JPS63159264A - High thermal shock resistance joining method of ceramic to metal and joined product - Google Patents

High thermal shock resistance joining method of ceramic to metal and joined product

Info

Publication number
JPS63159264A
JPS63159264A JP30707386A JP30707386A JPS63159264A JP S63159264 A JPS63159264 A JP S63159264A JP 30707386 A JP30707386 A JP 30707386A JP 30707386 A JP30707386 A JP 30707386A JP S63159264 A JPS63159264 A JP S63159264A
Authority
JP
Japan
Prior art keywords
base material
metal
ceramic
bonded
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30707386A
Other languages
Japanese (ja)
Other versions
JPH0776137B2 (en
Inventor
幹夫 林
謙 加藤
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP30707386A priority Critical patent/JPH0776137B2/en
Publication of JPS63159264A publication Critical patent/JPS63159264A/en
Publication of JPH0776137B2 publication Critical patent/JPH0776137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、セラミックスと金属とを接合して耐熱衝撃
性の高い接合製品を得る接合方法および接合製品に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a joining method and a joining product for joining ceramics and metal to obtain a joining product with high thermal shock resistance.

「従来の技術」 周知のように、摩耗や熱作用を頻繁に受ける金属部品(
金属母材)に対しては、一部にセラミックスを用いて部
品の耐摩耗性、耐熱性の向上を図る手段が取られている
``Prior art'' As is well known, metal parts (
Measures have been taken to improve the wear resistance and heat resistance of parts by using ceramics in some parts (metal base materials).

従来、上記のようなセラミックスと金属との接合製品は
、第6図に示すように、金属母材lとセラミックス母材
2とを中間金属層3を介して接合一体化したものであっ
た。この接合製品の接合方法としては、主に次の3つの
方法が用いられている。まず、第1の方法は、セラミッ
クス母材2の接合面に予め30〜60μm程度の厚みの
メタライズ層を形成しておき、このセラミックス母材2
に前記中間金属ff3をロウ材するとともに、この中間
金属層3を金属母材lにロウ材する方法である。
Conventionally, the above-mentioned ceramic-metal bonded products have been made by integrally bonding a metal base material 1 and a ceramic base material 2 via an intermediate metal layer 3, as shown in FIG. The following three methods are mainly used to join this joined product. First, in the first method, a metallized layer with a thickness of about 30 to 60 μm is formed in advance on the joint surface of the ceramic base material 2, and this ceramic base material 2 is
In this method, the intermediate metal ff3 is brazed to the metal base material l, and the intermediate metal layer 3 is brazed to the metal base material l.

また、第2の方法は、金属母材lの接合面には金属用の
ロウ材を塗布すると同時に、セラミックス母材2にはメ
タライズ用のロウ材を塗布し、これらの間に中間金属層
3を介装し、これらを加熱することによってロウ材、一
体化する方法である。
In addition, in the second method, a brazing material for metal is applied to the joint surface of the metal base material 1, a brazing material for metallization is applied to the ceramic base material 2 at the same time, and an intermediate metal layer 3 is applied between these. In this method, the brazing material is integrated by interposing the soldering materials and heating them.

そして、第3の方法は、金属母材1とセラミックス母材
2との間に中間金属層3を介装し、これら3者を加圧下
で加熱し、中間金属層3をそれぞれ金属母材1およびセ
ラミックス母材2中に拡散させ、接合する方法である。
Then, in the third method, an intermediate metal layer 3 is interposed between the metal base material 1 and the ceramic base material 2, these three are heated under pressure, and the intermediate metal layer 3 is placed between the metal base material 1 and the ceramic base material 2. and a method of diffusing it into the ceramic base material 2 and bonding it.

上記中間金属層3としては、通常、Cus AQlNl
や、またAg等の貴金属、そして、これら単体金属を含
んでなる高展延性合金が使用されている。
The intermediate metal layer 3 is usually CusAQlNl
In addition, noble metals such as Ag and Ag, and highly malleable alloys containing these elemental metals are used.

上記接合構造において、接合強度はセラミックス母材2
と中間金属層3との接合面積に比例することが知られて
いる。また、金属母材lとセラミックス母材2との間に
かかる応力を緩和するためには、中間金属T?J3とし
てはある程度以上の厚みが必要であるが、中間金属F!
I3自体の熱もしくは塑性に伴う変形力のセラミックス
母材2への影響を考える場合、この中間金属層3の厚み
は薄い方が好ましいことになる。従って、現状において
、セラミックス母材2に直接接合しているメタライズ層
などは上記したように30〜60μm程度の薄さに形・
成されている。
In the above bonding structure, the bonding strength is the ceramic base material 2
It is known that it is proportional to the bonding area between and the intermediate metal layer 3. Moreover, in order to relieve the stress applied between the metal base material l and the ceramic base material 2, the intermediate metal T? J3 requires a certain level of thickness, but intermediate metal F!
When considering the influence of deformation force due to heat or plasticity of I3 itself on the ceramic base material 2, it is preferable that the thickness of this intermediate metal layer 3 is thin. Therefore, at present, the metallized layer directly bonded to the ceramic base material 2 is shaped and shaped to be as thin as 30 to 60 μm as described above.
has been completed.

[発明が解決しようとする問題点] ところで、上記従来のセラミックスと金属との接合製品
には、下記のような問題点があり、その解決が望まれて
いる。
[Problems to be Solved by the Invention] By the way, the above-mentioned conventional ceramic-metal bonded products have the following problems, and solutions to these problems are desired.

すなわち、上記接合製品においては、第7図に示すよう
に、通常は接合強度を上げるためにセラミックス母材2
の接合側の面2aのほぼ全域を覆うように中間金属I!
!3を形成し、接合している。そのため、この上うな構
造においては、例えば熱膨張率の大きい金属母材1の冷
却収縮に伴って中間金1層3にかかる引張り応力は、図
中矢印のように各辺の中央に向かって働くことになり・
その結果、中間金属層3の角部C・・・に最も大きな引
張り応力が働く。そのため、引張り応力に対して弱いセ
ラミックス母材2は、上記角部Cに相当する部分に応力
集中が生じてクラックが発生し、剥離してしまうという
ことがしばしば発生している。
That is, in the above-mentioned bonded products, as shown in FIG.
The intermediate metal I! is applied so as to cover almost the entire surface 2a on the joining side of the metal I!
! 3 is formed and joined. Therefore, in such a structure, for example, the tensile stress applied to the intermediate gold layer 3 due to cooling contraction of the metal base material 1 having a large coefficient of thermal expansion acts toward the center of each side as shown by the arrows in the figure. As it turns out...
As a result, the largest tensile stress acts on the corners C of the intermediate metal layer 3. Therefore, the ceramic base material 2, which is weak against tensile stress, often experiences stress concentration at the portion corresponding to the corner C, causing cracks and peeling.

これに対し、第8図に示すように、応力集中を避けるた
めに接合部分4に角部をつ(らないように中間金属層3
の形状を円板状とする構造が考えられる。しかし、例え
ば、^Q、0.の熱膨張率は7.8X 10−’、5i
J4のそれは4×10°6というように、金属の熱膨張
率はセラミックスの2〜4倍もあるため、角部のない接
合面の採用によって接合面積をある程度減少して、換言
すれば接合強度をある程度犠牲にして行なう上記改良構
造においても、第9図に示すように、経時的に接合部分
の外周に沿ってセラミックス母材2にクラックが発生し
、終には剥離してしまうという経時的劣化現象を避ける
ことができない。特に、金属母材が外部から小社り廂驕
的仮力桑妥は−大きな変形を伴う場合は、−Eセラミッ
クス母材に力が加わり、クラックが発生しやすい。
On the other hand, as shown in FIG. 8, in order to avoid stress concentration, the intermediate metal layer 3 is
A structure in which the shape is disk-like is considered. However, for example, ^Q, 0. The coefficient of thermal expansion is 7.8X 10-', 5i
The coefficient of thermal expansion of metal is 2 to 4 times that of ceramics, such as 4 x 10°6 for J4, so by adopting a joint surface without corners, the joint area can be reduced to a certain extent, and in other words, the joint strength can be improved. Even in the above-mentioned improved structure, in which the ceramic base material 2 is sacrificed to a certain extent, as shown in FIG. Deterioration phenomena cannot be avoided. In particular, if the metal base material is subjected to large deformation when it is removed from the outside, force is applied to the ceramic base material and cracks are likely to occur.

この発明は上記事晴に鑑みてなされたもので、その目的
は特に金V4母材の熱変動(熱衝撃)に伴う伸縮がセラ
ミックス母材にかかるのを減少させ、それによりセラミ
ックス母材のクラックを減少させ、製品の耐熱衝撃性、
信頼性の向上および高寿命化を図ることのできるセラミ
ックスと金属との高耐熱衝撃性接合方法および接合製品
を提供することにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to reduce the expansion and contraction caused by thermal fluctuations (thermal shock) of the gold V4 base material on the ceramic base material, thereby causing cracks in the ceramic base material. Reduces the thermal shock resistance of the product,
The object of the present invention is to provide a method for bonding ceramics and metals with high thermal shock resistance and a bonded product that can improve reliability and extend life.

「問題点を解決するための手段」 本発明者らは、上記問題点を解決するために、鋭怠研究
を重ねたところ、下記のような知見を得るに至った。
"Means for Solving the Problems" In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive research and have come to the following knowledge.

(i)  前記したように、銅などの高展延性金属から
なる中間金属層は、金属母材とセラミックス母材とを直
接接合すると、各々の熱膨張の差により応力が発生して
セラミックス母材に割れが発生するので、これを防ぐた
めに、応力緩和を目的にセラミックス母材と金属母材と
の間に介装されているものである。この中間金属層によ
って接合した製品は、常温およびその近辺で使用してい
る場合には、中間金属層の働きにより大過なく使用する
ことができる。しかし、この製品に熱衝撃、例えば35
0℃〜室温の温度差を繰り返し与えると、中間金属層は
高展延性金属であるために大きく伸縮を繰り返し、その
応力により終にはセラミックス母材に割れが発生してし
まう。
(i) As mentioned above, when the intermediate metal layer made of a highly malleable metal such as copper is directly bonded to the metal base material and the ceramic base material, stress is generated due to the difference in thermal expansion of each, and the ceramic base material In order to prevent this from occurring, a ceramic base material and a metal base material are interposed between the ceramic base material and the metal base material for the purpose of stress relaxation. When a product bonded by this intermediate metal layer is used at or around room temperature, it can be used without major damage due to the function of the intermediate metal layer. However, this product is subject to thermal shock, e.g.
If a temperature difference between 0° C. and room temperature is repeatedly applied, the intermediate metal layer, which is a highly malleable metal, will repeatedly expand and contract, and the stress will eventually cause cracks in the ceramic base material.

したがって、前記のような熱衝撃が接合製品に加えられ
る場合、中間金属層のセラミックス母材に対する接合面
積は少なければ少ない程、熱変動に伴う中間金属層の伸
縮量が少なくなることになる。この考えに基づいて、中
間金属層を接合面長手方向に沿って板状に複数に分割し
、これらを間隔を設けてセラミックス母材と金属母材と
の間に介装、接合すれば、少なくとも中間金属層自体に
起因する応力を緩和することができる。
Therefore, when a thermal shock as described above is applied to a bonded product, the smaller the bonding area of the intermediate metal layer to the ceramic base material, the less the amount of expansion and contraction of the intermediate metal layer due to thermal fluctuations. Based on this idea, if the intermediate metal layer is divided into a plurality of plates along the longitudinal direction of the bonding surface, and these are interposed and bonded between the ceramic base material and the metal base material at intervals, at least Stress caused by the intermediate metal layer itself can be alleviated.

(ii)L、かじ、このままの構造であると、セラミッ
クス母材に対して金属母材が接合面に平行に変位する場
合などに各分割中間金属片(高展延性金属片)の接合面
に大きな応力がかかってしまう。
(ii) L, rudder: If the structure is as it is, the joint surface of each split intermediate metal piece (highly malleable metal piece) will It will put a lot of stress on you.

そこで、第1図に示すように、金属母材1とセラミック
ス母材2との間に介在さU・る多数の中間金1+i片5
・・・の各間にセラミックス片6・・・を介装し、これ
らセラミックス片6を中間金属片5とともに、それらの
端面がセラミックス母材2および金属母材1に密着する
ように、換言すれば、6片5.6の長手方向が金属母材
1およびセラミックス母材2の接合面に直交もしくは交
差するように(以下、単に縦方向に、と記す)接合した
ところ、接合面に平行な金属母材1および各中間金属片
5の変位を確実に抑えることができ、しかも金属母材l
および中間複合層7(中間金属片5・・・+セラミック
ス片6・・・)のセラミックス母材2へかかる応力を大
幅に緩和することができた。
Therefore, as shown in FIG.
In other words, a ceramic piece 6 is interposed between each of the ceramic pieces 6 and the intermediate metal piece 5 so that their end surfaces are in close contact with the ceramic base material 2 and the metal base material 1. For example, when six pieces 5.6 are joined so that the longitudinal direction of the metal base material 1 and the ceramic base material 2 are perpendicular to or intersect with the joint surfaces (hereinafter simply referred to as "vertical direction"), the longitudinal direction of the metal base material 1 and the ceramic base material 2 is parallel to the joint surfaces. Displacement of the metal base material 1 and each intermediate metal piece 5 can be reliably suppressed, and the metal base material l
Moreover, the stress applied to the ceramic base material 2 of the intermediate composite layer 7 (intermediate metal pieces 5 . . . + ceramic pieces 6 . . . ) could be significantly alleviated.

この発明は、上記知見に基づいてなされたものである。This invention has been made based on the above findings.

すなわち、この発明に係るセラミックスと金属との高耐
熱衝撃性接合方法は、 セラミックス母材2の表面上にメタライズ層8を形成し
、このメタライズ層8に沿って多数の高展延性金属片5
とセラミックス片6とを交互に密着するとともに両者の
各端面が前記メタライズ層と密着するように配置して中
間複合層7とし、この中間複合層7を前記メタライズ層
8上に接合するとともに、この中間複合層7上に金属母
材1を接合することを特徴とする ものである。
That is, the method for bonding ceramics and metal with high thermal shock resistance according to the present invention includes forming a metallized layer 8 on the surface of a ceramic base material 2, and attaching a large number of highly malleable metal pieces 5 along this metallized layer 8.
and ceramic pieces 6 are alternately placed in close contact with each other and arranged so that each end face of both is in close contact with the metallized layer to form an intermediate composite layer 7, and this intermediate composite layer 7 is bonded onto the metallized layer 8, and this This method is characterized in that the metal base material 1 is bonded onto the intermediate composite layer 7.

また、この発明に係るセラミックスと金属との高耐熱衝
撃性接合製品は、 セラミックス母材2の接合面長手方向に沿って多数の高
展延性金属片5とセラミックス片6とを交互に配列、密
着してなる中間複合層7が前記セラミックス母材2上に
メタライズ層8を介して前記中間複合層を形成する高展
延性金属片とセラミックス片の6片の端面が密着するよ
うにして接合され、この中間複合B7上に金属母材lが
接合されていることを特徴とするものである。
Furthermore, the ceramic-metal bonded product with high thermal shock resistance according to the present invention includes a large number of highly malleable metal pieces 5 and ceramic pieces 6 arranged alternately along the longitudinal direction of the bonded surface of the ceramic base material 2 and closely bonded. An intermediate composite layer 7 made of the above is bonded onto the ceramic base material 2 via the metallized layer 8 so that the end surfaces of the six highly ductile metal pieces and six ceramic pieces forming the intermediate composite layer are in close contact with each other, It is characterized in that a metal base material 1 is joined onto this intermediate composite B7.

なお、上記構成において、中間複合!!!7を構成して
いる交互に重ねられている多数の高展延性金属片5およ
びセラミックス片6は相互に接合した方がより効果的で
あるが、単に重ね合わせただけでも所期の効果は得られ
るので、特に互いに接合しなくてもよい。
In addition, in the above configuration, intermediate composite! ! ! Although it is more effective to bond the numerous highly malleable metal pieces 5 and ceramic pieces 6 that are stacked alternately to each other, the desired effect cannot be obtained simply by stacking them together. Therefore, it is not necessary to bond them to each other.

また、上記構成の中間複合層7の接合において、第2図
に示すように、セラミックス母材2上にメタライズ層8
を形成した後にロウ材10により中間複合層7を接合す
ることにより行なってもよいし、セラミックス母材2上
にロウ材を介して中間複合層7を重ね、これを加熱する
ことによりメタライズ層形成と中間複合層接合とを1回
の加熱処理により行なってらよい。一度で行なうには、
例えば、ロウ材としてAg−Cu−Ti系の活性金属ロ
ウ材などが使用される。また、メタライズ層形成と接合
とを別々に行なう場合は、MO−Mn法によるメタライ
ジング等の公知の方法が用いられる。
Further, in bonding the intermediate composite layer 7 having the above structure, as shown in FIG.
The metallized layer may be formed by bonding the intermediate composite layer 7 with the brazing material 10 after forming the ceramic base material 2, or by stacking the intermediate composite layer 7 on the ceramic base material 2 via the brazing material and heating this. and intermediate composite layer bonding may be performed by one heat treatment. To do it in one go,
For example, an active metal brazing material such as Ag-Cu-Ti is used as the brazing material. Furthermore, when forming the metallized layer and bonding are performed separately, a known method such as metallizing using the MO-Mn method is used.

さらに、この発明において、ロウ材は、真空または不活
性ガス等の非酸化性雰囲気下、常圧で、700〜125
0℃にて行なわれる。また、メタライズ層“単独形成の
場合も、非酸化性雰囲気下、700〜1400℃で行な
われる。
Further, in this invention, the brazing material has a temperature of 700 to 125
Performed at 0°C. Also, when forming the metallized layer alone, it is carried out at 700 to 1400° C. in a non-oxidizing atmosphere.

なお、本発明の接合製品においては、以下に示す実施例
から明らかなように、耐熱衝撃試験における強度低下率
は約15%以下という実測値を示す。
In addition, in the bonded product of the present invention, as is clear from the examples shown below, the strength reduction rate in the thermal shock resistance test shows an actual value of about 15% or less.

これに対し、一般にセラミックス、金属各員材の種類に
よっても異なるが、通常、初期の接合強度(主として剪
断強度)に対して測定誤差も含め30%程度の強度低下
は、実用上許容される範囲である。
On the other hand, although it generally varies depending on the type of ceramic or metal member, a strength reduction of about 30% from the initial joint strength (mainly shear strength), including measurement errors, is generally within the practically acceptable range. It is.

従って、本発明の接合製品は実用上高い性能をもつもの
と判断される。
Therefore, the bonded product of the present invention is judged to have high practical performance.

次に、本発明を実施例によりさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

「実施例1〜2 」 第2図の牛R造において、すなわち、セラミックス母材
2上にメタライズ層8を形成し、この上にロウ材10に
よって高展延性金属片5およびセラミックス片6とから
なる中間複合層7を接合し、この上にさらにロウ材9に
よって金属母材lを接合した構造の接合品を各々下記材
質、寸法により作成した (実施例1) 30X isx 5 t (xx)の513N4セラミ
ツクス母材上に銀、金、ヂタン各粉の混合物を塗布し、
これを真空下で1000℃、15分間加熱して50μI
のメタライズ層を形成した。この上にロウ材としてBA
g−8(JIS  23261)粉を塗布し、この上に
IOX 2 X 2 t (xi)のCu片とLQX 
2 X Q、6t (am)のアルミナセラミックス片
とを横方向(セラミックス母材の接合面に沿う方向)の
交互に積み重ねるように配列、密着してなる中間複合層
をのせ、真空下、1000°0115分間加熱して接合
した。さらに、前記中間複合層上にBAg−8粉を塗布
し、この上゛に金属母材として30X 60X 6 t
 (i*)の545Cをのせ、真空下、860℃、15
分間加熱して接合した。 得られた接合品を次のような
熱衝撃試験にかけた。すなわち、室温から200℃/J
!inで350℃まで昇温し、その後350℃で15分
間保持、続いて50℃/ginで室温まで降温し、室温
で15分間保持の−続きを1サイクルとする内容の試験
である。
"Examples 1 and 2" In the case of the R-shaped construction shown in FIG. Bonded products having a structure in which an intermediate composite layer 7 was bonded, and a metal base material l was further bonded thereon by a brazing filler metal 9 were manufactured using the following materials and dimensions (Example 1): 30X isx 5t (xx) A mixture of silver, gold, and titanium powder is applied onto the 513N4 ceramic base material,
This was heated at 1000℃ for 15 minutes under vacuum and 50μI
A metallized layer was formed. On top of this, BA is used as a brazing material.
g-8 (JIS 23261) powder is applied, and on top of this, a Cu piece of IOX 2 X 2 t (xi) and LQX
Alumina ceramic pieces of 2 x Q, 6 t (am) were arranged in a horizontal direction (direction along the bonding surface of the ceramic base material) alternately stacked, and an intermediate composite layer formed by closely adhering them was placed on top and heated at 1000° under vacuum. The bonding was performed by heating for 0.115 minutes. Furthermore, BAg-8 powder is applied on the intermediate composite layer, and 30X 60X 6t is applied as a metal base material on top of this.
Place 545C of (i*) on top, under vacuum, 860℃, 15
They were bonded by heating for a minute. The resulting bonded product was subjected to the following thermal shock test. That is, from room temperature to 200℃/J
! In this test, the temperature was raised to 350° C. in, then held at 350° C. for 15 minutes, then lowered to room temperature at 50° C./gin, and held at room temperature for 15 minutes, followed by one cycle.

その結果、第3図に示すように、この実施例1の接合品
は、当初の剪断強度が10点の平均2.86に9/■1
(以下、強度値は、同様にすべて10点の平均値を示す
)であったのが、500回のサイクルを加えた後は平均
2.74kg/xz’となり、その耐熱強度低下率は、
約4%以下という高性能を示した。
As a result, as shown in Fig. 3, the bonded product of Example 1 had an initial shear strength of 2.86 on average of 10 points, which was 9/■1.
(Hereinafter, all strength values similarly indicate the average value of 10 points), but after 500 cycles, the average was 2.74 kg/xz', and the rate of decrease in heat resistance strength was:
It showed high performance of about 4% or less.

(実施例2) 上記実施例1のSi、N、セラミックス母材をアルミナ
セラミックス母材に替えて、他の条件は同一にして接合
品を作成した。
(Example 2) A bonded product was produced by replacing the Si, N, and ceramic base materials of Example 1 with an alumina ceramic base material and keeping the other conditions the same.

得られた接合品を上記同様の熱衝撃試験にかけた。The resulting bonded product was subjected to the same thermal shock test as above.

その結果、第11図に示すように、この実施例2の接合
品は、当初の剪断強度が平均3.05kg/xi”であ
ったのが、5H回のサイクルを加えた後は平均2.67
に9/xx’となり、その耐熱強度低下率は、13%以
下という高性能を示した。
As a result, as shown in FIG. 11, the bonded product of Example 2 had an average shear strength of 3.05 kg/xi'' at the beginning, but an average shear strength of 2.05 kg/xi'' after 5H cycles. 67
The result was 9/xx', and the rate of decrease in heat resistance strength was 13% or less, indicating high performance.

「比較例」 次に前記従来例に基づいた比較例を示し、本発明の性能
の高さを確認する。
"Comparative Example" Next, a comparative example based on the conventional example will be shown to confirm the high performance of the present invention.

第5図は、前記した第6図に示した従来例に相当する接
合品の熱衝撃試験における剪断強度変化を示すしので、
この接合品は30X 15X 5 t (mm)の5i
sNaセラミツクス母材上にisx 13X 2 t 
(mm)のCu板をろう材(I3Ag−8)によって接
合したものを、さらにI3Ag−8粉を用い、30X6
0X6L(mm)のS 45Gに接合したものである。
FIG. 5 shows the change in shear strength in a thermal shock test of a bonded product corresponding to the conventional example shown in FIG.
This bonded product is 5i of 30X 15X 5t (mm)
ISX 13X 2T on sNa ceramic matrix
(mm) Cu plates bonded using brazing material (I3Ag-8), and further using I3Ag-8 powder, 30X6
It is joined to S45G of 0x6L (mm).

この接合品では、当初VI断強度が平均2.46kg/
mm1であったのが、50回目のサイクルで既に平均0
゜31kg/mm’にまで低下してしまっており、前記
本願発明品の性能の高さを知ることができる。
This bonded product had an average initial VI breaking strength of 2.46 kg/
mm1, but by the 50th cycle the average was already 0.
It has decreased to 31 kg/mm', which shows the high performance of the product of the present invention.

「発明の効果」 以上説明したように、本発明によれば、耐熱衝撃性が高
く、信頼性に優れ、高寿命なセラミックスと金属との接
合製品を容易に得ることができる。
"Effects of the Invention" As explained above, according to the present invention, it is possible to easily obtain a ceramic-metal bonded product that has high thermal shock resistance, excellent reliability, and long life.

【図面の簡単な説明】 第1図ないし第4図は、この発明を説明するためのもの
で、第1図はこの発明?こ係る高耐熱衝撃性接合製品の
一例を示す側断面図、第2図は第1図の要部拡大図、第
3図および第4図はそれぞれこの発明の第1および第2
の実施例を示すしので、各々得られた接合品の熱衝撃試
験による剪断強度変化を示すグラ乙第5図は第6図に示
した従来例(比較例)における熱衝撃試験による剪断強
度変化を示すグラフ、第6図は従来の接合製品の一例を
示す側面構成図、第7図は第6図A−A線に沿う断面図
、第8図は他の従来例の要部平面図、第9図は同従来例
の要部側面図である。 l・・・・・・金属母材、 2・・・・・・セラミックス母材、 5・・・・・・中間金属片、 6・・・・・・セラミックス片、 7・・・・・・中間複合層、 8・・・・・・メタライズ層、 9.10・・・・・・ロウ材。
[Brief Description of the Drawings] Figures 1 to 4 are for explaining this invention. A side sectional view showing an example of such a bonded product with high thermal shock resistance, FIG. 2 is an enlarged view of the main part of FIG. 1, and FIGS.
Figure 5 shows the shear strength changes due to thermal shock tests of the conventional example (comparative example) shown in Figure 6. 6 is a side configuration diagram showing an example of a conventional bonded product, FIG. 7 is a cross-sectional view taken along the line A-A in FIG. 6, and FIG. 8 is a plan view of main parts of another conventional example. FIG. 9 is a side view of essential parts of the conventional example. l... Metal base material, 2... Ceramic base material, 5... Intermediate metal piece, 6... Ceramic piece, 7... Intermediate composite layer, 8... Metallized layer, 9.10... Brazing material.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス母材の表面上にメタライズ層を形成
し、このメタライズ層に沿って多数の高展延性金属片と
セラミックス片とを交互に密着するとともに両者の各端
面が前記メタライズ層と密着するように配置して中間複
合層とし、この中間複合層を前記メタライズ層上に接合
するとともに、この中間複合層上に金属母材を接合する
ことを特徴とするセラミックスと金属との高耐熱衝撃性
接合方法。
(1) A metallized layer is formed on the surface of the ceramic base material, and a large number of highly malleable metal pieces and ceramic pieces are alternately adhered to each other along this metallized layer, and each end face of both is brought into close contact with the metallized layer. High thermal shock resistance of ceramics and metal, characterized in that the intermediate composite layer is bonded to the metallized layer, and a metal base material is bonded to the intermediate composite layer. Joining method.
(2)セラミックス母材の接合面長手方向に沿って多数
の高展延性金属片とセラミックス片とを交互に配列、密
着してなる中間複合層が前記セラミックス母材上にメタ
ライズ層を介して前記中間複合層を形成する高展延性金
属片とセラミックス片の各片の端面が密着するようにし
て接合され、この中間複合層上に金属母材が接合されて
いることを特徴とするセラミックスと金属との高耐熱衝
撃性接合製品。
(2) A large number of highly malleable metal pieces and ceramic pieces are alternately arranged along the longitudinal direction of the bonding surface of the ceramic base material, and an intermediate composite layer formed by adhering them is placed on the ceramic base material via a metallized layer. Ceramics and metal, characterized in that the end surfaces of each piece of a highly malleable metal piece and a ceramic piece forming an intermediate composite layer are joined so that they are in close contact with each other, and a metal base material is joined onto this intermediate composite layer. A bonded product with high thermal shock resistance.
JP30707386A 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product Expired - Lifetime JPH0776137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30707386A JPH0776137B2 (en) 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30707386A JPH0776137B2 (en) 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product

Publications (2)

Publication Number Publication Date
JPS63159264A true JPS63159264A (en) 1988-07-02
JPH0776137B2 JPH0776137B2 (en) 1995-08-16

Family

ID=17964716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30707386A Expired - Lifetime JPH0776137B2 (en) 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product

Country Status (1)

Country Link
JP (1) JPH0776137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288303B2 (en) 2004-06-08 2007-10-30 Ngk Insulators, Ltd. Structures of brittle materials and metals
US7521870B2 (en) 2004-06-08 2009-04-21 Ngk Insulators, Ltd. Luminous containers and those for high pressure discharge lamps

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288303B2 (en) 2004-06-08 2007-10-30 Ngk Insulators, Ltd. Structures of brittle materials and metals
US7521870B2 (en) 2004-06-08 2009-04-21 Ngk Insulators, Ltd. Luminous containers and those for high pressure discharge lamps

Also Published As

Publication number Publication date
JPH0776137B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JPS60190651A (en) Engine piston and manufacturing method thereof
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPS63159264A (en) High thermal shock resistance joining method of ceramic to metal and joined product
JPH0360793B2 (en)
JPS63159265A (en) High thermal shock resistance joining method of ceramic to metal and joined product
JPH02196075A (en) Joined structure
JPH0339991B2 (en)
JPH0234912B2 (en) SERAMITSUKUSUTOKINZOKUTAITONOSETSUGOHOHO
JPS61136969A (en) Method of bonding sialon and metal
JPS5935075A (en) Method of bonding ceramic and metal
JPS60145972A (en) Ceramic-metal bonded body
JPS5935074A (en) Ceramic sheet
JPH0240631B2 (en)
JPS5821424B2 (en) Method for manufacturing semiconductor material supporting substrate
JPH0371393B2 (en)
JPS63225585A (en) Ceramic-metal joined body and joining method
JPS62148124A (en) Metal-ceramics bonding member
JPS63239162A (en) Manufacture of ceramic joined body
JPH0317793B2 (en)
JPH01141881A (en) Method for bonding porous ceramic to metal
JPS62182170A (en) Ceramics joint structure
JPH0292873A (en) Bonded material of member having different coefficient of thermal expansion
JPH0469594B2 (en)
JPH0223501B2 (en)
JPS63206365A (en) Joined body of ceramic and metal