JPS63162058A - Organic thin film forming device - Google Patents
Organic thin film forming deviceInfo
- Publication number
- JPS63162058A JPS63162058A JP61308274A JP30827486A JPS63162058A JP S63162058 A JPS63162058 A JP S63162058A JP 61308274 A JP61308274 A JP 61308274A JP 30827486 A JP30827486 A JP 30827486A JP S63162058 A JPS63162058 A JP S63162058A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- water tanks
- developed
- molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims description 82
- 239000010408 film Substances 0.000 claims description 73
- 238000000638 solvent extraction Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 29
- 238000005192 partition Methods 0.000 description 17
- 230000004888 barrier function Effects 0.000 description 11
- 125000001165 hydrophobic group Chemical group 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002120 nanofilm Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/11—Vats or other containers for liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C3/00—Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
- B05C3/02—Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material
- B05C3/09—Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating separate articles
- B05C3/109—Passing liquids or other fluent materials into or through chambers containing stationary articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
- B05D1/20—Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
- B05D1/202—Langmuir Blodgett films (LB films)
- B05D1/206—LB troughs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、有機薄膜の形成装置に係り、特に複数種の有
機薄膜を累積したベテロ構造膜を得る有機薄膜の形成装
置に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an organic thin film forming apparatus, and more particularly to an organic thin film forming apparatus for obtaining a beta structure film in which a plurality of types of organic thin films are accumulated. Regarding.
(従来の技術)
近年、有機分子を用いる材料技術の進歩が著しい、これ
に伴い、有機分子を用いた新しい機能素子を実現しよう
とする気運が高まっている。特に、有機分子を用いた超
薄膜を利用した素子開発の検討が盛んに行われている。(Prior Art) In recent years, there has been remarkable progress in material technology using organic molecules, and as a result, there is a growing momentum to realize new functional elements using organic molecules. In particular, the development of devices using ultra-thin films made of organic molecules is being actively studied.
有機薄膜の形成法として従来より、スピンコード法、真
空蒸着法、ラングミュア・プロジェット(Langmu
ir−Brodgett)法等が知られている。これら
のうち特に、ラングミュア・プロジェット法は、有機分
子をλ単位で配向して積層することができる唯一の薄膜
形成法として近年多大の注目を集めている。以下の説明
では、ラングミュア・プロジェット法をLB法と略称し
、このLB法により形成される膜をLB法と称する。
LB法の適用が考えられている素子としては、 LB法
を絶縁膜とするMiS型発光発光素子IS トランジス
タ、色素分子を用いた光電変換素子、光記録媒体、各種
センサ、極性膜構造を用いた圧電素子等がある。またL
BIEQを超微細加工用レジストとして利用することも
検討されている。Conventional methods for forming organic thin films include the spin code method, vacuum evaporation method, and Langmuir-Prodgett method.
The ir-Brodgett method and the like are known. Among these, the Langmuir-Prodgett method in particular has attracted a great deal of attention in recent years as the only thin film forming method that can align and stack organic molecules in units of λ. In the following description, the Langmuir-Prodgett method will be abbreviated as the LB method, and the film formed by this LB method will be referred to as the LB method.
Devices to which the LB method is being considered include MiS-type light emitting devices (IS) transistors using the LB method as an insulating film, photoelectric conversion devices using dye molecules, optical recording media, various sensors, and devices using polar film structures. There are piezoelectric elements, etc. Also L
The use of BIEQ as a resist for ultrafine processing is also being considered.
ところで通常のLB法では、単一分子からなる両親媒性
分子を水面上に展開し、これを所定の表面圧になるよう
に圧縮して凝縮膜化した後、試料基板をこの単分子膜を
横切って上下動させることにより、基板上に有機分子薄
膜を累積するという方法が採られる。この方法は垂直浸
漬法と呼ばれる。By the way, in the usual LB method, a single amphiphilic molecule is spread on the water surface, compressed to a predetermined surface pressure to form a condensed film, and then the sample substrate is coated with this monomolecular film. A method is adopted in which a thin film of organic molecules is accumulated on the substrate by moving it up and down across the substrate. This method is called the vertical immersion method.
これに対し、展開された単分子膜に平行に試料基板を接
触させて基板上に有機分子薄膜を付着させる方法は、水
平付着法と呼ばれる。これらの方法により得られる累積
単分子膜の構造には、親水基同士、疎水基同が隣接して
累積されるY型と、親木基に対して疎水基が隣接して累
積されるX型およびY型がある。基板表面の親木的若し
くは疎水的性質により、最初に付着する単分子膜の親水
基側が基板側になりその単分子膜の疎水基に次の単分子
膜の親木基が付く形で順次単分子膜が累積されるのがX
型であり、これと逆に累積されるのがY型である。On the other hand, a method of depositing an organic molecule thin film onto a substrate by bringing the sample substrate into contact with the developed monomolecular film in parallel is called a horizontal deposition method. The structure of the cumulative monolayer obtained by these methods is Y-type, in which hydrophilic groups and hydrophobic groups are accumulated adjacent to each other, and X-type, in which hydrophobic groups are accumulated adjacent to the parent group. and Y type. Due to the parent-like or hydrophobic nature of the substrate surface, the hydrophilic group side of the first monolayer attached becomes the substrate side, and the parent group of the next monolayer is attached to the hydrophobic group of the monolayer, and the monolayers are sequentially attached. X is the accumulation of molecular membranes
Y-type is the type that accumulates in the opposite way.
以上述べたいずれの方法でも、単一成分からなる累積単
分子膜では、その応用範囲が限られる。In any of the above-mentioned methods, the range of application is limited if the cumulative monolayer is made of a single component.
そこで異種分子の交互累積膜(ヘテロ構造膜)の形成法
に関する研究が増加している。複数種の有機分子膜を累
積するためには、水槽内の異なる領域に異なる有機分子
膜を展開して、試料基板を順次具なる単分子膜が展開さ
れた領域に浸漬することが必要である。その様な交互累
積膜形成装置として従来提案されているのは、いずれも
一つの水槽内を固定バリアで区切って複数種の単分子膜
を展開できるようにしたものである。固定バリアで区切
られた有機分子膜展開領域の下部は連通しており、全て
の展開領域の水は共通である。しかしながらこの様な従
来の交互累積膜形成装置には、次のような問題がある。Therefore, research on methods for forming alternately cumulative films (heterostructure films) of different types of molecules is increasing. In order to accumulate multiple types of organic molecular films, it is necessary to spread different organic molecular films in different areas in the water tank, and then sequentially immerse the sample substrate into the areas where the specific monomolecular films have been spread. . All of the conventionally proposed apparatuses for forming such alternating cumulative films are those in which a single water tank is divided by a fixed barrier so that a plurality of types of monomolecular films can be developed. The lower portions of the organic molecular membrane development regions separated by fixed barriers are in communication, and water is common to all development regions. However, such a conventional alternating cumulative film forming apparatus has the following problems.
まず、単分子膜を展開するには、その有機分子に応じて
水相条件(例えばpH9温度、イオン濃度)を最適設定
することが望まれる。しかし、共通の水槽では異なる単
分子膜の展開領域毎に異なるpH値や温度等を設定する
ことができない。従って展開分子の選択範囲が限定され
る。また、異なる単分子膜の展開領域間で試料基板を搬
送するためには、(a)固定バリアを可どう性材料によ
り形成してこれに試料基板支持棒が通過できるようなゲ
ート部を設けること、(b)固定バリアを回転軸として
試料基板をこれに保持して回転駆動できるようにするこ
と1等が提案されている。しかし、(a)の構成として
ゲート部を通して試料基板の搬送を行うと、展開分子の
相互混入や表面圧の変動が生じる。これは良質のへテロ
構造膜の形成を難しくする。またこれらの構成では、交
互累積膜の種類が2f!Jに限定され、3種以上の単分
子膜の累積ができない、更にこれら従来の装置では試料
基板を水槽内部で搬送しなければならない、このため既
に基板に付着している有機薄膜の剥離が生じる場合があ
る。First, in order to develop a monomolecular film, it is desirable to optimally set aqueous phase conditions (for example, pH 9 temperature, ion concentration) depending on the organic molecule. However, in a common water tank, it is not possible to set different pH values, temperatures, etc. for different monomolecular film development areas. Therefore, the selection range of developing molecules is limited. In addition, in order to transport the sample substrate between different monomolecular film development areas, (a) a fixed barrier is formed of a flexible material and a gate section is provided thereon through which the sample substrate support rod can pass; , (b) It has been proposed to use a fixed barrier as a rotation axis to hold a sample substrate on the fixed barrier so that it can be rotated. However, when the sample substrate is transported through the gate section in the structure (a), mutual mixing of developed molecules and fluctuations in surface pressure occur. This makes it difficult to form a good quality heterostructure film. In addition, in these configurations, the type of alternate cumulative film is 2f! J, it is not possible to accumulate three or more types of monomolecular films.Furthermore, in these conventional devices, the sample substrate must be transported inside a water tank, which causes peeling of the organic thin film already attached to the substrate. There are cases.
さらにまた、上記方式にあっては、いずれも垂直浸漬法
を基本とした膜形成法であるため、Y型へテロ累積膜(
114水基同士、又は疎水同士が隣接した構造)しか得
られない。このため、異種分子間の相互作用を積極的に
利用した機能素子開発で必要とされる他の型を含む多様
な膜構造形成に、十分対処できないという不都合が生じ
る。この様に、従来提案されている方式では、複数の異
種分子から成る良質なヘテロ累′!Itll!Jの形成
は、実際上は、極めて多くの困難が予想されると共に、
その適用範囲も著しく限定されたものとなる。Furthermore, since all of the above methods are film forming methods based on the vertical dipping method, the Y-type hetero-cumulative film (
A structure in which 114 water groups or hydrophobic groups are adjacent to each other can only be obtained. For this reason, there arises the disadvantage that it is not possible to adequately cope with the formation of various film structures including other types, which are required in the development of functional elements that actively utilize interactions between different types of molecules. In this way, conventionally proposed methods produce high-quality heterogeneous molecules composed of multiple different molecules. Itllll! In practice, formation of J is expected to be extremely difficult, and
Its scope of application will also be significantly limited.
(発明が解決しようとする問題点)
以上のように従来の有機薄膜の形成装置では、水槽が共
通であるために、累積膜構成分子の選択範囲が狭く、ま
た水槽内部で試料基板を搬送しなければならないという
問題があり、このため多種の構成分子膜からなる良質の
へテロ構造膜を得ることが困雅であった。(Problems to be Solved by the Invention) As described above, in the conventional organic thin film forming apparatus, since the water tank is common, the selection range of cumulative film constituent molecules is narrow, and the sample substrate is transported inside the water tank. Therefore, it has been difficult to obtain a high-quality heterostructure film composed of various constituent molecular films.
本発明は、上記事情に鑑みてなされたものでその目的と
するところは、良質のへテロ構造膜を得ることができる
有機薄膜の形成装置を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to provide an organic thin film forming apparatus that can obtain a high quality heterostructure film.
(問題点を解決するための手段)
本発明のへテロ構造膜形成装置は、それぞれ両親媒性有
機分子の単分子膜を展開する互いに独立した複数の水槽
を有し、これら水槽に展開された単分子膜を水平に保持
された基板上に付着させるために基板を上下に駆動する
基板駆動手段と、基板を各水槽の外部において各水槽間
で搬送する基板搬送手段とを設けている。展開される単
分子膜の圧縮WA駆動系表面圧検出器とは、各水槽毎に
設けられる。(Means for Solving the Problems) The heterostructure film forming apparatus of the present invention has a plurality of mutually independent water tanks in which a monomolecular film of amphiphilic organic molecules is developed, and A substrate driving means for driving the substrate up and down in order to deposit a monomolecular film on the horizontally held substrate, and a substrate transport means for transporting the substrate between the water tanks outside of each water tank are provided. A compressed WA drive system surface pressure detector for the monomolecular film to be developed is provided for each water tank.
本発明は更に一ヒ記基本構造に加えて、基板の水槽内で
の浸漬領域を仕切るカセットと、このカセットを基板と
は独立に上下に駆動するカセット駆動手段とを設けたこ
とを特徴とする。The present invention is further characterized in that, in addition to the basic structure described above, a cassette is provided for partitioning the immersion area of the substrate in the water tank, and a cassette driving means for driving the cassette up and down independently of the substrate. .
(作 用)
このような構成により、独立の複数の水槽であるため、
各々の水槽で所望の水相組成を設定することができまた
それぞれの展開分子膜を所望の凝縮膜とすることができ
る6また基板の搬送は水槽の外部で行われるため、異種
展開分子の混入が防止され、基板に付着した単分子膜の
剥離現象も防止される。従って良質のへテロ構造膜を得
ることができると共に、基板を水平に保持し、基板片面
は全面同時に膜形成が行なえるため量産に適している。(Function) With this configuration, there are multiple independent aquariums, so
The desired aqueous phase composition can be set in each water tank, and each developed molecular film can be made into a desired condensed film6.Furthermore, since the substrate is transported outside the water tank, there is no possibility of contamination with different kinds of developed molecules. This also prevents the peeling phenomenon of the monomolecular film attached to the substrate. Therefore, a high-quality heterostructure film can be obtained, and the substrate can be held horizontally, and a film can be formed on one side of the substrate at the same time, making it suitable for mass production.
また、仕切り用カセットを組合わせた本発明においては
、基板に付着する分子領域を区切ることができるために
余分な分子の付着が防止できるため均一なヘテロ構造膜
が形成できると共に、力tットを上昇させる前に展開分
子の表面圧を下げることができ分子の破壊等が防止でき
る。In addition, in the present invention in which a partitioning cassette is combined, it is possible to partition the molecular region adhering to the substrate, thereby preventing the adhesion of excess molecules, making it possible to form a uniform heterostructure film. The surface pressure of the unfolded molecules can be lowered before increasing the molecular weight, and destruction of the molecules can be prevented.
(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
第1図は、3種類の両親媒性有機分子を展開する3つの
完全に独立した水槽1,2.3を用いた実施例のへテロ
構造膜形成装置である。各水槽1゜2.3は防振架台5
に脚4により固定されている。FIG. 1 shows an embodiment of a heterostructure film forming apparatus using three completely independent water tanks 1, 2.3 in which three types of amphipathic organic molecules are developed. Each water tank 1°2.3 has a vibration-proof stand 5
is fixed by legs 4.
これらの水槽1,2.3はその水面上に展開した分子を
所望の表面圧で凝縮膜化するための表面圧検出器および
圧縮駆動系をそれぞれ独立にもっている。図では、水槽
1上にある表面圧検出器7が示されているが、実際には
水槽2,3上にも同様の表面圧検出器があるにの表面圧
検出器7は例えば、ろ紙を吊下げて展開された分子膜の
表面張力を測定する、電子天秤を用いたウィルヘルミー
(Vilhelmy)型と呼ばれるものである。圧縮駆
動系の基本構成要素は、水′Wj3について説明すれば
、水面に有機分子を展開、圧縮するためのテフロン製可
動バリア8である。この可動バリア8は平行バネ9によ
り支持台10に保持され、この支持台10は架台に固定
されたガイド11に摺動自在に保持されてネジ12に連
結されている。このネジ12は、その両端が支持台14
.15により保持され、モータ13からの動力が歯車1
6.17を介して伝達されるようになっている。即ちモ
ータ13を駆動することにより、可動バリア8をネジ1
2に沿って移動させることができ、これにより所定表面
圧の凝縮膜を形成することができる。他の水槽1および
2についても、圧縮駆動系の構成は同じである。なお図
では、水槽1,2では左側に、水M93では右側にそれ
ぞれモータを含む駆動部を設けているが、これは収納ス
ペースを考慮した結果である6膜形成を行うための基板
を水平に保持し水槽表面まで下降させたり、上昇させた
りという上下動駆動をするために、基板駆動装置18が
ある。These water tanks 1, 2.3 each independently have a surface pressure detector and a compression drive system for condensing molecules developed on the water surface into a film at a desired surface pressure. In the figure, the surface pressure detector 7 is shown on the water tank 1, but in reality there are similar surface pressure detectors on the water tanks 2 and 3. This is a so-called Wilhelmy type method that uses an electronic balance to measure the surface tension of a suspended and developed molecular film. Regarding the water 'Wj3, the basic component of the compression drive system is a movable barrier 8 made of Teflon for spreading and compressing organic molecules on the water surface. This movable barrier 8 is held by a parallel spring 9 on a support stand 10, and this support stand 10 is slidably held by a guide 11 fixed to the stand and connected to a screw 12. This screw 12 has both ends attached to the support base 14.
.. 15, and the power from the motor 13 is transferred to the gear 1.
6.17. That is, by driving the motor 13, the movable barrier 8 is moved by the screw 1.
2, thereby forming a condensed film with a predetermined surface pressure. The configuration of the compression drive system is the same for the other water tanks 1 and 2 as well. In the figure, the drive unit including the motor is installed on the left side for water tanks 1 and 2, and on the right side for water tank M93, but this is due to consideration of storage space.The substrate for forming 6 films is placed horizontally. A substrate driving device 18 is provided to perform vertical movement such as holding the substrate and lowering it to the surface of the aquarium and lifting it up.
基板駆動装置18の各水槽間における電送機構は、防振
架台5上に固定された柱36a、 36b上に構成され
ている。この搬送機構の構成は、次のようになっている
。駆動源のモータ39の動力は、歯車40を介しネジ3
8に伝達され、ガイドレール37の案内により基板駆動
装置18が、各水槽間を空中で自由に移動できる。The electric transmission mechanism between each water tank of the board driving device 18 is constructed on pillars 36a and 36b fixed on the vibration-proof pedestal 5. The configuration of this transport mechanism is as follows. The power of the motor 39 as a drive source is transmitted to the screw 3 through a gear 40.
8, and the substrate driving device 18 can freely move in the air between the water tanks by being guided by the guide rails 37.
第2図は、基板駆動装!!18の詳細を示すものである
。支持基板30上に、試料としての基板20の上下移動
の動力源としてのモータ29が固定されている。Figure 2 is the board drive system! ! 18 details. A motor 29 is fixed on the support substrate 30 as a power source for vertically moving the substrate 20 as a sample.
この動力は、歯車28を介してネジ27に伝達されてガ
イド26上の支持台50に与えられる。この支持台50
上には、基板20を保持しているガイド51が取付けら
れている。すなりち、モータ29を駆動することにより
、試料基板20は水槽の水面を何回でも上下することが
できる。This power is transmitted to the screw 27 via the gear 28 and applied to the support base 50 on the guide 26. This support stand 50
A guide 51 holding the substrate 20 is attached above. By driving the motor 29, the sample substrate 20 can be moved up and down the water surface of the water tank any number of times.
また、仕切り用カセット31が試料基板20の上下移動
とは、独立に移動できるように、モータ35の動力をネ
ジ34を介しガイド33上に固定されたアーム32上に
保持されている。Further, the partition cassette 31 is held on an arm 32 fixed on a guide 33 via a screw 34 so that the partition cassette 31 can be moved independently of the vertical movement of the sample substrate 20.
ここで仕切り用カセット31は、例えば厚さ1腫程度の
薄いフィルム状であり、材質としては、例えばテフロン
(PTFE系複合材)のようなものが適している。なお
、仕切り用カセット31は細いワイヤー状のもの等地の
ものでもよい、このように構成された装置により、ヘテ
ロ構造膜を形成する工程を具体的に次に説明する。Here, the partition cassette 31 is in the form of a thin film, for example, about one inch thick, and is suitably made of a material such as Teflon (PTFE composite material). Note that the partitioning cassette 31 may be a thin wire-like one or the like.The process of forming a heterostructure film using an apparatus configured in this way will be specifically described below.
第3図は、仕切り用カセット31がない、若しくは使用
しない構造で水槽1,2.3の順に基板を移動させてヘ
テロ構造膜を形成した場合の各水槽での単分子膜累積の
様子を示している。水槽1゜2.3にはそれぞれ異なる
分子41.42.43の単分子膜が所定表面圧で形成さ
れている。まず、水槽1の分子41まで基板20を下降
させた後に上昇させる工程■においては、分子41の疎
水基側か基板20に接触する状態で単分子膜が形成され
る。FIG. 3 shows how the monomolecular film accumulates in each tank when a heterostructure film is formed by moving the substrates in the order of tanks 1, 2, and 3 in a structure in which the partition cassette 31 is not used or is not used. ing. Monomolecular films of different molecules 41, 42, and 43 are formed at a predetermined surface pressure in the water tanks 1, 2, and 3, respectively. First, in step (2) in which the substrate 20 is lowered to the molecules 41 in the water tank 1 and then raised, a monomolecular film is formed with the hydrophobic group side of the molecules 41 in contact with the substrate 20.
次にこの基板20を水槽2上に搬送し水槽2の分子42
まで基板20を下降させた後に上昇させる工程■におい
て、分子42の疎水基が既に形成されている分子41の
親水基に付く形で分子42の単分子膜が累積される0次
いで、基板2oを水槽3上に搬送し水槽3の分子43ま
で基板20を下降させた後に上昇させる工程■において
、分子43の疎水基が既に形成されている分子42の親
木基に付く形で分子43の単分子膜が累積される。この
ようにして、この実施例によれば、複数の独立した水槽
を設けているため、展開分子同士の混入汚染が防止され
る。また各水槽で水相組成を任意のpH,温度、イオン
濃度に設定することができるため展開分子の選択範囲が
広がる。Next, this substrate 20 is transported onto the water tank 2, and the molecules 42 in the water tank 2 are
In the step (3) of lowering and then raising the substrate 20 to 0, a monomolecular film of the molecules 42 is accumulated with the hydrophobic groups of the molecules 42 attached to the hydrophilic groups of the molecules 41 that have already been formed. In the step (2) of transporting the substrate 20 onto the aquarium 3, lowering it to the molecule 43 in the aquarium 3, and then raising it, the hydrophobic group of the molecule 43 attaches to the parent group of the molecule 42 that has already been formed. Molecular membranes are accumulated. In this manner, according to this embodiment, since a plurality of independent water tanks are provided, contamination by mixing of developed molecules with each other is prevented. Furthermore, since the aqueous phase composition can be set to arbitrary pH, temperature, and ion concentration in each water tank, the selection range of molecules to be developed is expanded.
また、基板は水槽外部に取出して空中を搬送するため水
槽内部を搬送するときに生じる付着した単分子膜が剥離
することが防止できる。さらに垂直浸漬法は基板を水相
中に0 、3 m /分程度の非常に低速で出入れしな
ければならず膜形成に時間がかかるが、このように水平
に基板を上昇、下降させることにより膜形成が単時間で
行なえ、量産に適している。Furthermore, since the substrate is taken out of the water tank and transported through the air, it is possible to prevent the attached monomolecular film from peeling off during transport inside the water tank. Furthermore, in the vertical immersion method, the substrate must be moved in and out of the water phase at a very low speed of about 0.3 m/min, which takes time to form a film, but it is not possible to raise and lower the substrate horizontally in this way. This allows film formation to be performed in a short time, making it suitable for mass production.
第4図は、仕切り用カセット31を使用してヘテロ構造
膜を形成する工程を水槽1を例にとり示すものである。FIG. 4 shows the process of forming a heterostructure membrane using the partition cassette 31, taking the water tank 1 as an example.
第4図(a)の状態は、水槽1の中に水相組成55から
なる水面上に展開分子41が所望の凝縮膜になる前を示
す、第4図(b)においては、可動バリヤ8を駆動させ
展開分子41を所望の凝縮膜とした後、仕切り用カセッ
ト31を降下させて所定表面圧に形成された水面との単
分子膜を基板20の面積分だけ区切り、基板20を水面
と平行に降下させて単分子41を累積させる。The state shown in FIG. 4(a) shows the state before the molecules 41 developed on the water surface of the water tank 1 form a desired condensation film with the water phase composition 55. In FIG. 4(b), the movable barrier 8 After driving the expanded molecules 41 to form a desired condensed film, the partitioning cassette 31 is lowered to separate the monomolecular film formed at a predetermined surface pressure from the water surface by the area of the substrate 20. Single molecules 41 are accumulated by falling in parallel.
第4図(c)においては、基板20を弓1−ヒげた後、
可動バリヤ8を移動させ水面上の展開分子膜の表面圧を
所定値より小さくした後、仕切り用カセット31を引上
げる。In FIG. 4(c), after bowing the board 20,
After moving the movable barrier 8 to make the surface pressure of the developed molecular film on the water surface smaller than a predetermined value, the partition cassette 31 is pulled up.
ここで、展開分子膜の表面圧を所定値より小さくした後
に仕切り用カセット31を引き上げる理由は1例えば表
面圧を下げずに仕切り用カセット31を引き上げると、
表面圧が高いために、仕切り用カセット31内の分子膜
が無い部分に、周囲の分子が急激に流れ込み分子の砿壊
等が生じるおそれがあるからである。Here, the reason why the partition cassette 31 is pulled up after reducing the surface pressure of the developed molecular membrane below a predetermined value is 1. For example, if the partition cassette 31 is pulled up without lowering the surface pressure,
This is because, due to the high surface pressure, surrounding molecules may rapidly flow into the portions of the partition cassette 31 where there is no molecular membrane, leading to the possibility that the molecules may be destroyed.
第4図(d)においては、再度、水面上の単分子膜を所
定表面圧に圧縮する。ここで同種の単分子膜を基板20
上に累積する場合は、同水膜上で第4図(a)から(d
)の工程を繰り返す、異なった単分子膜を基板20に累
積する場合は、基板搬送系を駆動させて基板20を水槽
2.あるいは水槽3上に移動し同工程(第4図(a)か
ら(d))を繰り返すことにより積層方向に多種類の単
分子膜が例えば、第6図に示すように親水基と疎水基が
隣接した構造で累積される。In FIG. 4(d), the monomolecular film on the water surface is again compressed to a predetermined surface pressure. Here, the same kind of monomolecular film is placed on the substrate 20.
If it accumulates on the same water film, from Figure 4 (a) to (d)
) To accumulate different monomolecular films on the substrate 20 by repeating the process, the substrate transport system is driven and the substrate 20 is transferred to the water tank 2. Alternatively, by moving to the water tank 3 and repeating the same process (Fig. 4 (a) to (d)), many kinds of monomolecular films are formed in the stacking direction, for example, as shown in Fig. 6, hydrophilic groups and hydrophobic groups are separated. Accumulated in adjacent structures.
仕切り用カセット31を用いたことにより、基板20の
面積分の分子のみが基板20に付着する。したがって基
板20の周囲にある必要ない分子が、基板20引上げ時
に付着する(例えば基板20周囲の膜が2層になってし
まう)ことが防止でき、均一なヘテロ構造膜が形成でき
る。さらに、仕切り用カセット31を用いたことにより
、前述したごとく基板20に分子を付着した後に展開分
子膜の表面圧を下げることができ分子の破壊等が生じる
ことがない。By using the partition cassette 31, only molecules corresponding to the area of the substrate 20 adhere to the substrate 20. Therefore, unnecessary molecules around the substrate 20 can be prevented from adhering when the substrate 20 is pulled up (for example, the film around the substrate 20 becomes two layers), and a uniform heterostructure film can be formed. Furthermore, by using the partition cassette 31, the surface pressure of the developed molecular film can be lowered after molecules are attached to the substrate 20 as described above, and breakage of the molecules does not occur.
本発明は上記実施例に限られるものではない。The present invention is not limited to the above embodiments.
例えば実施例では3つの水槽を用いた場合を説明したが
、少なくとも二つの水槽があれば本発明は有効であり、
また4つ以上の水槽を用意して多様な分子を展開して複
雑なヘテロ構造膜を形成することも可能である。また基
板を上下動させる基板駆動手段や基板搬送手段の具体的
な構成はその趣旨を逸脱しない範囲で種々変形して実施
することができる。For example, in the embodiment, a case was explained in which three water tanks were used, but the present invention is effective as long as there are at least two water tanks.
It is also possible to form a complex heterostructured film by preparing four or more water tanks and deploying various molecules. Further, the specific configurations of the substrate driving means and the substrate transporting means for vertically moving the substrate can be modified in various ways without departing from the spirit thereof.
以上述べたように本発明によれば、独立した複数の水槽
を設け、試料基板をこれら水槽の外部で搬送するように
構成することにより、良質のへテロ構造膜を累積形成す
ることのできる有機薄膜形成装置が得られる。また水槽
の水面上に他展開される単分子膜のうち試料基板が浸漬
される一部領域を区切る仕切り用カセットを設け、これ
を基板の上下動駆動とは独立に上下動駆動できるように
することによって、単分子膜の破壊等を生じることなく
均一なヘテロ構造膜が形成できる。As described above, according to the present invention, by providing a plurality of independent water tanks and configuring the sample substrate to be transported outside of these tanks, it is possible to cumulatively form a high-quality heterostructure film. A thin film forming device is obtained. In addition, a partition cassette is provided to separate a part of the monomolecular film spread on the water surface of the water tank into which the sample substrate is immersed, and this can be driven vertically independently of the vertical movement of the substrate. By this, a uniform heterostructure film can be formed without causing destruction of the monomolecular film.
第1図は本発明の一実施例のへテロ構造膜形成装置を示
す斜視図、第2図はその基板駆動装置部を詳細に示す斜
視図、第3図は仕切り用カセットを用いない場合のへテ
ロ構造膜累積の様子を説明するための図、第4図と第5
図は仕切り用カセットを用いた場合のへテロ構造膜累積
の様子を説明するための図、第6図は第3図および第5
図の方法で得られるヘテロ構造膜を拡大して模式的に示
す図である。
1.2.3・・・水槽、 4・・・脚、5・・・架
台、 7・・・表面圧検出器。
8・・・圧縮用可動バリア、 9・・・平行バネ、10
・・・支持台、 11・・・ガイド、12
・・・ネジ、 13・・・モータ、14
、15・・・支持台、 16.17・・・歯車、
18・・・基板駆動装置、 20・・・基板、26
・・・ガイド、 27・・・ネジ、28・・
・歯車、 29・・・モータ、30・・・
支持基板。
31・・・仕切り用カセット(仕切手段)、32・・・
アーム、 33・・・支持台34・・・ネ
ジ、39・・・モータ、
36・・・柱、 37・・・ガイドレ
ール、38・・・ネジ、 39・・・モ
ータ。
40・・・歯車、 41.42.43・・
・分子、50・・・支持台、 55・・・水
相組成。
代理人 弁理士 則 近 憲 佑
同 竹 花 喜久男
第 2 図
第 3 図FIG. 1 is a perspective view showing a heterostructure film forming apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view showing the substrate drive unit in detail, and FIG. 3 is a perspective view showing a case where a partition cassette is not used. Figures 4 and 5 are diagrams for explaining the state of heterostructure film accumulation.
The figure is a diagram for explaining the state of heterostructure film accumulation when a partition cassette is used.
FIG. 2 is an enlarged view schematically showing a heterostructure film obtained by the method shown in the figure. 1.2.3... Water tank, 4... Legs, 5... Frame, 7... Surface pressure detector. 8... Movable barrier for compression, 9... Parallel spring, 10
...Support stand, 11...Guide, 12
...Screw, 13...Motor, 14
, 15... Support stand, 16.17... Gear,
18... Substrate driving device, 20... Substrate, 26
...Guide, 27...Screw, 28...
・Gear, 29...Motor, 30...
Support substrate. 31... Partition cassette (partition means), 32...
Arm, 33... Support stand 34... Screw, 39... Motor, 36... Pillar, 37... Guide rail, 38... Screw, 39... Motor. 40...gear, 41.42.43...
- Molecules, 50...Support, 55...Aqueous phase composition. Agent Patent Attorney Noriyuki Chika Yudo Kikuo Takehana Figure 2 Figure 3
Claims (4)
互いに独立した複数の水槽と、これら水槽に展開された
単分子膜を基板上に付着させるために基板を水平に保持
し上下に駆動する基板駆動手段と、前記基板を前記複数
の水槽の間で搬送する基板搬送手段とを備えたことを特
徴とする有機薄膜の形成装置。(1) A plurality of independent water tanks in which a monomolecular film of amphiphilic organic molecules is developed, and a substrate is held horizontally and driven up and down in order to attach the monomolecular film developed in these tanks to the substrate. An apparatus for forming an organic thin film, comprising: a substrate driving means for transporting the substrate; and a substrate transporting means for transporting the substrate between the plurality of water tanks.
互いに独立した複数の水槽と、これら水槽に展開された
単分子膜を基板上に付着させるために基板を水平に保持
し上下に駆動する基板駆動手段と、前記基板の水槽内で
の浸漬領域を仕切る仕切手段と、この仕切手段を前記基
板とは独立に上下に駆動する駆動手段と、前記基板を前
記複数の水槽の間で搬送する基板搬送手段とを備えたこ
とを特徴とする有機薄膜の形成装置。(2) A plurality of independent water tanks in which monomolecular films of amphiphilic organic molecules are developed, and the substrate is held horizontally and driven up and down in order to attach the monomolecular films developed in these tanks to the substrate. a substrate driving means for partitioning the immersion area of the substrate in the water tank; a driving means for driving the partitioning means up and down independently of the substrate; and transporting the substrate between the plurality of water tanks. 1. An apparatus for forming an organic thin film, comprising: a substrate conveying means.
の圧縮系および表面圧測定器が設けられていることを特
徴とする特許請求の範囲第1項若しくは第2項記載の有
機薄膜の形成装置。(3) The organic thin film according to claim 1 or 2, wherein each of the plurality of water tanks is provided with a compression system for the monomolecular film to be developed and a surface pressure measuring device. Forming device.
設されて前記基板駆動手段を摺動可能に吊下げるガイド
レールと、このガイドレールに沿って前記基板駆動手段
を駆動する手段とを有することを特徴とする特許請求の
範囲第1項若しくは第2項記載の有機薄膜の形成装置。(4) The substrate transport means includes a guide rail that is disposed above the plurality of water tanks and slidably suspends the substrate drive means, and a means for driving the substrate drive means along the guide rail. An apparatus for forming an organic thin film according to claim 1 or 2, characterized in that the apparatus comprises:
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61308274A JPH0817983B2 (en) | 1986-12-26 | 1986-12-26 | Organic thin film forming equipment |
US07/126,929 US4848270A (en) | 1986-12-02 | 1987-11-30 | Method and apparatus for forming thin organic film |
DE8787310589T DE3784858T2 (en) | 1986-12-02 | 1987-12-01 | METHOD AND DEVICE FOR PRODUCING A THIN ORGANIC FILM. |
DE9090100016T DE3784944T2 (en) | 1986-12-02 | 1987-12-01 | METHOD AND DEVICE FOR PRODUCING A THIN ORGANIC FILM. |
EP87310589A EP0270348B1 (en) | 1986-12-02 | 1987-12-01 | Method and apparatus for forming thin organic film |
EP90100016A EP0366647B1 (en) | 1986-12-02 | 1987-12-01 | Method and apparatus for forming thin organic film |
US07/354,354 US5006374A (en) | 1986-12-02 | 1989-05-19 | Method of forming thin organic films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61308274A JPH0817983B2 (en) | 1986-12-26 | 1986-12-26 | Organic thin film forming equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63162058A true JPS63162058A (en) | 1988-07-05 |
JPH0817983B2 JPH0817983B2 (en) | 1996-02-28 |
Family
ID=17979050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61308274A Expired - Lifetime JPH0817983B2 (en) | 1986-12-02 | 1986-12-26 | Organic thin film forming equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0817983B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61271049A (en) * | 1985-05-27 | 1986-12-01 | Canon Inc | Film forming device |
-
1986
- 1986-12-26 JP JP61308274A patent/JPH0817983B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61271049A (en) * | 1985-05-27 | 1986-12-01 | Canon Inc | Film forming device |
Also Published As
Publication number | Publication date |
---|---|
JPH0817983B2 (en) | 1996-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS625662B2 (en) | ||
Agarwal | Langmuir‐Blodgett Films | |
US4848270A (en) | Method and apparatus for forming thin organic film | |
EP0183426B1 (en) | Assembly and method for langmuir-blodgett film production | |
JP3262323B2 (en) | Method and apparatus for manufacturing alternate adsorption film | |
JPS63162058A (en) | Organic thin film forming device | |
JPS63141668A (en) | Device for forming thin organic film | |
JPS63162059A (en) | Organic thin film forming device | |
JPS63141669A (en) | Device for forming thin organic film | |
JP3134295B2 (en) | Monomolecular film formation method | |
JPS62294434A (en) | Apparatus for forming monomolecular built-up film | |
JPH02152573A (en) | Device and method for forming thin organic film | |
JPS61271049A (en) | Film forming device | |
JPS60222169A (en) | Film forming device | |
JPS63182071A (en) | Preparation of monomolecular built-up film | |
JPH04100567A (en) | Formation of monomolecular film | |
JPH01297173A (en) | Process and apparatus for forming organic thin film | |
JPS61291058A (en) | Membrane forming apparatus | |
JPS60222170A (en) | Film forming device | |
JPH0615221A (en) | Method for manufacturing monomolecular built-up film | |
JPH08103718A (en) | Manufacture of langmuir blogette film | |
JP2956282B2 (en) | Langmuir-Blodgett film production equipment | |
JP3155289B2 (en) | Langmuir-Blodgett film forming method and film forming apparatus | |
JPH03242265A (en) | Method for cumulating lb film | |
GB2165471A (en) | Monolayer coating |