JPS63161603A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS63161603A
JPS63161603A JP30772886A JP30772886A JPS63161603A JP S63161603 A JPS63161603 A JP S63161603A JP 30772886 A JP30772886 A JP 30772886A JP 30772886 A JP30772886 A JP 30772886A JP S63161603 A JPS63161603 A JP S63161603A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
curing agent
permanent magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30772886A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30772886A priority Critical patent/JPS63161603A/en
Publication of JPS63161603A publication Critical patent/JPS63161603A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rare earth group permanent magnet having not only excellent magnetic characteristics but also superior corrosion resistance by applying the curing agent of a thermo-setting resin onto the surface of the rare earth permanent magnet such as a sintered rare earth magnet, a rare earth plastic magnet, etc. CONSTITUTION:The curing agent of a thermo-setting resin is applied onto the surface of a rare earth permanent magnet such as a sintered rare earth magnet, a rare earth plastic magnet, a rare earth anisotropic magnet, etc. The curing agent of the thermo-setting resin such as phthalic anhydride having carboxy as a curing agent at a time when a main agent consists of an epoxy resin, an aliphatic group amine, an aromatic group amine, etc. is applied onto the surface of a molded form or a sinter composed of a rare earth magnet alloy, thus improving the corrosion resistance of the molded form or the sinter.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、自動車、家庭電化製品、音響製品1時計等
々の永久磁石が使用される分野において利用される耐食
性に優れた永久磁石に関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) This invention is a magnet with excellent corrosion resistance that is used in fields where permanent magnets are used, such as automobiles, home appliances, audio products, and watches. It concerns permanent magnets.

(従来の技術) 近年、従来のアルニコ磁石やフェライト磁石に代わって
、磁気特性にすぐれた永久磁石として。
(Prior technology) In recent years, permanent magnets with excellent magnetic properties have been used in place of conventional alnico magnets and ferrite magnets.

S m −’Co系やNd−Fe系などの希土類永久磁
石が社目されるようになってきており、その用途がより
広く拡大する傾向にある。
Rare earth permanent magnets such as S m -'Co-based and Nd-Fe-based permanent magnets are becoming popular, and their uses tend to expand more widely.

従来、この種の希土類永久磁石としては、例えばNd−
Fe−B系の水1、磁石において、Nd−Fe−B系粉
宋の成形→焼結の工程により製造されるNd−Fe−B
系焼結磁石、あるいは超急冷Nd−Fe−B系粉末を用
いて射出成形や圧縮成形することにより製造されるNd
−Fe−B系プラスチック磁石、あるいはホラ・トプレ
ヌ法やアプセット法により高密度化や異方性化して製造
されるNd−Fe−B系水久磁石などがあった。
Conventionally, as this type of rare earth permanent magnet, for example, Nd-
Fe-B-based water 1, Nd-Fe-B manufactured by the process of Nd-Fe-B powder forming → sintering in magnets
Nd manufactured by injection molding or compression molding using sintered magnets or ultra-quenched Nd-Fe-B powder.
-Fe-B plastic magnets, and Nd-Fe-B-based Mizuku magnets manufactured by increasing density and anisotropy by the Horat-Toprene method or the upset method.

(発明が解決しようとする問題点) このような希土類永久磁石は、上記した従来のアルニコ
磁石やフェライト磁石などに比べて、磁気特性にかなり
優れているものの、耐食性があまり良くないという問題
点があった。
(Problems to be Solved by the Invention) Although these rare earth permanent magnets have considerably superior magnetic properties compared to the conventional alnico magnets and ferrite magnets described above, they have a problem in that their corrosion resistance is not very good. there were.

(発り1jの目的) この発明は、上述した従来の問題点に右目してなされた
もので、磁気特性に優れているとともに、耐食性にも優
れている右上類系の永久磁石を提供することを目的とし
ている。
(Purpose of Origin 1j) This invention was made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a permanent magnet of the above-mentioned type that has excellent magnetic properties and excellent corrosion resistance. It is an object.

[発明の構成コ (問題点を解決するだめの手段) この発明による永久磁石は、希」−類焼結磁石。[Components of the invention (Failure to solve the problem) The permanent magnet according to the present invention is a rare type sintered magnet.

希土類プラスチック磁石、希土類異方性磁石などの希土
類永久磁石の表面に、熱硬化性樹脂の硬化剤を塗布して
なるものであることを特徴としている。
It is characterized by being made by coating the surface of a rare earth permanent magnet such as a rare earth plastic magnet or a rare earth anisotropic magnet with a thermosetting resin curing agent.

この発明が適用される泥土類永久磁石としては、粉末の
成形→焼結により作られる希土類焼結磁石、超急冷希土
類磁石粉末を用いて射出成形あるいは圧縮成形して作ら
れるプラスチック希土類磁石、ホントブレスやアプセッ
トにより高密度化ないしは異方性化して作られる希土類
磁石などがある。
The mud permanent magnets to which this invention is applied include rare earth sintered magnets made by powder molding and sintering, plastic rare earth magnets made by injection molding or compression molding using ultra-quenched rare earth magnet powder, and true breath magnets. There are also rare earth magnets that are made with higher density or anisotropy through upsetting.

そして、永久磁石合金の成分組成としては、例えば、希
土類−コバルト系の永久磁石として、RMS系、例えば
Sm(Co、Fe、CuII 66) 5系や、R2M
17系、例えばSm2(Co、Fe、Cu番・争)+7
系なと゛のものがあり、希土類−鉄系の永久磁石として
、Rl、  、s  、 (F e (N i、 M 
n 、 G o ) 1α Xβ間アで表わされ、Rは希土類元素の1種以上、Xは
B、C,N、St、Pの1種以上、MはTi、Zr、H
f、V、Nb、Ta、Cr。
As for the component composition of the permanent magnet alloy, for example, as a rare earth-cobalt-based permanent magnet, RMS system, for example, Sm (Co, Fe, CuII 66) 5 system, R2M
17 series, for example Sm2 (Co, Fe, Cu number/war) +7
There are rare earth-iron permanent magnets such as Rl, , s, (F e (N i, M
n, Go) 1α Xβ, where R is one or more rare earth elements, X is one or more of B, C, N, St, and P, and M is Ti, Zr, and H.
f, V, Nb, Ta, Cr.

M o 、 W 、 A文、Zn、Ga、In、TJI
等の1種以上であって、より望ましくは、0.60≦α
≦0.85.0<β≦0.15.0≦γ≦0゜01から
なるものなどがあるが、とくに限定はされない。
Mo, W, A sentence, Zn, Ga, In, TJI
More preferably, 0.60≦α
There are some that satisfy ≦0.85.0<β≦0.15.0≦γ≦0°01, but there is no particular limitation.

そして、この発明による永久磁石は、上記希土類磁石合
金からなる成形体あるいは焼結体の表面に、熱硬化性樹
脂の硬化剤、例えば主剤がエポキシ樹脂である場合の硬
化剤であるカルボキシを有するフタル酸無水物や、脂肪
族系アミン、芳香族系アミンなどを塗布して、そのli
#食性を向上させたことを特徴とするものである。
The permanent magnet according to the present invention has a hardening agent for a thermosetting resin, for example, a phthalate containing carboxy, which is a hardening agent when the main material is an epoxy resin, on the surface of a molded or sintered body made of the rare earth magnet alloy. Apply acid anhydrides, aliphatic amines, aromatic amines, etc. to
#It is characterized by improved eating habits.

(実施例1) 超急冷した3ONd−1,0B−Feの磁石粉末(粒径
200 gm以下)に、エポキシ樹脂を2.0重量%添
加程合したのち、7.0ton/am2の加圧力で圧縮
成形することにより、直径11mm、高さ10mmの円
柱状成形体を得た。
(Example 1) After adding 2.0% by weight of epoxy resin to ultra-quenched 3ONd-1,0B-Fe magnet powder (particle size 200 gm or less), it was added with a pressure of 7.0 ton/am2. By compression molding, a cylindrical molded body with a diameter of 11 mm and a height of 10 mm was obtained.

次いで、前記成形体に対し、150°C!X4Hrの条
件で加熱してキュア処理を施した。
Next, the molded body was heated to 150°C! Cure treatment was performed by heating under the conditions of X4Hr.

次に、上記キュア処理を施したプラスチック磁石の表面
に、熱硬化性樹脂(この場合はエポキシ樹脂)の硬化剤
であるカルボキシを有するフタル酸無水物(日本ベルノ
ックス(株)製HV−504、XV−2230の2種類
)をそれぞれ全面に約30gmの厚さで塗布したのち、
120°Cで1時間加熱して乾燥した。
Next, on the surface of the plastic magnet subjected to the above-mentioned curing treatment, phthalic anhydride (HV-504 manufactured by Nippon Bellnox Co., Ltd.) having carboxy, which is a curing agent for a thermosetting resin (in this case, an epoxy resin), was applied. After applying two types of XV-2230) to a thickness of approximately 30 gm on the entire surface,
It was dried by heating at 120°C for 1 hour.

また、比較のために、L記カルボキンを有するフタル酸
無水物を塗布しないほかは全く同一であるプラスチック
磁石を用意して、各磁石に対し、温度50 ’C、湿度
98%9時間98Hrの条件で湿、7.*l試験を行い
、目視によって錆発生の有無を調 ′べた。また、参考
までに湿潤試験前後の磁気特性(最大エネルギXA(B
H)max)を調べた。これらの結果を第1表に示す。
For comparison, we prepared plastic magnets that were exactly the same except that they were not coated with phthalic anhydride having L carboquine, and each magnet was subjected to conditions of a temperature of 50'C and a humidity of 98% for 9 hours and 98 hours. damp, 7. *A test was conducted to visually check for the presence or absence of rust. For reference, the magnetic properties before and after the wet test (maximum energy XA (B
H) max) was investigated. These results are shown in Table 1.

第1表に示す結果より明らかなように、表面に熱硬化性
樹脂の硬化剤を塗布しない供試+、1の場合には、i!
!!潤試験後において錆の発生が全面に認められ、磁石
表面近傍が変質したために磁気特性が低下してしまうこ
とが確認された。
As is clear from the results shown in Table 1, in the case of samples + and 1 in which no thermosetting resin curing agent was applied to the surface, i!
! ! After the moisture test, rust was observed all over the surface, and it was confirmed that the magnetic properties were degraded due to deterioration near the magnet surface.

これに対して硬化剤であるカルボキシを有するフタル酸
無水物を全面に塗布した供試陽、2゜3の場合には、湿
潤試験後において錆の発生は全く認められず、磁気特性
の低下も生じなかった。
On the other hand, in the case of the 2°3 sample coated with phthalic anhydride containing carboxy as a hardening agent, no rust was observed after the wet test, and there was no deterioration in magnetic properties. It did not occur.

(実施例2) 平均粒径4.07zmの33Nd−1,38−Fe合金
微粉末を1.0Lon/cm2cy)加圧力で圧縮成形
することにより、直径20mm、高さ8mmの成形体を
得た0次いで、前記成形体をAr雰囲気中において11
00℃xiHrの条件で焼結したのち、600℃XIH
rの条件で時効処理を施した。
(Example 2) A compact with a diameter of 20 mm and a height of 8 mm was obtained by compression molding 33Nd-1,38-Fe alloy fine powder with an average particle size of 4.07 zm at a pressure of 1.0 Lon/cm2cy. 0 Then, the molded body was placed in an Ar atmosphere for 11
After sintering under the conditions of 00℃xiHr, 600℃XIH
Aging treatment was performed under the conditions of r.

次いで、得られた焼結磁石の表面に、熱硬化性樹脂(こ
の場合はエポキシ樹脂)の硬化剤である脂肪族系アミン
(日本ベルノックス(株)製HY−308、HY−68
0の2種類)をそれぞれ全面に約30uLmの厚さで塗
布したのち、120℃で1時間加熱して乾燥した。
Next, aliphatic amines (HY-308, HY-68 manufactured by Nippon Bellnox Co., Ltd.), which are curing agents for thermosetting resins (epoxy resins in this case), are applied to the surface of the obtained sintered magnets.
0) was coated on the entire surface to a thickness of about 30 μLm, and then heated at 120° C. for 1 hour to dry.

また、比較のために、上記脂肪族系アミンを塗布しない
ほかは全く同一である焼結磁石(第2表の供試陽、4)
と、主剤であるエポキシ樹脂(日本ベルノックス−製M
E−105)のみを全面に約10Bmの厚さで塗布した
前記と同一の焼結磁石(第2表の供試陽、5)と、主剤
である前記エポキシ樹脂と硬化剤である前記脂肪族系ア
ミンとを2:lの割合で混合したものを全面に約10p
mの厚さで塗布した前記と同一の焼結磁石(第2表の供
試陽、6)と、を用意して、各磁石(No、 4〜8)
に対し、温度50″C2湿度98%9時間96Hrの条
件で湿潤試験を行い。
For comparison, we also used a sintered magnet that was completely the same except that it was not coated with the aliphatic amine (sample 4 in Table 2).
and the main ingredient epoxy resin (M made by Nippon Bellnox)
The same sintered magnet as above (sample 5 in Table 2) coated only with E-105) to a thickness of about 10 Bm, and the epoxy resin as the main ingredient and the aliphatic resin as the curing agent. Approximately 10p of a mixture of 2:1 and amines is applied to the entire surface.
Prepare the same sintered magnet as above (No. 6 in Table 2) coated with a thickness of m, and apply each magnet (No. 4 to 8).
On the other hand, a humidity test was conducted under the conditions of temperature 50''C2 humidity 98% 9 hours 96 hours.

目視によって錆発生の有無を調べた。また、参考までに
湿温試験前後の磁気特性(最大エネルギ積(BH)ma
x)を調へた。これらの結果を第2表に示す。
The presence or absence of rust was visually inspected. For reference, the magnetic properties (maximum energy product (BH) ma
x) was determined. These results are shown in Table 2.

第2表に示す結果より明らかなように、表面に熱硬化性
樹脂の硬化剤を塗4i Lない供試崩、4の場合には、
湿潤試験後において錆の発生が全面に認められ、磁気特
性が大幅に低下していることが確かめられた。また、焼
結磁石の表面に主剤のみを塗布した供試崩、5の場合、
および主剤+硬化剤(混合比は2:1)を97Dした供
試陽、6の場合においてもいずれも錆発生が認められ、
磁気特性も大幅に低rした。
As is clear from the results shown in Table 2, in the case of test sample 4 without a thermosetting resin curing agent applied to the surface,
After the wet test, rust was observed all over the surface, and it was confirmed that the magnetic properties had significantly deteriorated. In addition, in the case of test sample 5, in which only the main compound was applied to the surface of the sintered magnet,
Rust formation was also observed in both cases of test positive and 6 in which the main agent + curing agent (mixing ratio was 2:1) was 97D.
The magnetic properties were also significantly lowered.

これに対して、硬化剤である脂肪族系アミンのみを全面
に塗布した供試1b、7.8の場合には1、’l fl
FJ試験後においてt^の発生は全く認められず、磁気
特性の低下も生じなかった。
On the other hand, in the case of sample 1b, 7.8, in which only the aliphatic amine as a curing agent was applied to the entire surface, 1,'l fl
No occurrence of t^ was observed after the FJ test, and no deterioration of magnetic properties occurred.

[発明の効果] 以上説明してきたように、この発明による永久磁石では
、成形体や焼結体などからなる希土類永久磁石の表面に
、熱硬化性樹脂の硬化剤を塗布してなるものであるから
、磁気特性に優れているのみならす、耐食性にもかなり
優れたものであるという非常に優れた効果がもたらされ
る。
[Effects of the Invention] As explained above, the permanent magnet according to the present invention is made by applying a hardening agent of a thermosetting resin to the surface of a rare earth permanent magnet made of a molded body, a sintered body, etc. Therefore, not only does it have excellent magnetic properties, but it also has very good corrosion resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)希土類焼結磁石、希土類プラスチック磁石などの
希土類永久磁石の表面に、熱硬化性樹脂の硬化剤を塗布
してなることを特徴とする永久磁石。
(1) A permanent magnet characterized by applying a hardening agent of a thermosetting resin to the surface of a rare earth permanent magnet such as a rare earth sintered magnet or a rare earth plastic magnet.
(2)熱硬化性樹脂の硬化剤は、エポキシ樹脂の硬化剤
であることを特徴とする特許請求の範囲第(1)項に記
載の永久磁石。
(2) The permanent magnet according to claim (1), wherein the thermosetting resin curing agent is an epoxy resin curing agent.
JP30772886A 1986-12-25 1986-12-25 Permanent magnet Pending JPS63161603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30772886A JPS63161603A (en) 1986-12-25 1986-12-25 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30772886A JPS63161603A (en) 1986-12-25 1986-12-25 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS63161603A true JPS63161603A (en) 1988-07-05

Family

ID=17972541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30772886A Pending JPS63161603A (en) 1986-12-25 1986-12-25 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS63161603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324455B2 (en) 2003-03-14 2008-01-29 International Business Machines Corporation Transfer of error-analysis and statistical data in a fibre channel input/output system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324455B2 (en) 2003-03-14 2008-01-29 International Business Machines Corporation Transfer of error-analysis and statistical data in a fibre channel input/output system
US7609643B2 (en) 2003-03-14 2009-10-27 International Business Machines Corporation Transfer of error-analysis and statistical data after retry in a fibre channel input/output system
US7675865B2 (en) 2003-03-14 2010-03-09 International Business Machines Corporation Transfer of error-analysis and statistical data in a fibre channel input/output system

Similar Documents

Publication Publication Date Title
US5580400A (en) Magnetically anisotropic permanent magnet
JPH03501190A (en) Epoxy resin bonded rare earth-iron magnet and its manufacturing method
US5905424A (en) Bonded magnet made from gas atomized powders of rare earth alloy
JPS63161603A (en) Permanent magnet
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
US5176842A (en) Method of manufacturing a resin bound magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JPS63274114A (en) Plastic magnet
Tattam et al. The corrosion behaviour of uncoated bonded Nd Fe B magnets in humid environments
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JP3624263B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same
JPS63304602A (en) Resin-bonded magnet
JPS63152111A (en) Manufacture of permanent magnet
JP2001200169A (en) Resin composite material compounded with ferromagnetic metal powder
JP3430686B2 (en) COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM
JP3185454B2 (en) Composition for resin-bonded magnet and resin-bonded magnet
JP4411840B2 (en) Method for producing oxidation-resistant rare earth magnet powder
JPH01102901A (en) Surface treatment of magnetic powder for nd-fe-b-based anisotropic bonded magnet
JPH03222303A (en) Corrosion-preventing method for plastic bonded magnet
JPH0450725B2 (en)
JPS63160314A (en) Manufacture of permanent magnet
JPS62216203A (en) Manufacture of powder molding magnet
Li et al. Liquid coated melt-spun Nd–Fe–B powders for bonded magnets
JP3149549B2 (en) Rare earth bonded magnet manufacturing method
JPS6377104A (en) Rare-earth magnet excellent in corrosion resistance