとり込みファジィルールに基づいて塩素
注入量を推論算出する。この推論値を比率調節手段にお
いて、放流流量と設定注入率とに基づいて演算し塩素注
入量目標値を算出する。また、PI調節手段によって、
該目標値と実際に塩素混和池に投入されている実塩素注
入量とを比較しその偏差により塩素注入機を制御する。
[Function] Qualitative factors such as turbidity of treated water, water temperature of mixing pond, residual chlorine of discharged water, and manual analysis evaluation value of treated water are incorporated into fuzzy inference means to infer and calculate chlorine injection amount based on fuzzy rules. . The ratio adjustment means calculates this inferred value based on the discharge flow rate and the set injection rate to calculate the chlorine injection target value. Also, by the PI adjusting means,
The target value is compared with the actual amount of chlorine injected into the chlorine mixing pond, and the chlorine injector is controlled according to the deviation.

【0013】[0013]

【実施例】本発明の一実施例を示すシステム構成図であ
る図1により説明する。1は塩素混和池である。2は濁
度計であり、流入する処理水の濁度TBを検出する。3
は温度計にて、塩素混和池の水温TPを検出する。4は
流量計にて、塩素混和池の放流流量Qを検出する。5は
残留塩素計にて、放流水の残留塩素DCを検出する。6
は、塩素注入量検出器である。7は、ファジィ推論手段
であり、塩素注入量RTを前記検出要素と処理水の手分
析評価値により推論する。8は、比率調節手段であり、
放流流量Qに対する薬品の注入比率が設定されており、
前記塩素注入量RTと前記放流流量Qとを入力し塩素注
入量目標値RTMを演算する。9は、PI調節手段であ
り、前記塩素注入量目標値RTMと実際の実塩素注入量
RTJとを入力しその偏差出力の注入指令を塩素注入機
10へ送出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. 1, which is a system configuration diagram. 1 is a chlorine mixing pond. A turbidimeter 2 detects the turbidity TB of the inflowing treated water. Three
Detects the water temperature TP of the chlorine mixing pond with a thermometer. A flow meter 4 detects the discharge flow rate Q of the chlorine mixing pond. A residual chlorine meter 5 detects residual chlorine DC in the discharged water. 6
Is a chlorine injection amount detector. Reference numeral 7 is a fuzzy inference means, which infers the chlorine injection amount RT by the detection element and the hand analysis evaluation value of the treated water. 8 is a ratio adjusting means,
The chemical injection ratio to the discharge flow rate Q is set,
The chlorine injection amount RT and the discharge flow rate Q are input and the chlorine injection amount target value RTM is calculated. Reference numeral 9 is a PI adjusting means, which inputs the chlorine injection target value RTM and the actual actual chlorine injection amount RTJ and sends an injection command of a deviation output to the chlorine injector 10.

【0014】次に、実施例の動作を説明する。Next, the operation of the embodiment will be described.

【0015】塩素混和池1への流入処理水に設けられた
濁度計2で検出した濁度信号TB、塩素混和池1に設け
た温度計3で検出した水温信号TP、塩素混和池1より
の放流水路に設けられた残留塩素計5で検出した残留塩
素信号DCがファジィ推論手段7へ入力される。同時
に、処理水の有機物質やアンモニア等の成分を手分析し
た値を塩素注入に関して評価した手分析評価値BHをフ
ァジィ推論手段7へ入力する。なお、この評価値は処理
水の水質を濁度のみでは特定できない場合の補正用に使
用される。
Inflow to chlorine mixing pond 1 Turbidity signal TB detected by turbidity meter 2 provided in treated water, water temperature signal TP detected by thermometer 3 provided in chlorine mixing pond 1, chlorine mixing pond 1 The residual chlorine signal DC detected by the residual chlorine meter 5 provided in the discharge channel of the above is input to the fuzzy inference means 7. At the same time, the manual analysis evaluation value BH obtained by evaluating the values obtained by manually analyzing the components of the treated water, such as the organic substances and ammonia, is input to the fuzzy inference means 7. This evaluation value is used for correction when the water quality of treated water cannot be specified only by turbidity.

【0016】ファジィ推論手段7においては、前記入力
変数である手分析評価値BH,濁度信号TB,水温信号
TP,残留塩素量信号DCおよび出力変数である塩素注
入量信号RTを図2に示すようなH(High),M
(medium),L(Low)の3段階のファジィ関
数を定めると共に、推論のためのルールマトリックスを
表1のように規定する。
In the fuzzy inference means 7, FIG. 2 shows the hand analysis evaluation value BH which is the input variable, the turbidity signal TB, the water temperature signal TP, the residual chlorine amount signal DC and the chlorine injection amount signal RT which is the output variable. Like H (High), M
A fuzzy function having three stages of (medium) and L (Low) is defined, and a rule matrix for inference is defined as shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】即ち、以下のIF〜THENルール IF TB=H and and DC=L THEN RT=H IF TB=H and TP=H and DC=L THEN RT=M IF TB=M and TP=L and DC=L THEN RT=M IF BH=H and TB=M and and DC=L THEN RT=M IF TB=L and TP=L and DC=L THEN RT=L IF BH=L and TB=L and TP=M and DC=L THEN RT=M IF BH=H and TB=M and DC=L THEN RT=H IF BH=L and TB=M and DC=H THEN RT=L に基づいて、塩素注入量RTが推論される。That is, the following IF-THEN rules IF TB = H and and DC = L THEN RT = H IF TB = H and TP = H and DC = L THEN RT = M IF TB = M and TP = L and DC = L THEN RT = M IF BH = H and TB = M and and DC = L THEN RT = M IF TB = L and TP = L and DC = L THEN RT = L IF BH = L and TB = L and TP = M and DC = L THEN RT = M IF BH = H and TB = M and DC = L THEN RT = H IF BH = L and TB = M and DC = H THEN RT = L Inferred.

【0019】この推論された塩素注入量RTを比率調節
手段8に入力すると共に、放水路に設けられた流量計4
で検出された放流流量Qを入力し、予じめ設定してある
放流流量に対する塩素注入量の注入比率に基づき演算
し、塩素注入量目標値RTMを算出する。この目標値R
TMをPI調節手段9へ入力し、塩素注入量検出器6で
検出され入力された実塩素注入量RTJとを比較し、そ
の偏差出力である注入指令を塩素注入機10に与え、実
注入塩素量RTJを目標値RTMに合致させるよう制御
を行なう。
The inferred chlorine injection amount RT is input to the ratio adjusting means 8 and the flow meter 4 provided in the discharge channel.
The discharge flow rate Q detected in step 3 is input, calculation is performed based on the injection ratio of the chlorine injection amount to the preset discharge flow rate, and the chlorine injection target value RTM is calculated. This target value R
TM is input to the PI adjusting means 9, and the actual chlorine injection amount RTJ detected by the chlorine injection amount detector 6 and input is compared, and an injection command, which is a deviation output thereof, is given to the chlorine injection device 10, and the actual injection chlorine is supplied. Control is performed so that the amount RTJ matches the target value RTM.

【0020】[0020]

【発明の効果】本発明は、処理水の濁度、混和池の水
温、放流水の残留塩素および処理水の手分析評価値など
の質的な要素を考慮したファジィ制御を採用したため、
マクロ的に最適な塩素注入制御が可能となり、過注入や
少注入の問題を減少させることができ、安定な塩素注入
となった。また薬品消費量の低コストと、注入ポンプ電
力消費量の省エネがはかれる。また、少注入時の放流水
質の悪化も防止できる。更に、ファジィ推論を用いるた
め、柔軟なアルゴリズムの構成が可能であり、ルールの
変更や修正が容易にできるなど多くの優れた効果を有す
る。
INDUSTRIAL APPLICABILITY The present invention employs fuzzy control in consideration of qualitative factors such as turbidity of treated water, water temperature of mixing pond, residual chlorine of discharged water, and manual analysis evaluation value of treated water.
Macroscopically optimum chlorine injection control became possible, problems of over-injection and low-injection could be reduced, and stable chlorine injection was achieved. In addition, the cost of chemicals is low and the power consumption of infusion pump is energy saving. In addition, it is possible to prevent the quality of discharged water from deteriorating when a small amount of water is injected. Furthermore, since fuzzy reasoning is used, flexible algorithm configuration is possible, and there are many excellent effects such as easy change and modification of rules.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】入力・出力変数のメンバーシップ関数。FIG. 2 is a membership function of input / output variables.

【符号の説明】[Explanation of symbols]

1…塩素混和池 2…濁度計 3…温度計 4…流量計 5…残留塩素計 6…塩素注入量計 7…ファジィ推論手段 8…比率調節手段 9…PI調節手段 10…塩素注入機 TB…濁度信号 TP…水温信号 DC…残留塩素信号 BH…手分析評価値 RT…塩素注入量信号 RTM…塩素注入量目標値 RTJ…実塩素注入量 Q…放流流量 1 ... Chlorine mixing pond 2 ... Turbidity meter 3 ... Thermometer 4 ... Flowmeter 5 ... Residual chlorine meter 6 ... Chlorine injection amount meter 7 ... Fuzzy inference means 8 ... Ratio adjusting means 9 ... PI adjusting means 10 ... Chlorine injector TB ... Turbidity signal TP ... Water temperature signal DC ... Residual chlorine signal BH ... Hand analysis evaluation value RT ... Chlorine injection amount signal RTM ... Chlorine injection amount target value RTJ ... Actual chlorine injection amount Q ... Discharge flow rate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 550 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C02F 1/50 550 L

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 処理プロセスより流入する処理水を塩素
混和池に導き塩素を注入して水質の悪化を防止する下水
処理場の塩素注入制御方式において、 前記塩素混和池へ流入する処理水の濁度信号,混和池の
水温信号,混和池より放流する放水の残留塩素信号およ
び前記処理水の手動分析評価値を入力変数とし出力変数
の塩素注入量をファジィ推論で算出するファジィ推論手
段と、 前記塩素注入量と前記放流水の放流流量信号を入力し注
入比率に基づく演算により塩素注入量目標値を算出する
比率調節手段と、 前記注入量目標値と前記混和池へ投入される実塩素注入
量との偏差により塩素注入機を制御するPI調節手段と
を有することを特徴とした塩素注入制御方式。
1. A chlorination control system for a sewage treatment plant, which introduces treated water flowing from a treatment process to a chlorine mixing tank to inject chlorine to prevent deterioration of water quality. A fuzzy inference means for calculating the chlorine injection amount of the output variable by fuzzy inference using the temperature signal, the water temperature signal of the admixture pond, the residual chlorine signal of the discharged water discharged from the admixture pond and the manual analysis evaluation value of the treated water as an input variable; Ratio adjusting means for inputting the chlorine injection amount and the discharge flow rate signal of the discharged water and calculating a chlorine injection target value by calculation based on the injection ratio, the injection amount target value and the actual chlorine injection amount to be injected into the mixing pond A chlorine injection control system characterized by having a PI adjusting means for controlling the chlorine injection machine according to the deviation from the above.
JP29485093A 1993-11-25 1993-11-25 Chlorine injection control system Pending JPH07144195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29485093A JPH07144195A (en) 1993-11-25 1993-11-25 Chlorine injection control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29485093A JPH07144195A (en) 1993-11-25 1993-11-25 Chlorine injection control system

Publications (1)

Publication Number Publication Date
JPH07144195A true JPH07144195A (en) 1995-06-06

Family

ID=17813066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29485093A Pending JPH07144195A (en) 1993-11-25 1993-11-25 Chlorine injection control system

Country Status (1)

Country Link
JP (1) JPH07144195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043521B1 (en) * 2008-08-04 2011-06-23 이태일 System and method for computing chlorine input ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043521B1 (en) * 2008-08-04 2011-06-23 이태일 System and method for computing chlorine input ratio

Similar Documents

Publication Publication Date Title
JP4334317B2 (en) Sewage treatment system
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
JP4365512B2 (en) Sewage treatment system and measurement system
JPH07144195A (en) Chlorine injection control system
JPH0389993A (en) Method for controlling concentration of phosphorus in waste water
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JPH09122681A (en) Water quality controlling apparatus
JPH10286585A (en) Aeration air volume controlling apparatus
JPH11128976A (en) Control of intermittent aeration type activated sludge method
JP2003053375A (en) Device for controlling water quality
JPH07185583A (en) Waste water disposing method and device using continuous breath measuring device
JPH11262777A (en) Method for removing phosphorus in wastewater
JP2001170685A (en) Treating device for nitrogen-containing waste water
JPH0215278B2 (en)
JP4020667B2 (en) Residual chlorine control device for treated water
KR100373511B1 (en) Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using I.D(Instantaneous Ozone Demand) and method thereof
KR20020007469A (en) Auto control apparatus of ozone process and AOP(Advanced Oxidation Process) using CT control and method thereof
JPH06335694A (en) Controller of device for biologically treating waste water
JPH0679284A (en) Pre/middle chlorination dosage controller for purification plant
JP3045826B2 (en) Chlorine injection control device
JPH06126293A (en) Method for controlling dissolved oxygen in aeration tank
JPH04305206A (en) Flocculating and filtration tank for water treatment
JPH11300382A (en) Method for removing phosphorus in sewage
JPH07160339A (en) Simple discharge gate control system
JP2001170651A (en) Ozonization controller for ozonization system